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Abstract: Zirconium nitrate pentahydrate (Zr(NO3)4·5H2O) and tetraethyl orthosilicate (TEOS) are
used as the zirconium source and silicon source, respectively, and methyltriethoxysilane (MTES)
as the hydrophobic modifier; the hydrophilic and hydrophobic ZrO2-SiO2 xerogels were prepared
successfully. The xerogels were characterized using Fourier transform infrared spectra (FTIR), X-ray
diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption–desorption measurement.
The adsorption mechanism of hydrophobic ZrO2-SiO2 xerogels to RhB was described by the kinetic
and adsorption isotherms. The results showed that the introduction of Si-CH3 groups can make
the average pore size, BET surface area, and total pore volume of ZrO2-SiO2 xerogel increase. The
hydrophobic ZrO2-SiO2 xerogel displays an adsorption capacity of 169.23 mg·g−1 for RhB dye at
25 ◦C and pH = 3. The adsorption process of hydrophobic ZrO2-SiO2 xerogel to RhB followed a
pseudo–second-order kinetic model. Fitting results from the D–R model of adsorption indicate that
the adsorption of RhB onto the hydrophobic ZrO2-SiO2 xerogels is mainly physical, accompanied by
a spontaneous heat absorption process. The regeneration and recycling properties of hydrophobic
xerogels were investigated, and their recoverability and reusability were demonstrated.

Keywords: methyl-modified; hydrophilic; hydrophobic; adsorption; rhodamine B; kinetic; adsorp-
tion isotherms

1. Introduction

Rhodamine B (RhB) (its structure is shown in Figure 1) is a basic cationic dye that was
used in large quantities as a food additive and was later banned from the food industry
because of experimental evidence of its carcinogenicity. However, RhB is still widely used
in laboratories, the paper industry, the textile printing and dyeing industry, colored glass,
specialty fireworks, and other industries [1]. These industries produce large amounts of
RhB dye wastewater, which, if not properly treated, can cause great harm to human health
and the ecological environment. Thus, it is important to seek an efficient and econom-
ical method for the treatment of dye wastewater represented by RhB [2]. Furthermore,
due to the continuous industrial demand for RhB and the increased difficulty in treating
RhB-containing dye wastewater, there is an increasing interest in its degradation and re-
moval [3–6]. To our knowledge, there were many treatment methods [7–11] implemented
for removing the eco-toxic dyes from aqueous solutions, therein including coagulation,
chemical oxidation, photodegradation, membrane filtration, and adsorption. Among these
methods, adsorption was deemed to be a high-efficiency and low-cost technology for
removing those hazardous impurities from aqueous solutions. The high effectiveness
and wide availability of an adsorbent make it very attractive for dye removal from the
water environment. By far, for its low cost and energy consumption, adsorption was fre-
quently chosen in the separation process [12–14]. High-performance adsorption materials
mainly included activated carbon, nanometallic oxide, graphene, zeolite, “Greek coffee”
grounds, etc.
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Zirconia (ZrO2), one of the important transition metal oxides, has received consider-
able attention for its wide applications in oxygen sensors, fuel cell electrolytes, catalysts,
and catalytic carriers, and metal-oxide-semiconductor devices due to a high number of
active sites on the ZrO2 surface, good strength, large pore size, and high chemical stability,
etc. [15]. The addition of metal oxides [16,17] can provide adsorption sites for the reactants
and improve the adsorption performance, and also increase the anti-pollution properties.
Ali et al. [18] prepared ZrO2/CeO2 adsorbent materials for the adsorption of acid green
1 dye using a co-precipitation method. Lin et al. [19] synthesized ZrO2/carbon aerogel
(CA) composites with different amounts of monoclinic and tetragonal ZrO2 crystallites.
The adsorption capacity of ZrO2/CA materials for cationic RhB dyes is 95.42 mg·g−1.
SiO2 is a porous material with low density, good thermal stability, chemically stable prop-
erties, and excellent adsorption properties, and is widely used as a carrier xerogel for
adsorption [20,21]. Shishmakov et al. [22] synthesized ZrO2-SiO2 xerogels through the
hydrolysis of a mixture of tetrabutoxyzirconium and tetraethoxysilane in a desiccator in a
vapor of a 15% aqueous NH3 atmosphere. Viter [23] synthesized mixed oxide dry gels of
ZrO2-SiO2 from ZrOCl2-8H2O and tetraethylorthosilicate [Si(OEt)4] by the sol–gel method.
The synthesized gels had a substantially increased porosity with specific surface areas of
140–630 m2·g−1 and pore volumes of 0.087–0.441 cm3·g−1. Huang et al. [24] prepared
a SiO2-ZrO2 xerogel using TEOS as a silicon source and ZrO(NO)3·2H2O as Zr source.
Its specific surface area reached up to 525.6 m2·g−1 after 600 ◦C heat treatment, with an
average pore size of 8.5 nm and a pore volume of 1.16 cm3·g−1 and an RhB adsorption
capacity of about 119 mg·g−1 at pH = 4 and a contact time of 4 h.

So far, studies on hydrophilic ZrO2-SiO2 xerogels are relatively common [25], however,
when preparing ZrO2-SiO2 xerogels, a large amount of -OH groups are generated during
the hydrolysis of TEOS, which can easily cause shrinkage or even cracking during the syn-
thesis of composite xerogels and destroy their pore structure and affecting the adsorption
performance. In this regard, the modification of hydrophilic ZrO2-SiO2 composite xerogels
with methyl hydrophobicity is a worthwhile approach to explore. For this reason, in this
paper, the hydrophobic modification was performed by introducing methyl groups based
on the synthesis of hydrophilic ZrO2-SiO2 composite xerogels, and the characterization
results of two samples and different influencing factors on the adsorption performance of
RhB were compared.
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For this, RhB was selected as the adsorbent and hydrophilic and hydrophobic ZrO2-SiO2
xerogels were prepared in this paper. The xerogels were characterized by FTIR, XRD, SEM, and
N2 adsorption–desorption. The adsorption performance of the hydrophilic and hydrophobic
ZrO2-SiO2 xerogels on RhB was analyzed under the influence of different dosages, pH, and
adsorption times and temperatures. In addition, the adsorption kinetics and adsorption
isotherms of hydrophobic ZrO2-SiO2 xerogel were investigated. Prepare for the removal of
more diverse dyes in the future.

2. Experimental Section
2.1. Sol Preparation
2.1.1. Preparation of ZrO2 Sol

The ZrO2 sols were prepared by sol–gel method using zirconium nitrate pentahy-
drate (Zr(NO3)4·5H2O, Tianjin Fuchen Chemical Reagent Co., Ltd., Tianjin, China) as the
precursor and oxalic acid (C2H2O4·2H2O, p.a. grade, Tianjin Hedong Hongyan Chemical
Reagent Co., Ltd., Tianjin, China) as the solvent. A certain amount of Zr(NO3)4 solution
was added to the three-mouth flask, and 0.2 mol·L−1 of C2H2O4 solution was added to the
Zr (NO3)4 solution drop by drop with the volume ratio of Zr(NO3)4/C2H2O4 = 3/2. After
the temperature of the water bath reached 50 ◦C, 30% (v/v) of propanetriol (GL, p.a. grade,
Tianjin Kemiou Chemical Reagent Co., Ltd., Tianjin, China) was added drop by drop and
stirred strongly for 3 h, and the clarified and transparent ZrO2 sol was obtained after aging
at 25 ◦C for 12 h.

For the ZrO2 sol, the reactions are as Formulas (1)–(3):

Zr(NO3)4 + 4H2O→ Zr(OH)4 + 4HNO3 (1)

≡ Zr-OH + OH-Zr ≡→ Zr-O-Zr ≡ +H2O (2)

Zr(OH)4 + 2C2H2O4 ≡→= Zr(C2O4)2 + 4H2O (3)

2.1.2. Preparation of Hydrophilic SiO2 Sol

The molar composition of chemical regents preparing the hydrophilic SiO2 sol was
TEOS:MTES:EtOH:H2O:HNO3 = 1.0:0.8:8.0:0.72:0.085. Ethyl orthosilicate (TEOS, p.a. grade,
Xi’an chemical reagent Co. Ltd., Xi’an, China) and anhydrous ethanol (EtOH, p.a. grade,
Tianjin Branch Micro-Europe Chemical Reagent Co., Ltd., Tianjin, China) were mixed as a
hydrophilic solution and placed in an ice water bath. The mixture of H2O and nitric acid
(HNO3, p.a. grade, Sichuan Xilong Reagent Co., Ltd., Xilong, China) was added dropwise
under a magnetic stirrer for 30 min. After the dropwise addition, the mixture was stirred at
reflux for 3 h at 60 ◦C and cooled to obtain the hydrophilic SiO2 sol.

2.1.3. Preparation of Hydrophobic SiO2 Sol

Methyltriethoxysilane (MTES, grade 98%, Hangzhou Guibao Chemical Co. Ltd.,
Hangzhou, China) was used as a hydrophobic agent, and according to the molar ratio
of TEOS:MTES:EtOH:H2O:HNO3 = 1.0:0.8:8.0:0.72:0.085, it was first mixed completely
with MTES, TEOS, and EtOH, placed in an ice-water bath, and stirred fully under a
magnetic stirrer for 30 min before adding dropwise H2O and nitric acid mixture, and after
the dropwise addition, it was stirred at 60 ◦C under reflux for 3 h and cooled to obtain
methyl-modified hydrophobic SiO2 sol.

2.1.4. Preparation of Hydrophilic and Hydrophobic ZrO2-SiO2 Sols

According to the Zr/Si molar ratio of 0.15, a mixture of ZrO2 sol was added drop by
drop into the freshly prepared SiO2 sols and methyl-modified SiO2, respectively. After
stirring strongly for 60 min at 25 ◦C, the hydrophilic ZrO2-SiO2 and hydrophobic ZrO2-SiO2
sols were obtained, respectively.

The co-hydrolysis and condensation reactions of TEOS and MTES are as Formulas (4)–(9):
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Hydrolysis reactions:

Si(OCH2CH3)4 + nH2O→ Si(OCH2CH3)4−n(OH)n + nCH3CH2OH (4)

CH3-Si(OCH2CH3)3 + nH2O→ CH3-Si(OCH2CH3)3−n(OH)n + nCH3CH2OH (5)

Condensation reactions:

≡ SiOCH2CH3 + HO-Si ≡→ Si-O-Si ≡ + CH3CH2OH (6)

≡ Si(CH3)-OCH2CH3 + HO-Si ≡→ Si(CH3)-O-Si ≡ + CH3CH2OH (7)

≡ Si-OH + HO-Si ≡→ Si-O-Si ≡ +H2O (8)

≡ Si(CH3)-OH + HO-Si ≡→ Si(CH3)-O-Si ≡ +H2O (9)

The reactions between ZrO2 and hydrophilic SiO2, hydrophobic SiO2 sols are as
Formulas (10) and (11):

Zr-OH + HO-Si→ Zr-O-Si + H2O (10)

Zr-OH + CH3CH2O-Si→ Zr-O-Si + CH3CH2OH (11)

2.2. Preparation of Xerogels

The as-prepared ZrO2, hydrophilic and hydrophobic SiO2, and hydrophilic and
hydrophobic ZrO2-SiO2 sols were placed in the Petri dishes, respectively, and dried at
50 ◦C. The formed gels were ground into powders and then roasted in a program-controlled
high-temperature furnace at 400 ◦C for 2 h under N2 atmosphere with a heating rate of
1 ◦C·min−1.

2.3. Characterization

FTIR spectra were recorded on a PerkinElmer Spotlight 400 and Frontier spectrometer
and KBr pellets were prepared and taken over a wavelength range of 400–4000 cm−1. XRD
patterns were performed on a RigakaD/max 2200 X-ray diffractometer, using CuKα radia-
tion and scanning 2θ from 4 to 90◦, operated at 40 kV and 40 mA. The JSM-6700F SEM was
used to investigate the morphology of the samples. X-ray photoelectron spectroscopy (XPS)
was used to analyze the surface chemical composition of the hydrophilic and hydrophobic
ZrO2-SiO2 xerogels. (ESCALAB250xi, Thermo Scientific, Waltham, MA, USA). The pressure
in the analysis chamber was maintained at 3.0 × 10−7 Pa. The binding energy values were
referenced to the C (1 s) line situated at 284.6 eV. N2 absorption–adsorption isotherms and
pore size distributions were obtained from the ASAP2020 Plus automatic analyzer, mi-
cromeritics. Molecular structure models were constructed using ChemDraw software 18.0
(PerkinElmer Corporation, Waltham, MA, USA, Software license: Sijie Marking Software
Co., Ltd., Suzhou, China).

2.4. Water Adsorption Measurement

To examine the hydrophobicity of the two ZrO2-SiO2 xerogels, the hydrophilic and hy-
drophobic ZrO2-SiO2 samples were aged in a constant temperature and humidity chamber
of 25 ◦C and 75% RH. During the aging period, the samples were weighed, and the mass
changes and water adsorption were calculated.

2.5. Adsorption Performance Test

The effects of adsorption time, adsorption temperature, dosage, and pH on the removal
of RhB were investigated by adsorption experiments. A certain amount of rhodamine B
(RhB, Relative molecular weight (Mw) = 479.01, λmax = 552 nm, Tianjin Comio Chemical
Reagent Co., Ltd., Tianjin, China) dye was dissolved in deionized water to prepare a
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standard solution of 140 mg·L−1. The Zeta potential of the xerogels was measured using a
Nano-ZS tester manufactured in the UK and the average of three measurements was taken.

The hydrophilic and hydrophobic ZrO2-SiO2 xerogels (0.01, 0.05, 0.1, 0.15, 0.2 g) were
separately dispersed in the above RhB solution (50 mL) under vigorous stirring (700 rpm). The
adsorption experiments were conducted at 25, 35, and 45 ◦C, respectively. The solid–liquid
mixture was separated by centrifugation. The liquid phase was analyzed using a UV-V
spectrophotometer at a wavelength of 554 nm. The RhB concentrations were then calculated
from the calibration curve.

The adsorption amount qe of RhB by the hydrophilic and hydrophobic ZrO2-SiO2
xerogels ate calculated by Equation (12):

qe =
(C0 − Ce)V

W
(12)

The removal rate of RhB in water is calculated by Equation (13):

R =
C0 − Ce

C0
× 100% (13)

where C0 and Ce (mg·L−1) is the initial and equilibrium concentration of RhB, respectively.
V (L) is the volume of the solution. W (g) is the dry mass of the xerogels.

2.6. Desorption Performance Test

The hydrophilic and hydrophobic ZrO2-SiO2 xerogels were rinsed with anhydrous
ethanol at room temperature, and the process was repeated 6 times for multiple cycles of
adsorption and desorption to test the reproducibility of the prepared xerogel adsorbents.

3. Results and Discussion
3.1. FTIR Analysis

The functional groups of ZrO2, hydrophilic and hydrophobic SiO2, and hydrophilic
and hydrophobic ZrO2-SiO2 xerogels were investigated using FTIR spectra, shown in
Figure 2. In Figure 2, the absorption peak at around 3449 cm−1 is the stretching and
bending vibration of the -OH group caused by the absorption of water, the characteristic
peak at 1634 cm−1 is caused by the Si-OH bonds [26] of the xerogel, the peaks located
around 790 cm−1 are related to the stretching vibration of the Si-O bond [27], and these
sets of absorption peaks co-occur in the hydrophilic and hydrophobic SiO2, hydrophilic
and hydrophobic ZrO2-SiO2 xerogels. As can be seen in Figure 2, the absorption peak of
Si-O-Si in hydrophilic and hydrophobic SiO2 xerogels is 1050 cm−1 [28]. In hydrophilic and
hydrophobic ZrO2-SiO2 xerogels, the absorption peaks of Zr-O-Si appeared at 1100 cm−1,
and the absorption peak at 1110 cm−1 is due to the presence of Zr perturbing the three-
dimensional asymmetric stretching vibrations of Si-O-Si forming a Zr-O-Si bond, indicating
the chemical bonding of SiO2 to ZrO2 particles [29]. The methyl hydrophobic modification
of the xerogel is achieved by depleting the -OH group in the Si-OH bond on the xerogel
surface and introducing the hydrophobic group -CH3 to form the Si-CH3 bond. Compared
with SiO2 and hydrophilic ZrO2-SiO2, the hydrophobic SiO2 and ZrO2-SiO2 exhibited -CH3
absorption peak at 2971 cm−1 and Si-CH3 absorption peak at 1277 cm−1, indicating the
successful modification of the methyl hydrophobic groups. The characteristic peaks of -OH
and Zr-OH can be seen in ZrO2 xerogel at 3400 cm−1 and 1410 cm−1, respectively, along
with an absorption peak of Zr-O at 447 cm−1. In addition, it can be seen from Figure 2
that the absorption peaks at 3449 cm−1 and 1634 cm−1 of hydrophobic xerogel are slightly
weaker than hydrophilic xerogel, whereas the presence of this indicates the consumption
of -OH and the formation of Si-CH3. According to infrared spectrum analysis, combined
with the reaction equations, there are Si-O-Si, Zr-O-Si, Si-OH, Zr-OH, and Zr-O groups on
the surfaces of hydrophilic and hydrophobic ZrO2-SiO2 xerogels. In addition, the surface
of the hydrophobic ZrO2-SiO2 sample also contains Si-CH3 groups.
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3.2. Phase Structure Analysis

Figure 3 shows the XRD patterns of ZrO2, hydrophilic and hydrophobic SiO2, and
hydrophilic and hydrophobic ZrO2-SiO2 xerogels. The tetragonal phase ZrO2 diffraction
peaks at 2θ = 30.57, 35.26, 50.41, and 60.63◦ can be seen in ZrO2. In the hydrophilic and
hydrophobic SiO2, and hydrophilic and hydrophobic ZrO2-SiO2 xerogels, the distinctive
diffraction peaks all appear between 2θ = 20~30◦, related to the presence of amorphous
SiO2. In contrast, the silicon diffraction peak of the hydrophilic and hydrophobic SiO2
xerogels appears at 2θ = 20.88◦, whereas the silicon diffraction peaks of the hydrophilic
and hydrophobic ZrO2-SiO2 xerogels appear at 2θ = 24.08◦, mainly because the introduced
zirconium atoms replaced some silicon atoms and formed the Zr-O-Si bonds, which lead
to a decrease in SiO2 content, the crystal diffraction peaks move to a larger angle. In
hydrophilic and hydrophobic ZrO2-SiO2 xerogels, because of the formation of Zr-O-Si
bonds, the tetragonal t-ZrO2 crystallographic surfaces appear in the diffraction peaks at
2θ = 30.57◦, 50.41◦, and 60.63◦ [30]. However, the intensity of the diffraction peak is
weak and the dispersion broadens, indicating that the nuclei of t-ZrO2 are produced with
relatively low crystallinity [31]. Comparing before and after the modification, the structures
of the xerogels phases were similar and the diffraction peaks did not differ significantly.

The surface chemical composition of the hydrophilic and hydrophobic ZrO2-SiO2
xerogels was analyzed by XPS as shown in Figure 4. Figure 4a shows that the Si 2p
spectra of the hydrophilic ZrO2-SiO2 sample consist of the main component with a binding
energy of 103.69 eV due to the Si-O species on the sample surface. The Si 2p spectra of the
hydrophobic ZrO2-SiO2 sample contain two peaks as shown in Figure 4b. It is reasonable
to assign the peak lying at the binding energy of about 103.72 eV mainly to the Si-O species,
and the peak lying at the binding energy of around 101.79 eV to the Si-CH3. It is seen
that the chemical environment of the Si on the two sample surfaces changes significantly
with the addition of MTES during the sol preparation. Compared with the hydrophilic
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sample, the morphology of the Si 2p peak of hydrophobic ZrO2-SiO2 xerogel changed
significantly, and the Si 2p spectral peak became wider and moved to the direction of low
bond energy, which indicated that the chemical bond structure of Si 2p changed significantly
after hydrophobic modification by methyl and the bond energy of Si decreased.
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3.3. Pore Structure Analysis

Figure 5 shows the molecular structure of ZrO2, SiO2, hydrophobic SiO2, hydrophilic
ZrO2-SiO2, and hydrophobic ZrO2-SiO2. Figure 6 shows the N2 adsorption–desorption
curves of hydrophilic and hydrophobic ZrO2-SiO2 xerogels. From Figure 6, the isotherms
of hydrophilic and hydrophobic ZrO2-SiO2 xerogels showed the type IV isotherms of
Brunauer–Deming–Deming–Teller (BDDT) classification, which exhibited a microporous
structure at P/P0 < 0.4 and a hysteresis loop near P/P0 = 0.4, indicating the presence
of mesopores in the xerogels. It can be seen from Figure 6 that the N2 adsorption of
hydrophobic ZrO2-SiO2 xerogel is greater than that of hydrophilic ZrO2-SiO2. Compared



Gels 2022, 8, 675 8 of 19

with hydrophilic ZrO2-SiO2, the N2 adsorption of hydrophobic ZrO2-SiO2 xerogel increased
by 30.96%. Figure 7 shows the pore size distributions of the hydrophilic and hydrophobic
ZrO2-SiO2 xerogels. In Figure 7, it can be seen that the pore size distribution of hydrophilic
and hydrophobic ZrO2-SiO2 xerogels are similar, and the pore distribution ranges from the
micropore to the mesoporous region. In the graph, the total pore volume, specific surface
area, and pore size of the hydrophobic ZrO2-SiO2 xerogel are greater than those of the
hydrophilic ZrO2-SiO2 xerogel, mainly because the bond lengths of Si-CH3 groups in the
hydrophobic ZrO2-SiO2 xerogel are longer than those of Si-OH in hydrophilic ZrO2-SiO2
xerogel (Figure 5), the bond lengths of Si-C (1.88 Å) and C-H (1.1 Å) are longer than those
of Si-O (1.65 Å) and O-H (1.01 Å), respectively.
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The pore structure parameters of hydrophilic and hydrophobic ZrO2-SiO2 xerogels
are shown in Table 1. The average pore size, BET surface area, and total pore volume of
hydrophobic ZrO2-SiO2 xerogel are larger than those of hydrophilic ZrO2-SiO2 xerogel.
Compared with the hydrophilic ZrO2-SiO2 xerogel, the specific surface area and pore
capacity of the hydrophobic ZrO2-SiO2 xerogel sample increased by 62.76% and 59.26%,
respectively. Generally speaking, the adsorption performance of an adsorbent depends
mainly on its surface properties and the BET surface area, whereas a larger BET surface
area and a suitable pore size are more favorable [27] for the adsorption of dye molecules.
The hydrophobic xerogel was more advantageous.



Gels 2022, 8, 675 9 of 19
Gels 2022, 8, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 6. The N2 adsorption-desorption isotherms for the (a) hydrophilic and (b) hydrophobic ZrO2-

SiO2 xerogels. 

 

Figure 7. The corresponding pore size distribution curves for the (a) hydrophilic and (b) hydropho-

bic ZrO2-SiO2 xerogels. 

The pore structure parameters of hydrophilic and hydrophobic ZrO2-SiO2 xerogels 

are shown in Table 1. The average pore size, BET surface area, and total pore volume of 

hydrophobic ZrO2-SiO2 xerogel are larger than those of hydrophilic ZrO2-SiO2 xerogel. 

Compared with hydrophilic ZrO2-SiO2 xerogel, the specific surface area and pore capacity 

of the hydrophobic ZrO2-SiO2 xerogel sample were increased by 62.76% and 59.26%, re-

spectively. Generally speaking, the adsorption performance of an adsorbent depends 

mainly on its surface properties, especially the BET surface area, whereas a larger BET 

surface area and a suitable pore size are more favorable [27] for the adsorption of dye 

molecules. The hydrophobic xerogel was more advantageous. 

Table 1. Pore structure parameters of the hydrophilic and hydrophobic ZrO2-SiO2 xerogels. 

Samples BET Surface Area (m2·g−1) Average Pore Size (nm) Vtotal (STP) (cm3·g−1) 

hydrophilic ZrO2-SiO2 310.13 2.16 0.27 

hydrophobic ZrO2-SiO2 504.78 2.35 0.43 

Figure 6. The N2 adsorption-desorption isotherms for the (a) hydrophilic and (b) hydrophobic
ZrO2-SiO2 xerogels.

Gels 2022, 8, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 6. The N2 adsorption-desorption isotherms for the (a) hydrophilic and (b) hydrophobic ZrO2-

SiO2 xerogels. 

 

Figure 7. The corresponding pore size distribution curves for the (a) hydrophilic and (b) hydropho-

bic ZrO2-SiO2 xerogels. 

The pore structure parameters of hydrophilic and hydrophobic ZrO2-SiO2 xerogels 

are shown in Table 1. The average pore size, BET surface area, and total pore volume of 

hydrophobic ZrO2-SiO2 xerogel are larger than those of hydrophilic ZrO2-SiO2 xerogel. 

Compared with hydrophilic ZrO2-SiO2 xerogel, the specific surface area and pore capacity 

of the hydrophobic ZrO2-SiO2 xerogel sample were increased by 62.76% and 59.26%, re-

spectively. Generally speaking, the adsorption performance of an adsorbent depends 

mainly on its surface properties, especially the BET surface area, whereas a larger BET 

surface area and a suitable pore size are more favorable [27] for the adsorption of dye 

molecules. The hydrophobic xerogel was more advantageous. 

Table 1. Pore structure parameters of the hydrophilic and hydrophobic ZrO2-SiO2 xerogels. 

Samples BET Surface Area (m2·g−1) Average Pore Size (nm) Vtotal (STP) (cm3·g−1) 

hydrophilic ZrO2-SiO2 310.13 2.16 0.27 

hydrophobic ZrO2-SiO2 504.78 2.35 0.43 

Figure 7. The corresponding pore size distribution curves for the (a) hydrophilic and (b) hydrophobic
ZrO2-SiO2 xerogels.

Table 1. Pore structure parameters of the hydrophilic and hydrophobic ZrO2-SiO2 xerogels.

Samples BET Surface Area (m2·g−1) Average Pore Size (nm) Vtotal (STP) (cm3·g−1)

hydrophilic ZrO2-SiO2 310.13 2.16 0.27
hydrophobic ZrO2-SiO2 504.78 2.35 0.43

3.4. SEM Analysis

The SEM images of hydrophilic and hydrophobic ZrO2-SiO2 xerogels are shown in
Figure 8. In Figure 8, it can obviously be seen that the particle size of hydrophobic ZrO2-SiO2
xerogel is larger than that of the hydrophilic sample. As described in the pore structure
analysis, this is a result of the introduction of Si-CH3 groups, in which the bond lengths of
Si-C and C-H are longer than those of Si-O and O-H, respectively.
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3.5. Water Absorption Analysis

The water absorption of hydrophilic and hydrophobic ZrO2-SiO2 xerogels was an-
alyzed, shown in Figure 9. As shown in Figure 9, with the increase in aging time, the
water absorption of the two ZrO2-SiO2 samples gradually increased. It reached its satu-
rated state after 6 d, and the saturated water absorption was about 10.55% and 5.33% for
the hydrophilic and hydrophobic samples, respectively. Compared with the hydrophilic
ZrO2-SiO2 xerogel, the water absorption of the hydrophobic sample decreased by 49.5%.
The water absorption of porous materials is related to their hydrophobicity and specific
surface area. In general, more hydrophilic surfaces and larger specific surface areas cor-
respond to greater water absorption. As shown in Table 1, the specific surface area of the
hydrophobic ZrO2-SiO2 xerogel is larger than that of the hydrophilic one. This means
that the introduced Si-CH3 bonds in the hydrophobic ZrO2-SiO2 xerogel have higher
hydrophobicity than the Si-OH bonds, which can lead to less water absorption.
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3.6. Adsorption Performance Studies
3.6.1. Effect of Adsorption Time and Temperature

Figure 10 shows the effect of the adsorption capacity of hydrophilic and hydrophobic
ZrO2-SiO2 xerogel with the change in adsorption time and adsorption temperature. As
shown in Figure 10, the hydrophobic xerogel exhibited rapid adsorption during the first
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30 min, after which it was basically in adsorption equilibrium. The hydrophilic xerogel was
basically in adsorption equilibrium at 120 min. The adsorption amounts of hydrophilic
and hydrophobic xerogels increased by 10.88 mg·g−1 and 15.18 mg·g−1 with increasing
temperature, respectively, and reached the maximum adsorption amount at 45 ◦C. In
addition, the adsorption capacity of the hydrophobic xerogel was increased by 70.3%
relative to that of hydrophilic ZrO2-SiO2 xerogel. The results showed that the hydrophobic
xerogel had a superior adsorption effect on the RhB solution. As seen in Figure 10, the
adsorption process of hydrophobic ZrO2-SiO2 on RhB was endothermic, and in general, the
normal adsorption process is exothermic. However, if the adsorption process is influenced
by intraparticle diffusion, the adsorption capacity will increase with temperature due to the
heat absorption of the diffusion process [27]. This means that increasing the temperature
increases the diffusion rate of adsorbent RhB molecules between the outer boundary layer
and the inner pores of the hydrophobic ZrO2-SiO2 xerogel, thus increasing the adsorption
capacity of hydrophobic ZrO2-SiO2.
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Figure 10. Effect of hydrophilic and hydrophobic ZrO2-SiO2 xerogels at various adsorption tem-
peratures (a) 25 ◦C, (b) 35 ◦C, and (c) 45 ◦C on the adsorption capacity of RhB (pH = 7, RhB
concentration = 140 mg·L−1).

As the hydrophobic ZrO2-SiO2 xerogel contains methyl groups on its surface, the RhB
surface is also rich in methyl groups (Figure 1), making the hydrophobic xerogel similarly
soluble with RhB and providing a better adsorption effect. Therefore, the hydrophobic
ZrO2-SiO2 xerogel was chosen for the subsequent experiments.

3.6.2. Effect of Dosage

Figure 11 shows the adsorption capacity for the unit mass of RhB by hydrophilic and
hydrophobic ZrO2-SiO2 xerogels with various dosages. It can be seen from Figure 11 that
the removal rate of both samples increased with the increase in the dosage, whereas the
maximum removal rate of the hydrophobic xerogel was 23.03% higher than that of the
hydrophilic one. In addition, the adsorption capacity for the unit mass of both xerogels
reached the maximum value at the dosage of 0.01 g and decreased gradually with the
increase in dosage. When the dose was increased from 0.01 g to 0.05 g, the adsorption
per unit mass decreased by 7.6 mg·g−1 and 8.3 mg·g−1 for hydrophilic and hydrophobic
xerogels, respectively. The total amount of adsorption increased with increasing dose,
whereas the adsorption per unit mass decreased gradually. The reason is that as the
amount of RhB remains unchanged, with the gradual increase in the amount of adsorbent,
the number of adsorption active sites in the system increases and the adsorption rate
accelerates, which leads to a decrease in the utilization of adsorption active sites per unit
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mass of adsorbent, resulting in a lower adsorption amount for unit mass. The adsorption
capacity for the unit mass of hydrophobic ZrO2-SiO2 xerogel was higher than those of
hydrophilic ZrO2-SiO2 xerogel because the introduced -CH3 group increased the specific
surface area and the contact area with RhB solution, and the adsorption capacity of the
hydrophobic xerogel increased by 66.1% and 71.5% relative to the hydrophilic at 0.01 g
and 0.05 g, respectively. Therefore, the highest utilization rate was achieved at the dosage
of 0.05 g.
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Figure 11. Effect of hydrophilic and hydrophobic ZrO2-SiO2 xerogels on the adsorption capacity
and removal rate for unit mass of RhB at various dosages (pH = 7, contact time = 120 min, RhB
concentration = 140 mg·L−1; T = 25 ◦C).

3.6.3. Effect of pH

In the adsorption experiments, the solution pH is an important factor in controlling
the adsorption process and may have a great influence on the final adsorption effect,
because it affects the surface charge of the adsorbent in the solution as well as the degree of
ionization and molecular structure of the dyes [27]. The adsorption capacities of RhB for the
hydrophilic and hydrophobic ZrO2-SiO2 xerogels at different pH were shown in Figure 12.
In Figure 12, the variation of adsorption capacity for the two samples showed similar trends.
With the increases in pH value, the adsorption capacities of RhB for the hydrophilic and
hydrophobic ZrO2-SiO2 xerogels tended to decrease gradually, which had a maximum
of 52.42 and 169.23 mg·g−1 at pH = 3, respectively. When the pH value increased from
3 to 11, the adsorption capacities of RhB for the hydrophilic and hydrophobic samples
decreased by 55.5% and 31.0%, respectively. The effect of solution pH on the zeta potentials
of the two adsorbents is shown in Figure 13. At pH = 3–11, the two adsorbents both
had a negative zeta potential and their absolute values increased with the increasing pH
value. Furthermore, the absolute value of the zeta potential of the hydrophilic sample
was greater than that of the hydrophobic one at the same pH value. RhB is a cationic
basic dye and its acid dissociation constant pKa is at about 3.2. When pH = 3, the RhB
is presented in cationic and monomeric molecular form, there is electrostatic attraction
existing between RhB and the two adsorbents. Thus, the organic skeleton of RhB easily
can enter into the pores of the xerogels. When pH = 5–11, the RhB exists in the form of
zwitterions. At the time, they are not easy to enter into the pore structure. In the process of
adsorption of RhB by the adsorbents, the electrostatic mechanism is not only the mechanism
of dye adsorption in this system but also the interaction between the adsorbents and dye
molecules via hydrogen bonds and hydrophobic structures. The hydrophobic ZrO2-SiO2
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xerogel has the hydrophobic Si-CH3 groups, whereas the hydrophilic sample does not. This
further increases the adsorption capacity of hydrophobic xerogel to RhB. Furthermore, the
results indicate that the acidic environment is favorable for the adsorption of RhB by the
hydrophilic and hydrophobic ZrO2-SiO2 xerogels.
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3.7. Adsorption Kinetic Analysis

The adsorption kinetic analysis process is designed to investigate the kinetics and
mechanism of adsorption of RhB by hydrophobic ZrO2-SiO2 xerogel, and it includes
pseudo–first-order dynamics, pseudo–second-order dynamics, and intra-particle diffusion
models. The experimental data were fitted by a kinetic sorption model [32,33], which was
calculated and fitted using Equations (14) and (15). The fitting results are shown in Table 2
and Figure 14a–c.
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Table 2. Adsorption kinetic parameters of RhB on hydrophobic ZrO2-SiO2 xerogel at various temper-
atures.

Kinetic Model Kinetic Parameters
Temperature (K)

298.15 308.15 318.15

qe 169.23 170.05 178.98

Pseudo–first-order
K1 0.0068 0.0058 0.0075
R2 0.9112 0.9886 0.9768

Pseudo–second-order
K2 0.0083 0.0063 0.0071
R2 0.9805 0.9832 0.9961

intra-particle diffusion Kdi 2.1038 2.9532 3.8449
R2 0.9015 0.9594 0.9483
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(dosage = 0.05 g, pH = 3, RhB concentration = 140 mg·L−1, contact time = 120 min, T = 298.15, 308.15,
and 318.15 K).

The calculation of the pseudo–first-order dynamics is given in equation:

ln(qe − qt) = ln qe − K1t (14)

The calculation of the pseudo–second-order dynamics is given in equation:

t
qt

=
1

K2q2
e
+

t
qe

(15)

The adsorption rate is usually controlled by membrane diffusion, intra-particle dif-
fusion, or both of them. The first–second-order and pseudo–second-order kinetic models
cannot determine the role of intra-particle diffusion in the adsorption dynamics process. In
order to identify whether the intra-particle diffusion is a rate-limiting step in the adsorption
kinetics process or not, the experimental data is further fitted by the intra-particle diffusion
model [34], and the calculation formula is shown in (16):

qt = Kdit0.5 + C (16)

where t (min) is the adsorption time. qe and qt (mg·g−1) are the adsorption capacities
at equilibrium and at time t, respectively. K1 (min−1) and K2 (g·mg−1·min −1) are the
pseudo–first-order and pseudo–second-order adsorption rate constants (min−1), respec-
tively. Kdi (mg·g−1·min−0.5) is the intra-particle diffusion rate constant. C represents the
greater effect of the boundary layer on molecule diffusion.

The high values of R2 in Table 2 indicate that the adsorption of RhB onto hydrophobic
ZrO2-SiO2 xerogel can be approximated more appropriately by a pseudo–second-order
kinetic model. According to the pseudo–second-order model, the boundary layer resis-
tance is not a rate-limiting step [35]. Moreover, the investigation of diffusion mechanism
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with the intra-particle diffusion model is important. The linear fitting result is shown in
Figure 14c. The linearity is attributed to the mesopores diffusion, which is an accessible
site of adsorption. The fitted lines did not pass through the origin; hence, the adsorption
rate is affected by both intra-particle diffusion and film diffusion. In short, the adsorption
of RhB onto hydrophobic ZrO2-SiO2 xerogel is a complex process. The related plots in
Figure 14a–c indicate that the RhB adsorption reaction proceeds through three steps: the
first stage is the rapid adsorption phase of the outer surface (film diffusion), the second
stage is the slow adsorption stage (pore or intra-particle diffusion), and the third stage
is the adsorption equilibrium stage which means the adsorption reaction is no longer
carried out.

3.8. Adsorption Isotherm Analysis

In order to understand the interactions of RhB with the hydrophobic ZrO2-SiO2
xerogel, the Langmuir [36], Freundlich [37] and Dubinin–Radushkevih (D–R) models [38]
are used at 298.15, 308.15 and 318.15 K, respectively. To describe the adsorption behavior of
RhB onto the hydrophobic ZrO2-SiO2 xerogel as follow:

The calculation of the Langmuir model is given in Equation (17):

1
qe

=
1

qmbCe
+

1
qm

(17)

where b (L·mg−1) is the Langmuir constant. qm is the maximum monolayer adsorption
capacity (mg·g−1), the Langmuir isotherm plots of 1/qe versus 1/Ce are given in Figure 15a,
and the parameters are exhibited in Table 3.
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Figure 15. (a) Langmuir, (b) Freundlich and, (c) D–R adsorption isotherm of RhB onto hydrophobic
ZrO2-SiO2 xerogel (dosage = 0.05 g, pH = 3, RhB concentration = 140 mg·L−1, contact time = 120 min,
T = 298.15, 308.15 and 318.15 K).

Table 3. Adsorption isotherm parameters of RhB on hydrophobic ZrO2-SiO2 xerogel at various
temperatures.

Adsorption Isotherm Isothermal Parameters
Temperature (K)

298.15 308.15 318.15

Langmuir

b 0.0031 0.0039 0.0042
qm 139.77 154.64 173.53
R2 0.9924 0.9939 0.9961
RL 0.1231 0.1191 0.1123

Freundlich
KF 18.1367 8.6576 8.3704
1/n 0.5138 0.7471 0.7789
R2 0.8826 0.9647 0.9631

D–R
E 4.0285 4.1893 4.7584

R2 0.9302 0.9951 0.8438
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Dimensionless constant (RL) [39] was used to identify the feasibility and favorability
of the adsorption process. RL is calculated in each case using the Equation (18):

RL =
1

1 + bC0
(18)

The values of RL reveal that the isotherms are irreversible (RL = 0), unfavorable
(RL > 1), favorable (0 < RL < 1), or linear (RL = 1) [40].

The calculation of the Freundlich isotherm model is given in Equation (19):

ln qe= ln KF +
1
n

ln Ce (19)

where KF (L·g−1) and n are the Freundlich constant related to adsorption capacity and
adsorption intensity, respectively. The Freundlich isotherm plots of lnqe versus lnCe are
shown in Figure 15b and the parameters are exhibited in Table 3.

In order to determine the type of adsorption reaction, the calculation of the Dubinin–
Radushkevich (D–R) isotherm model (Figure 15c) is given in Equations (20)–(22):

ln qe = ln qD − B·ε2 (20)

ε = RT ln (1 +
1

Ce
) (21)

E =
1√
2B

(22)

where qD is the theoretical saturation capacity, mg·g−1. B is the adsorption energy con-
stant, mol2·J−2. ε is the Polanyi potential energy, J·mol−1. R is the ideal gas constant,
8.314 J·mol−1·K−1. T is the thermodynamic temperature, K. E is the average adsorption
energy, kJ·mol−1.

From Figure 15 and Table 3, it is seen that the Langmuir isotherm model is more
suitable for the RhB adsorption onto hydrophobic ZrO2-SiO2 xerogel with R2 values greater
than 0.99 for both and that the adsorption process may be monolayer adsorption. Maximum
adsorption capacity increased with an increase in the temperature from 139.77 mg·g−1

to 173.53 mg·g−1, revealing the endothermic nature of the adsorption process. As can be
seen in Table 3, for the dimensionless constants, RL values (0.1123~0.1231) are all less than
1, which indicates that RhB adsorption of hydrophobic ZrO2-SiO2 xerogel is favorable.
In addition, the adsorption constant 0 < (1/n) < 1 of the Freundlich model indicates that
the hydrophobic ZrO2-SiO2 xerogel has inhomogeneous surface properties and RhB is
easily adsorbed on the surface of the hydrophobic ZrO2-SiO2 xerogel. With the increase
in adsorption temperature, the adsorption energy (E) increases. It is indicated that the
adsorption of RhB onto hydrophobic ZrO2-SiO2 xerogel is an endothermic behavior. As
can be seen from Table 3, the calculated E values are found to be less than 8 kJ·mol−1,
indicating that the adsorption process is mainly physical adsorption [41]. The results of
this experiment also confirm the better prospect of hydrophobic ZrO2-SiO2 composites for
the removal of dye wastewater.

Table 4 shows the comparison of Langmuir parameters for different adsorbents from
different researchers. From Table 4, it can be seen that the R2 of these adsorbent materials is
close to 1, which indicates that the adsorption is relatively good. The RL values are also
all less than 1, which indicates that the adsorption is irreversible. The data show that the
maximum adsorption capacity of the hydrophilic adsorbent in the fourth cited paper is
177.7 mg·g−1, however, its equilibrium adsorption capacity is only about 120 mg·g−1 and
the preparation method is different, and the equilibrium adsorption capacity in this paper
is as high as 169.23 mg·g−1. This means that the maximum adsorption capacity of the
hydrophobic SiO2-ZrO2 xerogel prepared in this paper is higher than the average value of
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most adsorbents. Therefore, it indicates that the hydrophobically modified adsorbent in
this paper is successful.

Table 4. Langmuir parameters of materials for RhB adsorption from various researchers.

Material Type R2 qm RL

Montmorillonite [42] 0.9864 42.19 0.309
Kaolinite [14] 0.98 46.08 0.94

Carbon xerogel [43] 0.9976 147.1 0.058
Hydrophilic ZrO2-SiO2 xerogel [24] 0.998 177.7 0.843

Hydrophobic ZrO2-SiO2 xerogel (this work) 0.9961 173.53 0.1123

4. Reusability of Xerogel Adsorbent

In addition to the high adsorption capacity, the regeneration and recycling properties of
the xerogel are important for a potential application. Figure 16 shows the recycling perfor-
mance of hydrophobic ZrO2-SiO2 xerogel at different recycling times. As shown in Figure 16,
the xerogel samples were easily separated from the RhB solution with ethanol. After ad-
sorption, the xerogel was washed with ethanol at room temperature and reused to adsorb
RhB again. This regeneration procedure was repeated five times, and the adsorption capac-
ity of the hydrophobic ZrO2-SiO2 xerogel decreased from 169.23 mg·g−1 to 115.74 mg·g−1,
and the adsorption capacity decreased by 31.6%. The results show that the hydrophobic
ZrO2-SiO2 xerogel has good reusability for the adsorption of RhB and can be used repeatedly
many times.
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5. Conclusions

In this paper, the hydrophilic and hydrophobic ZrO2-SiO2 xerogels were prepared
by the sol–gel method. The results showed that the hydrophobic Si-CH3 groups were
introduced by MTES modification. There are Si-O-Si, Zr-O-Si, Si-OH, Si-CH3, Zr-OH,
and Zr-O groups on the surfaces of hydrophobic ZrO2-SiO2 xerogel. The hydrophobic
ZrO2-SiO2 xerogel has a larger specific surface area, mean pore size, and pore volume. A
high adsorption capacity of 169.23 mg·g−1 for the hydrophobic ZrO2-SiO2 xerogel was
achieved at 25 ◦C and pH = 3. The adsorption data fit well with the pseudo–second-order
dynamics model and the isothermal adsorption curve fitting showed that the adsorption
process of hydrophobic ZrO2-SiO2 on RhB was both monolayer adsorption and non-
uniform adsorption, and the isothermal adsorption model at different temperatures was
consistent with the Langmuir isotherm model. The results from the D–R model indicate
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the adsorption of RhB by hydrophobic ZrO2-SiO2 xerogel is mainly physical adsorption,
accompanied by a spontaneous endothermic process. In future work, we will further
investigate the adsorption performance of the hydrophobic ZrO2-SiO2 xerogel to other
dyes and mixed dyes, comparing the similarities and differences in the adsorption of
single-component and multi-component dye molecules.
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