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The standardization and broad-scale integration of dynamic susceptibility contrast (DSC)-magnetic resonance
imaging (MRI) have been confounded by a lack of consensus on DSC-MRI methodology for preventing po-
tential relative cerebral blood volume inaccuracies, including the choice of acquisition protocols and postpro-
cessing algorithms. Therefore, we developed a digital reference object (DRO), using physiological and
kinetic parameters derived from in vivo data, unique voxel-wise 3-dimensional tissue structures, and a vali-
dated MRI signal computational approach, aimed at validating image acquisition and analysis methods for
accurately measuring relative cerebral blood volume in glioblastomas. To achieve DSC-MRI signals represen-
tative of the temporal characteristics, magnitude, and distribution of contrast agent-induced T1 and T2*
changes observed across multiple glioblastomas, the DRO’s input parameters were trained using DSC-MRI
data from 23 glioblastomas (�40 000 voxels). The DRO’s ability to produce reliable signals for combina-
tions of pulse sequence parameters and contrast agent dosing schemes unlike those in the training data set
was validated by comparison with in vivo dual-echo DSC-MRI data acquired in a separate cohort of patients
with glioblastomas. Representative applications of the DRO are presented, including the selection of DSC-
MRI acquisition and postprocessing methods that optimize CBV accuracy, determination of the impact of
DSC-MRI methodology choices on sample size requirements, and the assessment of treatment response in
clinical glioblastoma trials.

INTRODUCTION
Dynamic susceptibility contrast (DSC)-magnetic resonance im-
aging (MRI) noninvasively measures brain tumor cerebral blood
flow (CBF) and cerebral blood volume (CBV), and it has found
increasing clinical applications for patient management (1-18).
To facilitate multi-institutional comparability and consistency,
national initiatives, including National Cancer Institute’s Quan-
titative Imaging Network, Radiological Society of North
America’s Quantitative Imaging Biomarkers Alliance, and the
National Brain Tumor Society’s Jumpstarting Brain Tumor Drug
Development Coalition, are underway to standardize acquisition
and analysis protocols for DSC-MRI (19, 20). A challenge to such
efforts is the relative paucity of studies systematically evaluat-
ing the influence of DSC-MRI methodology on CBV accuracy.
In practice, such validation studies are difficult to perform in
patients because of the need for multiple contrast agent (CA)

injections and lack of a noninvasive gold standard CBV measure
for reference. As an alternative to in vivo validation, in silico
digital reference objects (DROs) provide a means for computing
synthetic MRI signals and derived kinetic parameters for a range
of clinically relevant input conditions. Such a DRO was recently
developed for dynamic contrast-enhanced MRI to investigate the
biases and variances of algorithms used for image analysis (21).

The goal of this report is to describe the development of a
DSC-MRI DRO that recapitulates the heterogeneous signal char-
acteristics measured in glioblastomas. In general, there are two
underlying strategies that can be pursued for DROs emulating
MRI data. When the primary objective is to establish multisite
analysis consistency, synthetic signals can be computed using
simple heuristic models approximating the underlying biophys-
ics of signal formation, as the endpoint is to assess the agree-
ment between software estimates of a parameter such as CBV
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that is explicitly defined by the “ground truth” time course.
However, if the intention is to optimize acquisition protocols
and CA dosing schemes, such as those used in DSC-MRI, or if the
accuracy of the analysis is dependent upon certain physical or
physiological assumptions, the synthetic signals should accu-
rately reflect the biophysics of the MRI signal. For the DSC-MRI
DRO, we pursued the latter strategy because it enables a more
accurate and comprehensive investigation into the DSC-MRI
methodology.

In brain tumor DSC-MRI, the acquired signals reflect a
complex combination of T1, T2, and T2* changes that depend
upon numerous features including CA kinetic parameters (CBF,
permeability, intra- and extravascular volume fractions), pre-
contrast T1 and T2*, vascular architecture, cellular microstructure
(size, shape, spatial distribution), transvascular and transcellular
water exchange, and CA T1 and T2* relaxivity. The sensitivity of
the DSC-MRI signal to relaxation time variations is influenced
by the acquisition parameters (repetition time [TR], echo time
[TE], flip angle [FA], pulse sequence type) and CA dosing scheme
(preload and bolus dose and timing). Accordingly, for the DRO
to yield realistic signals, its design must reasonably approximate
the magnitude and heterogeneity of these physical and physio-
logical parameters in vivo. To that end, we developed a DSC-
MRI DRO that is driven by a validated computational strategy to
compute MRI signals for realistic 3-dimensional (3D) tissue
structures (22); partially constrained by parameter inputs de-
fined from in vivo data; and, for unknown parameters, trained
using a public database of DSC-MRI data in glioblastomas.

METHODOLOGY
The computational approach used herein, termed the finite per-
turber finite difference method (FPFDM) (22, 23), models the
effects of water protons diffusing in heterogeneous magnetic
field medium based on a 3D tissue structure. The FPFDM com-
putes magnetic field perturbations induced by susceptibility
variations between the simulated tissue compartments, and it
determines the resulting gradient echo transverse relaxation
rates. In addition to a 3D matrix that defines the tissue structure
(eg, blood vessels and cells), requisite FPFDM inputs include the
static magnetic field strength, the CA concentration in each
compartment for determining intercompartment susceptibility
differences, the water proton diffusion coefficient, and the DSC-
MRI pulse sequence parameters. To ensure clinical relevancy,
the DRO derived from these input parameters should replicate
the magnitude and heterogeneity of CA-induced T1 and T2*
changes during bolus passage through vessels and into the
extravascular extracellular space (EES).

CA Kinetics
The 2-compartment pharmacokinetic model described by Brix et
al. (24) was used to simulate concentration–time profiles in
plasma (Cp) and the EES (Ce). Inputs to the Brix model include
vascular volume fraction, blood flow, CA transfer coefficient
(Ktrans), and volume fraction of the EES (ve). Rather than use
previously reported mean CBF and CBV values in glioblastoma,
our simulated kinetic curves better represented clinical data if
the DRO voxels matched the paired, voxel-wise distribution of
these parameters across patients (as compared with randomly

distributed unpaired parameters). Accordingly, we extracted
DSC-MRI data from 23 patients with glioblastoma (�40 000
voxels) in The Cancer Imaging Archive (TCIA) database for
characterizing the distribution of paired CBF and CBV values.
For this patient cohort, DSC-MRI was acquired at 3T, consisting
of General Electric (General Electric Healthcare, Waukesha, WI,
USA) (n � 14) and Siemens (Siemens Medical Systems, Erlan-
gen, Germany) (n � 9) scanners using single-echo gradient
echo-planar imaging (TR � 1–1.25 seconds, TE � 30 millisec-
onds, FA � 70–80°, field of view � 240 � 240 mm2, section
thickness � 4–5 mm, matrix � 962 or 1282) before, during, and
after administration of 0.1 mmol/kg gadopentetate dimeglu-
mine (Gd-DTPA) infusion at 4 ml/s followed by a saline flush.
Five minutes before bolus injection, a 0.05 mmol/kg Gd-DTPA
preload was administered to minimize T1 leakage effects. Resid-
ual leakage effects were corrected using the Boxerman–Sch-
mainda–Weisskoff approach (25). Voxel-wise relative CBV and
CBF maps were calculated from the leakage-corrected DSC-MRI
data and an automated measure of the arterial input function
(AIF), using circular singular value decomposition-based decon-
volution (26-29). The voxel-wise distributions of Ktrans and ve

were characterized using a retrospective analysis of dynamic
contrast-enhanced MRI signals extracted from a dual-echo
DSC-MRI data set in 11 glioblastomas (30). Because DSC-MRI
data yield relative tumor CBV and CBF measures, their values
were scaled using data obtained from dynamic computed to-
mography perfusion imaging (31). In addition, the AIF used as
input for the DRO’s kinetic modeling was computed as the
average AIF among all patients in the TCIA data. Figure 1, A, B,
and C shows the average AIF values, CBV and CBF paired
distribution, and Ktrans distribution, respectively.

To define a computationally manageable number of tissue
models in the DRO that still accurately reflected the in vivo
voxel-wise heterogeneity, the 2-dimensional paired distribution
of CBF and CBV was first binned into intervals of 5 ml/100
g/min and 1 ml/100 g, respectively. The resulting distribution
was then scaled to yield 100 combinations of CBF and CBV
pairs, which were then used to define the number and vascular
properties of the tissue structures.

Tissue Structures
Although the component of DSC-MRI signal associated with
CA-induced T1 changes is easily calculated by assuming fast
water exchange (32-34), the CA-induced T2* changes depend on
vascular and cellular microstructural geometry, precluding use
of a simple analytical model. To reflect this complexity, we mod-
eled tissue structures using ellipsoids (cells) (22, 23, 35) packed
around randomly oriented cylinders (vessels) (36-45). Previ-
ously, we showed that modeling cells as ellipsoids rather than
spheres provides a more accurate estimate of the magnitude of
T2* changes observed in clinical DSC-MRI studies (22, 23, 35),
whereas modeling the vasculature structure as randomly ori-
ented cylinders has been shown to accurately estimate the T2*
effects that occur when CA is distributed within blood vessels
(36-45). The cylindrical vascular volume fraction was fixed
using the in vivo extracted CBV values, and vessel sizes varied
from 5 to 30 �m (46). Tumor cell volume fractions were allowed
to vary within a physiologically relevant range (45%–65%) (47),
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and the mean cellular axis radii for a given voxel varied between
4 and 15 �m (46). Figure 2 shows a representative 3D volume
rendering of 2 tissue structures, one with homogeneous ellip-
soids with a constant aspect ratio (Figure 2A) and one showing
ellipsoids with heterogeneous shapes (Figure 2B).

Computation of DSC-MRI Signal
The susceptibility differences between the vascular and extravas-
cular compartments were computed using �� � �m·[CA], where
[CA] is the compartmental CA concentration (Cp and Ce) and �m

is the CA molar susceptibility (0.027 � 106 mM�1) (48). In
addition to all the aforementioned input parameters, the FPFDM
calculates the DSC-MRI signal as described previously (22) using
a water proton diffusion rate (D) of 1.3 � 10�3 mm2/s (49),
relevant pulse parameters (TE, B0, FA, TR), and precontrast T10

values ranging from 1 to 2.2 seconds. Figure 3 shows represen-

tative simulated Cp and Ce time curves (Figure 3A), and the
corresponding gradient echo DSC-MRI signal ratio (S/S0) time
curves (Figure 3B) for the 2 tissue voxels are shown in Figure 2.

DRO Training
Given the large number of input parameters and a wide range of
potential permutations, it is critical to ensure that the DRO’s
simulated DSC-MRI signals accurately represent the temporal
characteristics, magnitude, and distribution of CA-induced T1

and T2* changes observed across typical glioblastomas. To
achieve this, we used the voxel-wise TCIA data described above
(�40 000 voxels) for identifying the appropriate combination of

Figure 1. Summary of input parameters for the pharmacokinetic model used in the development of the digital reference
object (DRO). The population-based arterial input function (AIF) was computed from 23 glioblastomas (A). The paired
distribution of cerebral blood volume (CBV) and cerebral blood flow (CBF) was derived from the same database and
scaled by dynamic computed tomography (CT) perfusion data (B). The distribution of Ktrans was derived from previously
published dynamic CT perfusion data (C).

Figure 2. Sample 3-dimensional (3D) tissue struc-
tures used in the development of the DRO. Tissue
structure composed of homogenously shaped ellip-
soids packed around randomly oriented cylindri-
cal vessels (A). Tissue structure containing hetero-
geneously shaped ellipsoids (B). To aid in struc-
ture visualization, these images depict a smaller
number of ellipsoids compared with what was
actually used for the simulations.

Figure 3. Representative concentration–time and
signal–time curves found in the DRO. Simulated
Cp and Ce curves derived using the 2-compart-
ment model for the tissue structures with homoge-
neous (red) and heterogeneous (blue) ellipsoids
illustrated in Figure 2 (A). Corresponding gradient
echo signal ratio (S/S0) computed using the finite
perturber finite difference method (FPFDM) (B).
The tissues consisting of homogeneous and hetero-
geneous ellipsoids yielded signals exhibiting pre-
dominantly T1 and T2* leakage effects,
respectively.
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input parameters. In particular, all computed signals, for an
equivalent preload dosing scheme and pulse sequence parame-
ters to those in the TCIA data set, underwent a selection criteria
process based on their percent signal recovery (PSR) and the
mean and standard deviation of the signals across the DRO.
The PSR is a useful metric for comparison because it reflects the
magnitude of the signal drop during bolus passage and the
postbolus signal recovery. The DRO’s input tissue structure (eg,
cell size, shape), kinetic parameters (eg, CBF, Ktrans), and phys-
ical parameters (precontrast T1) were systematically permutated
until the distribution of PSR values and the mean and standard
deviation of signals across the DRO agreed with those found in
the voxel-wise TCIA data. The PSR agreement was evaluated
using a 2-sample Kolmogorov–Smirnov test. In addition, a 95%
agreement between the FWHM and the maximum signal drop
was used to determine the agreement between the mean signals.
To achieve this level of agreement, the iterative process required
a DRO consisting of �10 000 unique voxels. The data training
based on this selection criterion ensured the removal of com-
puted signals from the DRO, because of an unrealistic combina-
tion of tissue parameters. Figure 4A–B shows the agreement
between the in vivo and in silico mean and standard deviation of
the signal. The distribution of PSR values obtained from the
training data set and the DRO is shown in Figure 4C. The
2-sample Kolmogorov–Smirnov test yielded a P-value of .69,
indicating agreement between the 2 distributions. Table 1 sum-

marizes the final tissue parameter values that were identified
through the DRO training.

DRO Validation
To validate the DRO’s ability to produce reliable signals for pulse
sequences and that the CA dosing schemes are different from
those in the training data set, we compared simulated dual-echo
signals with those found in an in vivo dual-echo DSC-MRI
“validation” data set. The validation data set was acquired in
patients with glioblastoma (n � 3) at 3T using a dual gradient
echo-planar imaging protocol with the following parameters:
TR � 1.5 seconds, TE1/TE2 � 7.0/31.0 milliseconds, field of
view � 240 � 240 mm2, section thickness � 5 mm, matrix �
962. Measurements were taken before, during, and after admin-
istration of Gd-DTPA (0.1 mmol/kg Gd-DTPA, 4 ml/s infusion
rate followed by 20 ml of saline flush). In the simulation, the
structural and kinetic inputs derived during the training phase
remained the same, but the acquisition parameters and dosing
scheme were chosen to match those used in the patient data. The
goal of this validation study was to determine whether the DRO
fully captures the heterogeneity (eg, magnitude and temporal
characteristics such as PSR) of the DSC-MRI signals acquired in
this separate (and smaller) cohort of patients. To identify this
subset of voxels within the DRO, a correlation analysis was
performed between the signals in the in vivo and DRO data. The
range of PSR values found in the in vivo and DRO data was

Table 1. Input Parameters for Tumor and Normal Tissue

CBV (%)
CBF (ml/100

g/min)
Ktrans

(min�1) T10 (s) ve (%)
Cell Radii

(�m)
Vessel Radii

(�m)

WM 3.5 � 0.6 38.4 � 8.3 0.0 � 0.0 1.8 � 0.2 25.4 � 0.3 8.4 � 2.7 9.9 � 1.0

(2.5–4.6) (26.6–55.2) (0.0–0.0) (1.3–2.5) (24.8–26.0) (4.4–12.6) (6.0–13.6)

Tumor 6.1 � 2.8 150.3 � 55.6 0.19 � 0.08 1.8 � 0.2 24.3 � 1.5 8.4 � 2.7 9.9 � 2.5

(1.5–13.8) (43.9–268.2) (0.03–0.47) (1.0–2.6) (22.3–26.5) (4.4–12.6) (1.2–19.7)

Values are expressed as mean � SD and (minimum–maximum).

Figure 4. A database of DSC-MRI performed in 23 glioblastomas was used to train input parameter permutations for
the DRO. After training, the mean and standard deviation values of the in vivo (�40 000 voxels) and in silico (10 000
voxels) DSC-MRI signals are in strong agreement (A–B). The training phase ensured concordance of the percent signal
recovery (PSR) distributions for in vivo and in silico data, supported by 2-sample Kolmogorov–Smirnov test (C).
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compared to ensure that the DRO captured the signal heteroge-
neity measured in the validation set for both TEs. A parameter
termed percent relaxation drop (PRD) was also formulated in a
similar fashion as PSR using the derived dual-echo �R2* time
courses and compared between the in vivo and DRO data.

All simulations were performed using Matlab (MathWorks,
Natick, MA) running on a high-performance 32-core system
with 2.3 GHz processors and 128 GB of RAM.

RESULTS
Validation
Figure 5 compares simulated and in vivo dual-echo DSC-MRI
data. The DRO could accurately recapitulate the TE � 7 milli-
seconds and TE � 31 milliseconds signals and the derived
dual-echo �R2* time courses, which remove T1 leakage effects
but retain T2* leakage effects. The PSR and PRD heterogeneity of
the in vivo data was also fully reflected in the DRO. This indi-
cates that the trained DRO can accurately model the underlying
CA-induced T1 and T2* effects and the associated DSC-MRI sig-
nals for different sets of pulse sequence parameters and CA
dosing schemes.

Application 1: Influence of Acquisition and
Postprocessing Methods on CBV Accuracy
It is well established that T1 and T2* CA leakage effects confound
the reliable measurement of CBV (25, 50). DSC-MRI acquisition

strategies have been proposed to reduce T1 leakage effects,
including the use of preload CA administration, low FAs, long
TEs and TRs, and dual-echo pulse sequences. In addition, post-
processing methods have been developed that eliminate residual
T1 and/or T2* leakage effects (25, 51-59). However, validation of
these acquisition and postprocessing strategies in vivo has been
limited because of the lack of a reliable gold standard reference.
A potential application of the population-based DRO is the
systematic investigation of the acquisition and postprocessing
methods that influence the reliability of CBV measurements.

To this end, we computed the percentage difference between
tumor CBV simulated with and without (Ktrans � 0) CA leakage
effects for a single-dose bolus injection protocol (no preload),
FA � 30° and 90°, TE � 30 milliseconds, and TR � 1 and 2
seconds. We also compared CBV accuracy with and without the
application of postprocessing leakage correction using the
Boxerman–Schmainda–Weisskoff approach. Results of this
analysis are shown in Figure 6. For TR � 1 second, FA � 30°
yielded more accurate CBV values than FA � 90°, with and
without postprocessing leakage correction (Figure 6A). As ex-
pected, the uncorrected 90° FA data yielded substantially un-
derestimated CBV across the DRO voxels, reflecting the strong
sensitivity to T1 leakage effects. For TR � 2 seconds, a greater
fraction of voxels overestimate CBV, indicating a shift toward
T2*-dominated leakage effects due to reduced T1 sensitivity

Figure 5. Validation of the
DRO. A correlation analysis iden-
tified DRO voxels accurately re-
flecting the mean and standard
deviation of voxel-wise dual-echo
dynamic susceptibility contrast-
magnetic resonance imaging
(DSC-MRI) signals, and the com-
puted dual-echo �R2*, in the vali-
dation data set. Agreement is
seen between the in vivo and
simulated signals and PSR values
at echo time (TE) � 7 millisec-
onds (A–C) and TE � 31 millisec-
onds (D–F), and between the in
vivo and simulated dual-echo
�R2* and the computed PRD val-
ues (G–I). The PSR and PRD distri-
butions across all voxels in the in
vivo validation data set are a
subset of those found in the DRO.
These results reflect the broader
PSR and PRD heterogeneity exhib-
ited across the much larger num-
ber of tumors used to train the
DRO compared with that used in
the validation data set.
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(Figure 6B). Leakage correction improved CBV accuracy across
all acquisition parameters. A similar approach could be used to
systematically investigate the influence of a range of acquisition
and postprocessing methods on CBV accuracy.

Application 2: In Silico Optimization of DSC-MRI for Use
in Clinical Trials
The population-based DRO can also be used to optimize DSC-
MRI for assessment of treatment response in clinical trials. For
example, the influence of acquisition and postprocessing meth-
ods on the sensitivity of DSC-MRI to a given CBV change can be
used to determine protocols that minimize the sample size
needed to power a clinical trial. In this context, the DRO serves
as an atlas of possible tumor DSC-MRI signals. By using the
correlation analysis discussed in the validation section, a virtual
patient DSC-MRI data set can be generated by replacing voxel-
wise in vivo tumor signals with an atlas-matched version. This
analysis can be propagated across an existing clinical trial
database to compute in silico pre- and post-treatment DSC-MRI
data. Because the simulated signals for a given voxel originate
from a unique set of input conditions, the DSC-MRI signals can
be recomputed for any combination of acquisition parameters,
such as a new FA or CA dosing scheme. This permits systematic
investigation of how acquisition and postprocessing methods
influence the inter- and intrasubject CBV heterogeneity, pre-
and post-therapy. Alternatively, an assumed effect size distri-
bution (eg, 20% � 5% decrease in a tumor’s CBV) could be
applied to the untreated cohort of virtual patients and can be
used to identify, within the DRO, the “treated” DSC-MRI signals
for each voxel.

Figure 7A–B illustrates a simulated pretreatment CBV map
for a virtual patient computed using 2 different CA dosing
schemes: a single-bolus dose with no preload (method 1) and a
single-dose preload preceding a single-bolus dose (method 2).

The corresponding treated CBV maps (modeled as a 20%
mean reduction in tumor CBV) for both methods are shown in
Figure 7C–D. The pre- and post-treatment CBV distributions
across the entire tumor region of interest for both acquisition
methods are shown in Figure 7E–F. In this example, CBV esti-
mates derived from method 2 were more sensitive to treatment
response compared with those derived from method 1, as indi-
cated by the change in CBV. Similar analyses could be ex-
tended to cohorts of virtual patients to identify the most
robust and sensitive DSC-MRI acquisition and postprocessing
strategies for use in clinical trials.

DISCUSSION
We have described the development of a DRO that recapitulates
the DSC-MRI signal characteristics observed in human glioblas-
tomas. The DRO enables signals to be computed for ranges of
physiological, physical, and acquisition parameters. Clinical
relevance is ensured through the use of a training data set.
Furthermore, we validated the DRO’s ability to produce reliable
signals for different CA dosing schemes and acquisition param-
eters. Although in silico models may be limited by the accuracy
of the biophysical model used, they provide a feasible and robust
alternative to in vivo studies, which, in the case of DSC-MRI,
may require multiple contrast injections and MRI scans and
often lack a reliable “ground truth” for establishing accuracy.

Two key features of the proposed DRO are instrumental to
its ability to provide signals that emulate clinical data. First, the
DSC-MRI signals are derived using a validated computational
approach that enables the incorporation of realistic tissue struc-
tures. Unlike heuristic models of DSC-MRI (34), this approach
does not make assumptions regarding the voxel-wise CA T2*
relaxivity, a parameter that is highly dependent upon vascular
and cellular microstructure. In the proposed DRO, the voxel-
wise microstructure determines the compartmental volume frac-
tions and the associated CA relaxivity. Second, the training
phase ensures that the range of simulated signals reflects the
heterogeneity observed in vivo. Without training, there is the
potential to introduce bias into the optimization of acquisition
and postprocessing methods, as such methods may have not
have uniform accuracy across the range of parameters.

Although we have presented two potential applications for
the proposed DRO, there exist numerous opportunities for its
use. Studies seeking to characterize and explore the biophysical
basis of DSC-MRI data in brain tumors have yielded new bio-
markers sensitive to the underlying tumor microstructure (eg,
morphological features of vessels and cells) (23, 60-62) and
hemodynamics (eg, vascular architectural imaging) (63). For
these advanced methods, the DRO provides a tool with which to
systematically investigate the sensitivity of DSC-MRI to such
features and identify optimal acquisition protocols. Further-
more, the DRO can also be used to assess the accuracy of kinetic
parameter estimates derived from newly developed pulse se-
quences, such as the recently proposed multiecho spin and
gradient echo (SAGE) approach (64-69).

Although we trained the DRO with and validated it against
in vivo data, any simulation approach that models complex
biophysical phenomena has limitations. As described previously
(22), the current computational approach does not consider the

Figure 6. Use of the DRO to investigate the influ-
ence of acquisition and postprocessing strategy
on CBV accuracy. CA leakage-corrected (Corr)
and -uncorrected (unCorr) CBV percentage error
for DSC-MRI simulated at 2 flip angles (FA) and
repetition time (TR) values (A–B). For all parameter
combinations, CA leakage correction increases
CBV accuracy. Leakage-corrected CBV estimates
acquired with lower FAs and longer TRs provided
more accurate CBV estimates.
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effects of arbitrary or heterogeneous CA distribution within a
given tissue compartment such as the EES. The DRO could also
be expanded to include the effects of transvascular water
exchange rate, intravascular flow dynamics, atypical cellular
geometries, and more heterogeneous vascular tree models.

However, increasing the biological complexity of the input
tissue structures also increases the number of unknown param-
eters that would need to be characterized.

The proposed DSC-MRI DRO provides a tool that can be
leveraged by groups aiming to optimize and standardize acqui-

Table 2. Summary of Pulse Sequence Parameter Values and CA Dosing Schemes

TR (ms) FA (°) TE (ms) B0 (T) Preload � Bolus

(1000, 1500, 2000) (30, 60, 90) (20, 30, 40, 50) (1.5, 3) (0 	 1, 1/4 	 3/4, 1/2 	 1/2, 1/2 	 1,
1 	 1)

All possible combinations yielded 360 different acquisition methods. Dosing schemes are presented as a fraction of a standard 0.1 mmol/kg dose.

Figure 7. Application of the
DRO to optimize DSC-MRI for
assessment of treatment response
in clinical trials. Simulated pre-
(A, B) and post-treatment (C, D)
CBV maps in a virtual patient
computed using 2 contrast agent
(CA) dosing schemes: a single-
bolus dose with no preload
(method 1; A, C) and a single-
dose preload preceding a single-
bolus dose (method 2; B, D). Pre-
and post-treatment CBV changes
within tumor for the 2 methods
(E and F). Method 1 yielded a
narrower intratumoral range of
pre- and post-treatment CBV val-
ues but a smaller mean difference
compared with method 2.
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sition and analysis methods for prospective clinical studies. It
also enables the evaluation of bias and variance introduced by
multisite data analysis. Such efforts are critical for establishing
comparability of DSC-MRI data and interpreting multisite clin-
ical trial data. To facilitate this effort, a range of DSC-MRI DROs
is available for download from The Cancer Imaging Archive
(www.cancerimagingarchive.net) under the collection name
Barrow-DRO. The provided files contain multiple versions of the
DRO, computed across a wide range of pulse sequence parame-
ters and preload dosing schemes, all saved in Digital Imaging

and Communications in Medicine (DICOM) and Matlab formats.
Table 2 summarizes the range of pulse sequence parameters and
CA dosing schemes that, when combined, yield 360 different
acquisition methods. Each DRO file is a DSC-MRI time series
data set similar to what would be acquired clinically and in-
cludes predefined regions of interest for the AIF, normal tissue
and tumor voxels. Accordingly, these data may be processed
using commercial or customized DSC-MRI analysis packages.
The data set summary page details the organization of the files,
the regions of interest, and the instructions for use.
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