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Genetic adaptation as a biological buffer against climate change: 
Potential and limitations

Luc De MEESTER,1 Robby STOKS2 and Kristien I. BRANS1

1Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belgium and 2Evolutionary Stress Ecology and 
Ecotoxicology, Leuven, Belgium

Abstract 
Climate change profoundly impacts ecosystems and their biota, resulting in range shifts, novel interactions, 
food web alterations, changed intensities of host–parasite interactions, and extinctions. An increasing number of 
studies have documented evolutionary changes in traits such as phenology and thermal tolerance. In this opin-
ion paper, we argue that, while evolutionary responses have the potential to provide a buffer against extinctions 
or range shifts, a number of constraints and complexities blur this simple prediction. First, there are limits to 
evolutionary potential both in terms of genetic variation and demographic effects, and these limits differ strong-
ly among taxa and populations. Second, there can be costs associated with genetic adaptation, such as a reduced 
evolutionary potential towards other (human-induced) environmental stressors or direct fitness costs due to 
tradeoffs. Third, the differential capacity of taxa to genetically respond to climate change results in novel inter-
actions because different organism groups respond to a different degree with local compared to regional (dispersal 
and range shift) responses. These complexities result in additional changes in the selection pressures on popula-
tions. We conclude that evolution can provide an initial buffer against climate change for some taxa and popu-
lations but does not guarantee their survival. It does not necessarily result in reduced extinction risks across the 
range of taxa in a region or continent. Yet, considering evolution is crucial, as it is likely to strongly change how 
biota will respond to climate change and will impact which taxa will be the winners or losers at the local, meta-
community and regional scales. 
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INTRODUCTION
Climate change is having widespread effects on bio-

ta, including range shifts, novel and altered intensities 
of biotic interactions in changed food webs and host–
parasite interactions, and extinctions (Parmesan & Yohe 
2003; Parmesan 2006; Gilman et al. 2010; Scheffers 
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et al. 2016; Urban et al. 2016; McCarty et al. 2017). 
One of the biotic complexities that might strongly in-
fluence our predictions of how biota will respond to fu-
ture climate change (Valladares et al. 2014; Urban et al. 
2016) is the capacity of natural populations to geneti-
cally adapt to environmental change (Bradshaw & Hol-
zapfel 2006; Márquez et al. 2007; Gienapp et al. 2008; 
Lavergne et al. 2010; Hoffmann & Sgrò 2011; Merilä 
& Hendry 2014; Chirgwin et al. 2015). Next to physio-
logical acclimation, altered behavior, and adaptive phe-
notypic plasticity mediated by maternal effects and epi-
genetics (Fiedler et al. 2004; Fuller et al. 2010; Somero 
2010; Huey et al. 2012; Charmantier & Gienapp 2014; 
Bell et al. 2015; Seebacher & Post 2015; Seebacher 
et al. 2015; Wong & Candolin 2015), evolutionary re-
sponses have the potential to provide a buffer against 
extinctions or range shifts upon climate change (Gienapp 
et al. 2008; Hoffmann & Sgrò 2011; Merilä & Hendry 
2014). The emerging insight is that plasticity may not be 
enough for populations to track ongoing climate change 
and that genetic changes are needed (Duputié et al. 
2015; Gunderson & Stillman 2015). While such an evo-
lutionary buffering effect is a possible outcome, in the 
current opinion paper we argue that there are a number 
of constraints and complexities that may lead to predic-
tions and outcomes that differ from a mere buffering ef-
fect. These may include even stronger range shifts than 
in the absence of evolution (e.g. in case of evolutionary 

specialization; Bocedi et al. 2013), or profound changes 
in the distribution, occurrence, or trait values of popula-
tions.

In the following, we first provide a short overview 
of the recent evidence for evolutionary responses to cli-
mate change, both in terms of evolution of mean trait 
values and evolution of plasticity. Second, we discuss 
constraints on evolutionary change that are likely to lim-
it the capacity of natural populations of many species 
to respond to climate change by adaptive trait change. 
These include classic constraints such as the lack of ge-
netic variation or strong genetic correlations among 
traits that are under contrasting selection pressure, but 
also costs of evolution at the individual and popula-
tion level. We consider how the buffering role of evolu-
tion in shaping responses to climate change may strong-
ly depend on metacommunity context (see the evolving 
metacommunity concept in Urban & Skelly 2006; Ur-
ban et al. 2008). This is important given that climate 
change and the responses to it have an explicit spatial 
component through the latitudinal climate gradient de-
termining the direction of range shifts as well as the 
source of potentially pre-adapted immigrants (Urban et 
al. 2012a). Finally, we make predictions on the condi-
tions in which evolutionary change might impact extinc-
tion risk and range shifts in response to climate change. 
A summarizing conceptual scheme is provided in Fig. 1.

Figure 1 Simplifying scheme on constraints 
and factors that impact evolutionary trajec-
tories in response to climate change. Evolu-
tion can contribute to responses to climate 
change both when the population remains in 
its original habitat as well as when the pop-
ulation migrates to another habitat, although 
the specific selection pressures will of-
ten differ. The degree to which populations 
can genetically track climate change is de-
pendent on a number of constraints (genet-
ic variation, genetic covariation) that are in 
part linked to population size, on the costs 
of evolution both at the level of the popu-
lation (demographic cost) and in terms of 
tradeoffs affecting fitness, and on the con-
text provided by the community in which 
the population is embedded and by land-
scape features determining metapopulation 
and metacommunity structure.
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EVIDENCE FOR EVOLUTIONARY 
RESPONSES TO CLIMATE CHANGE

The capacity of natural populations to genetical-
ly adapt to climate change is a topic that is understud-
ied in global change research (Merilä & Hendry 2014). 
Inspired by the landmark study by Bradshaw and Hol-
zapfel (2001) showing genetic adaptation in phenolo-
gy of the pitcher plant mosquito in a 5-year time peri-
od as growing seasons become longer due to warming, 
there are an increasing number of studies that docu-
ment evolutionary changes in phenology (Bradshaw & 
Holzapfel 2006; Van Asch et al. 2007; Merilä & Hend-
ry 2014). Since Bradshaw and Holzapfel (2001), multi-
ple other traits have been shown to evolve in response 
to climate change, including thermal tolerance, drought 
resistance and dispersal traits (overviews in Hoffmann 
& Sgrò 2011; Merilä & Hendry 2014, and the differ-
ent chapters in that special issue dedicated to phenotyp-
ic plasticity and genetic responses to climate change), as 
well as other traits indirectly related to climate change, 
such as altered defense responses to antagonistic biot-
ic interactions and host plant choice (Bridle et al. 2014; 
Buckley & Bridle 2014). Overall, genetic responses to 
climate change have now been reported in a broad range 
of taxa. Yet, Merilä and Hendry (2014) concluded that 
acclimation of populations through phenotypic plasticity 
seems still by far more common than genetic adaptation 
in mediating responses of natural populations to climate 
change. Building on these earlier reviews and more re-
cent studies, we here focus on 3 perspectives that may 
influence our view on how evolutionary change impacts 
biotic responses to climate change. 

First, while the earlier studies on genetic adaptation 
to climate change predominantly reported changes in 
phenology, there is also growing evidence for genetic 
responses in heat tolerance (Huey et al. 1991; Weeks et 
al. 2002; Dixon et al. 2015; Geerts et al. 2015). Recent 
work on the water flea Daphnia magna documented a 
genetic increase in heat tolerance in response to 4 °C 
warming in a 2-year experimental evolution trial in out-
door mesocosms (Geerts et al. 2015). In addition, res-
urrection ecology studies demonstrated that natural D. 
magna populations have evolved a higher heat tolerance 
over the past 40 years (Geerts et al. 2015) and a better 
ability to deal with mild warming within 7 years (Zhang 
et al. 2016). In combination, these studies show that nat-
ural populations of Daphnia not only have the potential 
to genetically adapt to future climate change but also 

have already responded to past climate change over the 
past decades. Genetic adaptation through a change in 
heat tolerance may be common, as rapid climate change 
likely imposes strong selection on this trait, and the trait 
generally shows heritable variation (Diamond 2017). 
There are a multitude of studies on terrestrial insects 
and vertebrates showing genetic changes in heat toler-
ance across thermal gradients associated with latitude 
and altitude (Hoffmann et al. 2002; Chown et al. 2010; 
Bozinovic & Pörtner 2015; Comte & Olden 2016; Di-
amond 2017). While such spatial gradients in trait val-
ues might often reflect evolution over long time periods, 
these studies do show that many species currently har-
bor genetic variation in heat tolerance matching climate 
gradients. Moreover, Balanya et al. (2006) show that 
clinal latitudinal variation in Drosophila subobscura de-
veloped in just a few decades, and recent studies show-
ing genetic differentiation in heat tolerance along urban-
ization gradients tracking temperature change associated 
with the urban heat island effect similarly suggest that 
gradients in genetically determined differences in heat 
tolerance can build up rapidly (Brans et al. 2017b; Di-
amond et al. 2017). A transplant study on reef corals 
also found remarkable genetic adaptation and acclimati-
zation to warming with heat-tolerant populations of ta-
bletop coral Acropora hyacinthus showing significant-
ly reduced levels of bleaching upon heat stress within 2 
years (Palumbi et al. 2014). Mechanisms that may lead 
to higher heat tolerance involve biochemical adaptation 
(e.g. heat shock proteins; Tomanek 2010; Bentley et al. 
2017) and a smaller body size (Daufresne et al. 2009; 
Brans et al. 2017a). Evolution of heat tolerance is espe-
cially important for species already close to their upper 
thermal boundaries where plasticity in upper thermal 
limits is unlikely to effectively buffer effects of glob-
al warming (Tewksbury et al. 2008; Araújo et al. 2013; 
Sørensen et al. 2015; van Heerwaarden et al. 2016) and 
may be enhanced by exposure of hidden genetic varia-
tion (Diamond & Martin 2017). Yet, each case will have 
to be evaluated carefully as the level of heritable vari-
ation may not always be enough to deal with predict-
ed warming (Hoffmann et al. 2013; Schou et al. 2014; 
Hangartner & Hoffmann 2016). One reason that the 
evolution of increased heat tolerance could be limited is 
through a negative relationship with thermal acclimation 
responses as seen in the dung fly Sepsis punctum select-
ed for higher heat tolerance (Esperk et al. 2016).

Second, climate change as a selection pressure has 
many dimensions. While traits linked to heat tolerance, 
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phenology and drought are obvious candidates for stud-
ies on genetic adaptation to climate change in many or-
ganisms, climate change is indirectly also likely to in-
duce evolutionary change in a broad array of other 
traits. For example, in the case of a range shift, popu-
lations might be confronted with any change in abiot-
ic conditions, such as soil type, pH, landscape structure 
and chemical pollution. In addition, populations might 
often be exposed to pronounced changes in biotic inter-
actions, such as a change in prey and host plant avail-
ability (Pateman et al. 2012), vegetation cover, intensity 
of competition (Alexander et al. 2015), or the presence 
of predators, parasites or exotic species (Gaedke et al. 
2010; Gilman et al. 2010; Hellmann et al. 2012; Shurin 
et al. 2012; Zarnetske et al. 2012; Hansson et al. 2013) 
These changes in biotic context may also occur in case 
populations do not shift ranges, but other species do. For 
instance, climate change may induce a change in inten-
sity of parasitism and predator–prey interactions (Nussey 
et al. 2005; Hall et al. 2006; Durant et al. 2007; De 
Block et al. 2013; Bonaviri et al. 2017), the abundance 
of exotic species (Dukes 2010; Wolkovich et al. 2013), 
or a shift in the abundance of host plants (Wolkovich & 
Cleland 2014). For example, Bridle et al. (2014) show 
that the brown argus butterfly Aristia agestis specializ-
es on one host plant species as it expands its range as a 
consequence of climate warming. In the context of al-
tered predator–prey interactions, increased temperatures 
typically increase predation rates because of increased 
attack efficiencies and reduced handling times (Englund 
et al. 2011), and both local evolution and immigration 
of low-latitude predators may further enhance this ef-
fect. For example, two recent studies using a space-for-
time substitution approach provided experimental evi-
dence that predation rates by damselfly larvae on water 
fleas (De Block et al. 2013) and on mosquitoes (Tran et 
al. 2016) would increase at high latitude under warming 
when predators show thermal evolution or warm-adapt-
ed low-latitude predators move poleward. 

Third, while many studies focus on the dichotomy 
between phenotypic plasticity and evolutionary change 
(Merilä 2012; Merilä & Hendry 2014) as buffers against 
climate change, it is important to also consider that evo-
lutionary change often also involves evolution of plas-
ticity (Brommer et al. 2005; Nussey et al. 2005; Chown 
et al. 2010; Stoks et al. 2016; Chevin & Hoffmann 
2017) and that phenotypic plasticity and genetic change 
can be intrinsically related (Lande 2009; Diamond & 
Martin 2017). Evolved plastic responses are expected 

to be important for populations to deal with climate ex-
tremes (Kingsolver et al. 2007; Chevin & Hoffmann, 
2017). For example, Kingsolver et al. (2007) showed 
rapid evolutionary divergence of thermal reaction norms 
for size, development time and survival in the butterfly 
Pieris rapae when invading North America. In another 
example, Nussey et al. (2005) found heritable variation 
in individual plasticity in timing of reproduction in great 
tits and detected past climate change (over a period of 
30 years) to have selected for more plastic individuals 
as a response to climate-driven shifts in peak occurrence 
of their caterpillar prey. 

CONSTRAINTS ON EVOLUTIONARY 
CHANGE

Genetic variation and covariation

In the previous paragraphs, we emphasized that many 
natural populations have been shown to have the capac-
ity to genetically respond to climate change. The de-
gree to which they can, however, will critically depend 
on a number of constraints, and several authors (e.g. 
Jump & Puenelas 2005; Charmantier et al. 2008; Merilä 
2012; Gienapp et al. 2013; Merilä & Hendry 2014; Dia-
mond & Martin 2017) have expressed doubts regarding 
whether most natural populations will have the capaci-
ty to evolve sufficiently fast to keep track with current 
climate change. Generation time is a key factor, as it de-
termines the speed by which a population can evolve 
in the face of a given rate of change in the external en-
vironment (Réale et al. 2003; Visser 2008; Gienapp et 
al. 2013). Small taxa with short generation times will, 
therefore, all else being equal, in general have a high-
er capacity to genetically track climate change than spe-
cies with long generation times, such as mammals (e.g. 
Boutin & Lane 2014; Hetem et al. 2014). Unicellular 
organisms and many invertebrates might, therefore, be 
among the organisms for which a considerable capaci-
ty for adaptive evolution in response to climate change 
is to be expected. There are, however, quite a number of 
examples of contemporary evolution in fish, birds, liz-
ards (Bearhop et al. 2005; Crozier et al. 2008; Gienapp 
et al. 2008; Jensen et al. 2008; Olsson et al. 2010; Char-
mantier & Gienapp 2014; Hendry 2016; Pörtner & Gutt 
2016) and even trees (Kremer et al. 2012; Alberto et al. 
2013; Hornoy et al. 2015; Yeaman et al. 2016). 

As a first constraint, the capacity to genetically re-
spond fast enough to climate change critically depends 
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on the presence of a sufficient amount of genetic vari-
ation in natural populations, on population size and on 
genetic variation present regionally (Chown et al. 2010; 
Hoffmann & Sgrò 2011). This constraint can become 
more important in complex settings in which multiple 
traits need to evolve simultaneously. Evolution can be 
fueled by standing genetic variation, by de novo muta-
tions or by gene flow (Lynch & Walsh 1998; Barrett & 
Schluter 2008; Hoffmann & Sgrò 2011). The lack of ge-
notypic variation for traits under selection can cause 
evolutionary inertia (Bradshaw 1991), which has been 
observed for a range of taxa in the context of climate 
change (Hoffmann et al. 2013; Kellermann et al. 2006; 
van Heerwaarden et al. 2008). For example, 2 rainfor-
est species of Drosophila (Kellermann et al. 2006) have 
been shown to lack genetic variation for desiccation re-
sistance, reducing their evolutionary potential to re-
spond to climate shifts. In another example, Chirgwin 
et al. (2015) found adaptive genetic variation for larval 
survival in 2 cooler temperatures but not in a warmer 
temperature in the marine polychaete Caleolaria caespi-
tosa. At first sight, this suggests that the species would 
be limited in its evolutionary responses towards warm-
ing. Yet, there was additive genetic covariance between 
larval survival at the coolest and the warmest tempera-
ture, and larval survival at each temperature contributed 
strongly to the multivariate direction of greatest additive 
genetic variance (gmax) for these 3 traits. Therefore, 
selection for increased larval survival across different 
temperatures (in the direction of gmax) should result in 
an evolutionary increase in survival across all 3 tem-
peratures. This study thus cautions against conclusions 
that are too simplistic and argues for the need to adopt a 
multivariate perspective. Indeed, even in the absence of 
univariate additive genetic variance for survival at the 
warmer temperature, adaptation in response to warm-
ing will still be possible in this example because of the 
presence of additive genetic variance in multivariate 
space (survival at the warmer temperature contributes 
to gmax), and because of the genetic covariance across 
temperatures (Chirgwin et al. 2015). 

The amount of standing genetic variation that is 
maintained in a population depends, among other fac-
tors, on effective population size, as effective popula-
tion size determines the loss of genetic variation due to 
genetic drift and the likelihood of mutations generat-
ing new variants (Hartl & Clark 2007). As a result, all 
else being equal, we expect genetic responses to climate 
change to be more prevalent in relatively small organ-

isms that build up large populations. This enhances the 
dichotomy between small, common species with short 
generation times and larger, less common species with 
longer generation times, with the latter often being more 
constrained in their capacity to genetically respond to 
climate change. These latter species are also focal taxa 
in many conservation genetic studies (Frankham 1995; 
Vander Wal et al. 2013). Even huge population sizes are, 
however, no guarantee for evolutionary rescue. For ex-
ample, Kwiatkowkski & Roff (1976) documented in the 
1970s that phytoplankton populations estimated to be 
up to 1010 cells per lake failed to adapt to acidification 
caused by plume pollution coming from a nickel smelt-
er. In one case, a community of 55 species was reduced 
to only one Chlorella population. This population even-
tually did evolve resistance and was capable of persist-
ing through 20 years of gradual acidification.

In addition to local population sizes, genetic variation 
present at the regional, landscape context may also play 
a key role in adaptation to climate change. Adaptive 
evolution of a local population may, indeed, be fueled 
by gene flow from pre-adapted populations and cause 
“genetic rescue” (Aitken & Whitlock 2013; Gomulk-
iewicz & Shaw 2013; Carlson et al. 2014). This may re-
sult in a replacement of one population of a given spe-
cies by another one, or result in rapid dominance of 
an immigrant, advantageous allele through a selective 
sweep (Carlson et al. 2014; Wilson et al. 2017). While 
ecologists would observe no change in the occurrence 
of a given species over vast areas of its range, this might 
conceal a replacement at the landscape genetic level. 

An interesting complexity in the context of climate 
change is that genetic diversity and composition can be 
different in marginal compared to central populations 
(Eckert et al. 2008). In marginal populations, genetic di-
versity is often lower and genetic differentiation among 
populations enhanced (e.g. Swaegers et al. 2015; Ur-
senbacher et al. 2015), and in areas or range expansion 
rare variants can increase in frequency due to gene surf-
ing (Excoffier et al. 2009). These processes can reduce 
evolutionary potential of marginal populations, as was 
shown for the damselfly Ischnura senegaliensis (Taka-
hashi et al. 2016). Conversely, glacial refugia often are 
hotspots of genetic diversity whose protection might be 
crucial for safeguarding evolutionary potential in the 
face of climate change (Razgour et al. 2013).

A second constraint results from strong genetic cor-
relations between traits that are subject to conflicting se-
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lection pressures (Etterson & Shaw 2001; Duputié et al. 
2012; Merilä 2012; Chevin 2013). Such genetic correla-
tions can be due to pleiotropy (i.e. when the same loci 
influence multiple traits) or linkage disequilibrium (i.e. 
if the traits are influenced by different loci but selection, 
physical linkage or other evolutionary forces maintain 
a non-random association between the alleles at these 
loci; Lynch & Walsh 1998; Conner 2002; Chevin 2013). 
Genetic correlations can strongly impact the rate of evo-
lution and influence evolutionary trajectories (Berger et 
al. 2013; Careau et al. 2015). Yet, few examples exist in 
the context of climate change. A notable exception is the 
study by Etterson & Shaw (2001, 2012) showing that, 
although genetic variance for physiological and mor-
phological drought-related traits was present in 3 popu-
lations of North American prairie plants, limited adap-
tive evolution was predicted in response to increased 
temperatures and aridity due to strong among-trait an-
tagonistic genetic correlations. In contrast, some studies 
have shown that genetic covariances can be overcome 
through strong selection (Frankino et al. 2005; Agrawal 
& Stinchcombe 2009; Conner et al. 2011) and it is still 
not clear how important genetic correlations are in slow-
ing down adaptation in response to climate change.

Costs of evolution at the population level

If there is sufficient genetic variation for adaptive 
evolution tracking climate change, this may lead to evo-
lutionary rescue (i.e. survival of the population or spe-
cies thanks to evolution) (Gomulkiewicz & Holt 1995; 
Bell & Gonzalez 2009; Gonzalez et al. 2013; Vander 
Wal et al. 2013; Carlson et al. 2014). Adaptation has, 
however, a demographic cost (Haldane 1957; Bell 2013; 
Gomulkiewicz & Shaw 2013), and it is possible that 
evolutionary change reduces population sizes to such 
an extent that the population becomes at risk of extinc-
tion (Gomulkiewicz & Holt 1995). Another cost of evo-
lution at the population level is reduction of genetic 
variation. If the population goes through a population 
bottleneck because of the demographic cost of evolu-
tion, genetic drift may lower genetic variation at the ge-
nome-wide level, reducing the capacity of the result-
ing population to genetically respond to novel stressors 
(Via & West 2008; Via 2009; Hoffmann & Sgrò 2011; 
Pauls et al. 2013). In addition, evolution may also re-
duce genetic variation in the traits that are subject to se-
lection (e.g. body size and thermal tolerance) and the 
genomic regions that hitch-hike along, reducing genet-
ic variation in specific regions of the genome (Ferriere 

& Legendre 2013; Pauls et al. 2013). For example, in 
laboratory experiments using nonbiting midges it was 
found that exposure to a stressor over a few generations 
lowered genetic diversity by adaptation as well as by 
enhanced genetic drift (Vogt et al. 2007; Nowak et al. 
2010) and reduced the possibility of the populations to 
adapt to a secondary stressor (Vogt et al. 2010). Over-
all, one can expect that small-bodied species with large 
population sizes are less likely to be strongly impact-
ed by these processes than species that are large eco-
logical specialists or endangered, and, hence, have rela-
tively small population sizes (Charlesworth et al. 1997). 
For instance, Orsini et al. (2016) did not observe a re-
duction in genetic diversity in populations of the wa-
ter flea Daphnia following exposure to pronounced and 
well-documented environmental changes in their analy-
sis of SNP variation in layered dormant egg banks, even 
though the populations had been documented to have 
genetically adapted to these environmental changes. 

In cases where gene flow fuels adaptive genetic 
change in local populations, this entails 3 risks in the 
context of adaptation and performance. First, gene flow 
between 2 populations can lead to outbreeding depres-
sion when populations have been separated for a long 
time (Frankham 1995). Local adaptation to import-
ant non-climatic environmental factors (e.g. soil con-
ditions) that differ between source and target habitats 
might cause maladaptation after migration, leaving pop-
ulations vulnerable in the light of climate change adap-
tation (Aitken & Whitlock 2013). Second, if immigrant 
genotypes are disproportionally successful in relatively 
small local populations so that their offspring dominates 
the populations, this might lead to overall genetic im-
poverishment (Via & West 2008; Via 2009; Pauls et al. 
2013). Third, even in larger populations where recom-
bination leads to an efficient selection on the beneficial, 
immigrant allele, the resulting selective sweep lowers 
genetic variation at the selected locus and linked ge-
nomic regions. “Soft” selective sweeps, in which multi-
ple adaptive lineages contribute to the initial evolution-
ary rescue, are, therefore, more likely to drive long-term 
population persistence through evolution (Wilson et al. 
2017).

Costs of evolution at the individual level: 
Tradeoffs

Evolutionary trait change in response to natural se-
lection can have costs linked to tradeoffs (Clarke 2003; 
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Chaianunporn & Hovestadt 2015; Chirgwin et al. 2015; 
Kelly et al. 2016; Sørensen et al. 2016). For exam-
ple, molecular chaperones such as heat-shock proteins 
are costly to produce and can lead to reduced somatic 
growth, developmental rate and fertility (Silbermann & 
Tatar 2000; Sørensen et al. 2003). Kelly et al. (2016) re-
port that experimental evolution of increased heat toler-
ance resulted in a lower fecundity in the intertidal cope-
pod Tigriopus californicus. In another example, Hughes 
et al. (2003) showed that climate-driven range expan-
sion in the speckled wood butterfly (Pararge aegeria) 
shows a strong association with evolutionary chang-
es in dispersal capacity, but also comes at a cost of re-
duced reproductive investment. Such tradeoffs and fit-
ness costs towards responses to other stressors can result 
because of a direct conflict at the trait level (e.g. a re-
duction in body size to increase thermal tolerance ac-
cording to the temperature-size rule makes individuals 
more susceptible to a gape-limited predator) or can re-
sult from a reduced energy allocation to other traits such 
as chemical tolerance, anti-predator defenses or para-
site immunity (Clarke 2003). For example, a tradeoff 
between thermal adaptation and tolerance to pollutants 
(Moe et al. 2013) was recently documented across lati-
tudes with warm-adapted low-latitude damselflies being 
more vulnerable to the trace metal zinc than cold-adapt-
ed high-latitude damselflies (Debecker et al. 2017). In 
addition to tradeoffs, costs of evolution can also result 
from pleiotropy (i.e. genes impacting different traits) or 
linkage. At the same time, while tradeoffs or other costs 
might be common, they are not necessarily always pres-
ent. For instance, Hangartner and Hoffmann (2016) 
could not detect a cost in terms of vulnerability to pre-
dation by jumping spiders after experimental evolution 
of increased heat tolerance in the fruitfly Drosophila 
melanogaster. 

In the context of climate change, these indirect fitness 
costs of evolution towards responses to other stressors 
likely have important consequences, precisely because 
climate change is often associated with pronounced 
changes in other factors such as biotic interactions (Post 
2003; Parmesan 2006; Both et al. 2008; Gilman et al. 
2010; Urban et al. 2016) and increased pollution lev-
els (Kattwinkel et al. 2011). In addition, climate change 
is only one aspect of global change, and many popu-
lations are additionally impacted by other human-in-
duced stressors such as pollution, eutrophication, exotic 
species and urbanization (Palumbi 2001; Grimm et al. 
2008; Butchart et al. 2010; Alberti et al. 2017). Indirect 

fitness costs of adaptive evolution in response to climate 
change warrant attention and might strongly impact our 
predictions on the impact of climate change.  

GENETIC ADAPTATION IN A 
METACOMMUNITY CONTEXT: LOCAL 
VERSUS REGIONAL RESPONSES 

As there is an intrinsic spatial component to respons-
es to climate change, it is important to include meta-
population and metacommunity-level dynamics when 
studying those responses. As populations may genetical-
ly adapt to climate change, the evolving metacommuni-
ty concept provides a strong framework to consider the 
interactions between community composition, evolu-
tionary trait change, the environment and space (Urban 
et al. 2008, 2012; De Meester et al. 2011). The poten-
tial for interactions between ecological and evolutionary 
responses (i.e. “eco-evolutionary dynamics”; Hendry 
2016) is very rich and complex, but as a first approach 
we can focus on two questions. First, what is the rela-
tive importance of local and regional dynamics in the 
responses to climate change? Second, what is the rela-
tive importance of evolutionary and ecological dynam-
ics in the responses to climate change? 

Evolution can impact responses to climate change 
in three ways, which we briefly discuss in the follow-
ing paragraphs. First, local genetic tracking of climate 
change can allow populations to survive locally and, 
thus, make responses to climate change more local (i.e. 
reduce the extent of range shifts). Second, when popu-
lations migrate along with the moving climate, genetic 
adaptation to the novel conditions they encounter might 
contribute to survival in the newly colonized areas, thus 
impacting effective range shifts. Third, evolution of dis-
persal can impact the speed and extent of range shifts. 

Evolutionary change can make responses more 
local

Traditional climate envelope models predict vast 
changes in distribution patterns of organisms in re-
sponse to climate change (Bakkenes et al. 2002; Thuill-
er 2003; Brooker et al. 2007; Chen et al. 2011; Su et al. 
2015). These predictions might in some cases, howev-
er, be impacted by assumptions underlying the models, 
which often do not take dispersal limitation or complex 
dispersal dynamics, nor evolution into account (Urban 
et al. 2013, 2016; Weiss-Lehman et al. 2017). If pop-
ulations can locally track climate change through evo-
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lution, they might not be forced to shift their range. In 
practice, when local populations are confronted with cli-
mate change, they will respond in both ways: a subset of 
individuals will migrate and might colonize other patch-
es where the climate is similar to that in their former 
patch, whereas others will remain and might respond to 
the changing selection pressures by genetic trait change. 
Depending on the success of these strategies, the re-
sult might be anything from range shift, range expan-
sion, range contraction, to extinction. The outcome of 
these parallel strategies will for each population de-
pend on a number of factors, such as the capacity for 
(long-distance) dispersal and the evolutionary potential 
of local populations. Some interactions between the ca-
pacity to disperse and the capacity to evolve can be ex-
pected, such as the prediction that local genetic adapta-
tion is more difficult in populations that are exposed to 
high levels of gene flow (Lenormand 2002; Kinnison & 
Hairston 2007; Bridle et al. 2010; Bourne et al. 2014). 
Yet, there are multiple mechanisms through which lo-
cal genetic adaptation in the face of high dispersal is 
possible (i.e. “microgeographic adaptation”; Richard-
son et al. 2014). Species with low dispersal capacity and 
low capacity to evolve (e.g. large-bodied species with 
long generation times and low population sizes; Hoff-
mann et al. 2017) are most at risk of extinction. Species 
with high dispersal capacity but low evolutionary po-
tential (e.g. birds or butterflies with relatively long gen-
eration times) can be predicted to show pronounced 
range shifts. If the habitats or communities they encoun-
ter as they shift ranges are very different, however, this 
might result in strong mismatches and local extinction 
(Schiffers et al. 2013). Species with low dispersal ca-
pacity and high evolutionary potential are expected to 
show local responses and might be able to genetical-
ly track climate change. Species with high dispersal ca-
pacity and high evolutionary potential might both ex-
pand their niche and locally adapt. The actual responses 
will, however, also strongly depend on context, such as 
the density and abundance of antagonists in the expan-
sion zone, or the level of competition imposed by immi-
grants for the populations that stay resident. In addition, 
as different competing species can differ in the degree 
to which they show local or regional responses, and this 
can lead to conflicts and extinction (De Meester et al. 
2011; Urban et al. 2012a). Indeed, if species with adja-
cent ranges differ in the degree to which they respond 
by migration or local adaptation, their ranges might in-
crease in overlap and competitive exclusion might occur 
(Urban et al. 2012a,b).

 Species with high evolutionary potential and good 
dispersal capacities might be the winners of climate 
change and might be the only species that can profit 
from the global human-induced changes in environmen-
tal conditions, together with species that exhibit high 
tolerance at the individual level (Williams et al. 2008; 
McGill et al. 2015). The opportunistic species that con-
tribute to the homogenization of communities in a hu-
man-dominated world (Vitousek et al. 1997; McKinney 
& Lockwood 1999; McKinney 2006)) might be either 
opportunistic because of high individual versatility or 
because of a combination of high evolutionary potential 
and short generation times, conferring versatility at the 
population level. 

Range shifts and evolutionary adaptation to 
novel habitats 

Natural settings are complex, and a factor that is of-
ten overlooked in both modeling and empirical stud-
ies on climate change responses is that climate is not 
the only selection pressure impacting local populations. 
Temperature is a key environmental factor profoundly 
influencing metabolism and all physiological process-
es of organisms (Pörtner & Knust 2007; Tewksbury et 
al. 2008; Angilletta 2009) and their occurrence in time 
and space (Parmesan & Yohe 2003). Yet, one may argue 
that temperature and precipitation levels might often 
be the only abiotic factors that are changing in the lo-
cal setting, while many other abiotic (e.g. soil type, pH 
and salinity) and biotic conditions might change if or-
ganisms move to other areas. Moreover, given that lat-
itudinal isoclines for summer and winter temperatures 
strongly differ (Bradshaw & Holzapfel 2006), species 
moving poleward cannot simply follow their thermal 
envelope for both summer and winter. It is, therefore, 
somewhat naïve to assume that dispersal would free or-
ganisms from having to evolve. Whether staying in the 
local habitat or migrating to other patches will lead to 
the largest changes in selection pressures will depend on 
the degree of climate change, the amplitude and grain 
of environmental variation in the landscape, the type of 
gradients in the landscape (i.e. whether the environmen-
tal variables that change are important niche axes of the 
species), and the degree of changes in biotic selection 
pressures (competitors, parasites, predators, mutualists; 
exotic species) that the population will be exposed to lo-
cally or in the target region.  

If range shifts involve colonization of areas that are 
free of competitors (e.g. as in areas with retracting per-
mafrost or ice sheets; tree line shifts), this can result in 
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selection for traits that are typical for pioneer species, 
such as fast intrinsic growth rates (Williams et al. 2008). 
In addition, the abundance of resources combined with 
colonization by a low number of individuals may result 
in gene surfing (Excoffier et al. 2009) and priority ef-
fects, which may lead to reduced genetic diversity with-
in and increased genetic differentiation among marginal 
habitats (Swaegers et al. 2015; Ursenbacher et al. 2015). 
These peculiar genetic characteristics of marginal popu-
lations might strongly impact the direction of evolution-
ary trajectories and the rates of adaptation. 

Evolution of dispersal associated with range 
shifts

Evolution of dispersal capacity itself might also 
strongly impact responses to climate change in those 
species that show a range shift (Kubisch et al. 2014). 
Models (Phillips et al. 2008), field data (Phillips et 
al. 2006) and an increasing number of experiments 
(Fronhofer & Altermatt 2015; Williams et al. 2016; 
Weiss-Lehman et al. 2017) have provided evidence that 
dispersal can evolve as species expand their range. One 
mechanism that leads to an increase in dispersal capaci-
ty as species expand their range is spatial sorting (Lind-
ström et al. 2013). In spatial sorting, genotypes with 
higher dispersal capacity are automatically promoted 
at the margin of an expanding range, not because they 
have a higher fitness in the colonized habitats but be-
cause they move faster and there is available habitat. 
The impact of evolution of increased dispersal rates on 
the rate of range shifts is considerable (Phillips et al. 
2006; Fronhofer & Altermatt 2015). High dispersal rates 
at range fronts might even cause organisms to move 
faster than the moving climate envelope. Such high dis-
persal rates from central populations to the expand-
ing range front may explain the observed evolutionary 
change to reduced heat tolerance and increased win-
ter survival in populations at the range front in the pole-
ward moving wasp spider Argiope bruennichi (Krehen-
winkel & Tautz 2013; Krehenwinkel et al. 2015).

RESPONSES TO CLIMATE CHANGE 
IN A METACOMMUNITY CONTEXT: 
INTERSPECIFIC AND INTRASPECIFIC 
RESPONSES 

From the perspective of the trait distribution of a lo-
cal community, both shifts in community composition 

and evolutionary responses within the populations of 
community members can contribute to a change in trait 
distribution upon environmental change (Bolnick et al. 
2011; Violle et al. 2012). For example, an increase in 
temperature might lead to a shift of the community-lev-
el temperature performance optimum. This can be me-
diated by: (i) genetic adaptation of member species that 
track the change in temperature; (ii) changes in the rel-
ative abundance of species that were already present in 
the community towards increased relative abundances 
of species with higher temperature optima; or (iii) dif-
ferential extinction of local species and colonization by 
species adapted to higher temperatures from the regional 
species pool. Identifying the relative importance of in-
traspecific and interspecific contributions to trait change 
under climate change is, therefore, important (Violle et 
al. 2012; Govaert et al. 2016). While the capacity of lo-
cal populations to genetically adapt depends on their 
evolutionary potential and their exposure to maladaptive 
gene flow (Richardson et al. 2014), the likelihood of 
rapid changes in species composition depends on local 
community species richness, connectedness of the local 
community through dispersal, and species richness in 
the metacommunity (cf. metacommunity context; Lei-
bold et al. 2004). The capacity to evolve and the scope 
for rapid changes in community composition are not 
necessarily related, and this might lead to complex in-
teractions. In regionally species-poor communities with 
species having low evolutionary potential, the capacity 
of local communities to adjust to climate change is low. 
In regionally species-rich communities with species 
having low evolutionary potential, local communities 
will primarily respond by changes in the relative abun-
dance of species. In regionally species-poor communi-
ties with species having high evolutionary potential, it is 
in principle possible that the community adjusts to cli-
mate change through evolution of all its member spe-
cies, with community composition staying unaltered. 
Finally, in regionally species-rich communities with 
species having high evolutionary potential, the type of 
response observed will depend on the race between ad-
aptation and immigration (De Meester et al. 2016; Va-
noverbeke et al. 2016). As evolutionary change takes 
time, local populations can at any moment be replaced 
by immigrants of pre-adapted species from the meta-
community, even when they have the capacity to local-
ly adapt (Vanoverbeke et al. 2016). Whether this will 
happen will depend on how fast evolutionary adapta-
tion proceeds: if the local population can be sufficiently 
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adapted to the changed environment so that its fitness is 
higher than the immigrant species, it might prevent es-
tablishment of the invaders (Van Doorslaer et al. 2009; 
De Meester et al. 2016). Therefore, we predict that evo-
lutionary adaptation of local species to climate change 
might be reduced in settings with high local species di-
versity as well as in strongly connected local communi-
ties in species-rich metacommunities. In these scenarios, 
we predict that responses to climate change will large-
ly be mediated by changes in species composition (i.e. 
community ecology), and less by evolutionary respons-
es to climate. This does not imply the absence of evo-
lution, as the interacting populations might still evolve 
in response to changes in biotic interactions. Yet, the 
change in community-level distributions of trait values 
directly linked to climate is expected to be mediated by 
changes in species composition rather than by evolution. 
This leads to the companion prediction that evolutionary 
responses to climate change will be more important in 
species-poor local communities that are somewhat iso-
lated (De Meester et al. 2016). 

A FEW HINTS AT PREDICTIONS AND 
IMPLICATIONS 

Contexts that facilitate evolutionary change in 
response to climate change 

From the above, some predictions can be derived on 
the settings in which evolution might play an important 
role in the response to climate change. We predict that 
evolutionary tracking of climate change will be more 
important in: (i) small-bodied species with short gener-
ation times and large effective population sizes; (ii) in 
species that have a high evolutionary potential relative 
to their capacity to disperse, allowing sufficient time for 
local populations to adapt before they would be replaced 
by pre-adapted individuals from other populations in 
the metapopulation (see De Meester et al. 2016); and 
(iii) in populations that inhabit species-poor communi-
ties in relatively isolated habitats, so that the response to 
climate change is not dominated by changes in species 
composition. This applies to communities on islands or 
inhabiting relatively rare habitat types, but also leads to 
the prediction that human-induced habitat fragmentation 
and loss in biodiversity might lead to an increase in the 
importance of evolutionary change (De Meester et al. 
2016). 

Climate change, evolution and the risk of local 
and regional extinction

Evolutionary change can buffer populations locally in 
the face of climate change, next to high phenotypic plas-
ticity in physiology or behavior, and epigenetic respons-
es. It does, however, not necessarily prevent extinction. 
As mentioned above, evolution can in some cases di-
rectly contribute to extinction through a reduction in 
population size and an associated increase in demo-
graphic stochasticity (Gomulkiewicz & Holt 1995; Orr 
& Unckless 2008, 2014). Next, genetic adaptation to the 
stressors associated with climate change may have neg-
ative consequences on the capacity of the individuals to 
deal with other stressors (Van Straalen 2003). In addi-
tion, differences in the degree to which competing spe-
cies respond through local genetic tracking or through 
migration can result in increased antagonistic interac-
tions and competitive exclusion (Urban et al. 2012a,b). 
It is, therefore, not necessarily so that evolution will 
lead to a major reduction in population and species ex-
tinctions under climate change. This does not imply that 
evolution will be unimportant. Rather, we can predict 
that evolution is likely to profoundly change the dynam-
ics of populations and species in response to climate 
change but not necessarily lead to evolutionary rescue 
(Urban et al. 2016). 

Climate change, evolution and assisted migration
What are the consequences of the above perspectives 

with respect to the much debated idea of assisted mi-
gration as a management tool to safeguard species and 
ecosystem services in the face of climate change (Mc-
Lachlan et al. 2007; Hoegh-Guldberg et al. 2008; Rich-
ardson et al. 2009; Pedlar et al. 2012; Lunt et al. 2013)? 
Assisted migration may be needed in some cases to pre-
vent extinction: for example, in populations that live in 
strongly fragmented systems, islands or isolated patch-
es and do not have the capacity to acclimatize or genet-
ically adapt to climate change (McLachlan et al. 2007). 
However, assisted migration should not be implement-
ed too lightly, as it might also strongly perturb sponta-
neous recovery. It may, for instance, reduce the capacity 
for genetic adaptation of residents in the target habitats, 
as they are confronted with potentially pre-adapted im-
migrants (i.e. the race between adaptation and immigra-
tion in Vanoverbeke et al. 2016). The success of assisted 
migration will also depend on the capacity of the trans-
located population to deal (through acclimatization or 
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genetic adaptation) with the novel environmental condi-
tions in the target area (Pelini et al. 2009). In addition, 
there is a risk, by perturbing relationships with preda-
tors, parasites and competitors, that translocated popu-
lations become invasive (Mueller & Hellmann 2008). 
When assisted migration is applied to species at risk of 
extinction, these risks might be low. One should, how-
ever, carefully assess risks in case one would like to ap-
ply assisted migration as a recurrent and widely used 
management tool (Schwartz et al. 2012). 

Assisted gene flow (i.e. gene flow that is actively me-
diated by humans; McLachlan et al. 2007; Hunter et al. 
2007) to boost population persistence through the in-
troduction of added genetic variation might help pop-
ulations to survive locally. In addition, assisted gene 
flow might boost the rate of evolutionary change, which 
might prevent replacement by well-adapted immigrants 
(De Meester et al. 2016). However, the above con-
siderations lead to the prediction that this will not al-
ways guarantee evolutionary rescue. At the same time, 
assisted gene flow might entail risks, such as distur-
bance of landscape genetic structure (if a local popula-
tion is swamped by conspecific immigrants that were 
pre-adapted while it had the capacity to locally adapt; 
De Meester et al. 2016) and outbreeding depression (if 
immigrants and residents have adapted to other ecolo-
gies, both in terms of biotic interactions or of adaptation 
to environmental gradients; Frankham 2005; Rhymer 
& Simberloff 1996). While it might be necessary under 
some conditions, assisted gene flow should not be im-
plemented lightly and without consideration of the risks 
involved.  

Evolutionary change and predictions of range 
shifts and biological responses to climate change

Although evolution might not guarantee a buffer 
against extinction, it is clear from the above that taking 
evolution into account will profoundly change our pre-
dictions on how biota will respond to climate change 
(Urban et al. 2016) and can inform management (Lankau 
2007; Faith et al. 2010; Carroll et al. 2014; Sarrazin 
& Lecomte 2016). Some of the differences in predic-
tions are far-reaching, such as the degree to which spe-
cies will or will not show range shifts, the extent of the 
range shifts, and the number and identity of species that 
will go extinct. This is why Urban et al. (2016) make a 
plea to implement evolutionary potential and other bio-
logical features (demography, species interactions, dis-
persal and physiology) into mechanistic models to gen-
erate more realistic predictions of biological responses 
to climate change. In addition, similar to the fact that 

second-order effects of climate change may induce a 
whole array of additional evolutionary responses (in-
cluding co-evolution with novel predators, parasites and 
mutualists), it has been shown that evolution may also 
feedback on a whole array of ecological dynamics (i.e. 
eco-evolutionary dynamics; see Hendry 2016). For ex-
ample, if a given species can survive locally thanks to 
evolution, it might impede establishment success of a 
competitor, and this might, in turn, reduce the success of 
a parasite. Ignoring evolution in our predictions of cli-
mate change responses might, thus, lead to erroneous 
predictions also in terms of community and ecosystem 
structure, food web interactions, energy transfer func-
tions and ecosystem services (Urban et al. 2016). 
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