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Abstract: Auditory alarms are used to direct people’s attention to critical events in complicated
environments. The capacity for identifying the auditory alarms in order to take the right action in
our daily life is critical. In this work, we investigate how auditory alarms affect the neural networks
of human inhibition. We used a famous stop-signal or go/no-go task to measure the effect of visual
stimuli and auditory alarms on the human brain. In this experiment, go-trials used visual stimulation,
via a square or circle symbol, and stop trials used auditory stimulation, via an auditory alarm.
Electroencephalography (EEG) signals from twelve subjects were acquired and analyzed using an
advanced EEG dipole source localization method via independent component analysis (ICA) and
EEG-coherence analysis. Behaviorally, the visual stimulus elicited a significantly higher accuracy rate
(96.35%) than the auditory stimulus (57.07%) during inhibitory control. EEG theta and beta band
power increases in the right middle frontal gyrus (rMFG) were associated with human inhibitory
control. In addition, delta, theta, alpha, and beta band increases in the right cingulate gyrus (rCG)
and delta band increases in both right superior temporal gyrus (rSTG) and left superior temporal
gyrus (lSTG) were associated with the network changes induced by auditory alarms. We further
observed that theta-alpha and beta bands between lSTG-rMFG and lSTG-rSTG pathways had higher
connectivity magnitudes in the brain network when performing the visual tasks changed to receiving
the auditory alarms. These findings could be useful for further understanding the human brain in
realistic environments.

Keywords: electroencephalography; independent component analysis; dipole analysis; EEG-coherence;
brain connectivity; right cingulate gyrus; response inhibition

1. Introduction

In daily activities, people generally receive visual stimuli in their surroundings, such as in
driving, typing, and sports, although in some emergency situations, people can also receive auditory
alarms, like an ambulance siren, a fire truck siren, or a gunshot. In these real situations, people
must make a decision to control their response. Therefore, our study investigates how auditory
alarms affect the neural networks of human inhibitory control in real situations. The present work
used a stop signal task with visual stimuli and auditory alarms. Logan [1] has identified auditory alarms’
importance in real-environmental conditions. For example, the importance of auditory alarms in the
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executive function of human inhibitory control in the case of an unfocused pedestrian, who is about to
leave the footpath in traffic, and a driver at full speed coming at a busy intersection [2]. Moreover,
in clinical research, the inability to exercise inhibitory control can interfere with the performance of
behavioral goals and contribute to psychological disorders, like attention deficit hyperactivity disorder
or obsessive-compulsive disorder [3,4]. In addition, most previous studies on human inhibitory
control have evaluated the performance of subjects in visual stimulus experiments with very few
studies that have investigated the performance of subjects in auditory alarms [5]. Therefore, in this
study, we used auditory alarms with both left-hand response (LHR) and right-hand response (RHR)
inhibitions, which increased the complexity of the experimental design. Accordingly, both groups
exhibit distinctive EEG patterns; for example, left-handed subjects exhibit less hemispheric asymmetry
than right-handed participants in performing complex motor tasks [6–8]. Recent studies have examined
the only importance of the visual stimulation and they found that the neural activities increased alpha
(8–12 Hz) and theta (4–7 Hz) band powers in human brains after the visual stimuli onset [9,10].

The processing of auditory alarm information significantly influences visual stimuli in daily activity.
The ability to determine accurately the brain dynamics and neural network pathways of a sound source
(i.e., auditory alarms) is important [11]. Auditory information has to be processed in the temporal
cortex of the central nervous system, specifically in the primary auditory cortex of the brain [12]. Vision
enables an opportunity for the brain to perceive and respond to changes in the human body. The visual
information is processed in the occipital lobe of the brain, particularly in the primary visual cortex
the brain [13]. In real-environments, the human brain receives several inputs concurrently from its
various sensory systems. To combine multisensory information efficiently, the brain must determine
whether signals from different channels are associated with a common perceptual event, or give rise
to different perceptual events, so whether they must be processed separately. The EEG-coherence
of cortical oscillations has been proposed as a potential corollary of multisensory processing and
integration [14,15]. In this work, an auditory stop-signal task was designed to measure the neural
mechanism of the human brain during visual stimuli and auditory alarms [16]. Additionally, in this
study, we utilized an advanced EEG dipole source localization method via independent component
analysis (ICA). The ICA process was performed in EEG-Lab and Matlab [17]. After the ICA process,
component clustering was analyzed using DIPFIT2 routines, a plug-in EEGLAB, to find the 3D location
of an equivalent dipole source location in human brain [17–19]. DIPFIT2 function measured the dipole
source localization by fitting an equivalent current dipole model using a non-linear optimization
technique and using a 4-shell spherical model [17–19]. We removed the noisy components from across
subjects by visual inspection; after that we used the K-means clustering (K = 5) algorithms in EEG-Lab
to identify the best cluster of components from across the subjects [17]. Finally, we obtained five
clusters as regions of interest (ROI) in this study.

The main focus of time-frequency analyses is in the neural oscillation activity by determining
the time and frequency decomposition of EEG signals. When EEG signals are disturbed through
stimulus events, like auditory alarms and visual stimuli, the delivery of the EEG phase becomes phase
locked to that event [20]. Neural oscillations of brain activity can be measured by calculating phase
associations in all EEG signals [21]. Event-related spectral perturbation (ERSP) is a method used
to measure EEG signal activities in various regions of the brain under visual stimuli and auditory
alarms with human inhibitory control. It reflects the temporal and spatial resolutions within the
EEG signal and elucidates the extent to which the underlying event-related synchronization (ERS)
occurs. Therefore, ERSP provides a direct measure of cortical synchrony that is not available from
the aggregate evoked response waveform [20]. However, previous studies have reported that human
brain perception influences the power spectrum of an ongoing event. The spectral power of an EEG
signal that is evoked by external stimulation affects the perceptual performance. Such power spectral
modulations of the neural oscillations have been identified in response to visual and auditory stimuli,
and have been shown to contribute significantly to the ERSP analysis [20]. Neural oscillations in
response to visual stimuli have been identified in the auditory cortex of the brain [22]. In addition,
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previous research has shown that a visual input restores the role of neural oscillations in the auditory
cortex of the human brain [23].

EEG coherence analysis is a mathematical method that can be used to determine whether two
or more brain regions exhibit similar neuronal oscillatory activities. Since the 1960s, EEG coherence
has typically been evaluated as the similarity of the frequency band across EEG signals. Recently,
the coherence has been imaged in the brain, to measure how the neural networks change in several
different neurological disorders [24]. The EEG coherence analysis reveals the phase stability between
two different time series. The Fourier transform shows a direct relationship between the time and
frequency domains and characterizes the alteration of time as a phase difference or phase angle. If the
phase angle is constant in time, indicating the phase lock, then the coherence is equal to one, whereas if
the time differences between the two-time series differ from one moment to another, then the coherence
is equal to zero. EEG coherence is frequently used to analyze the “connection” and as a measure of
the functional link between two brain regions [25]. EEG coherence analysis is a sensitive method
for elucidating features of an inhibitory brain network. The difference between EEG oscillations is
frequently used to calculate “directed coherence,” which is the degree of directionality of a flow of
information between two brain regions [26]. Differences in EEG oscillations have also been used to
evaluate conduction velocities and synaptic integration times as the inter-electrode distance in different
directions increases [27,28].

The functional roles of the left-superior temporal gyrus (lSTG) and the right-superior temporal
gyrus (rSTG) are involved with the perception of emotions [29,30]. In addition, the STG is an important
structure involved in auditory stimulation, as well as language—particularly among those with poor
language skills. It has been revealed that STG is an essential structure in the pathway involving the
prefrontal cortex and the amygdala cortex of the brain, which was involved in the development of
social cognition [29,30]. Previous research that showed with the use of neuroimaging has found that
patients with schizophrenia have structural abnormalities in their superior temporal gyrus (STG) [29,30].
An fMRI analysis study has shown a link between vision-based problem solving and activity in the
right anterior superior-temporal gyrus [30]. Moreover, the functional role of right-cingulate gyrus
(rCG) has importance in executive function and cognitive control, which involves a set of cognitive
processes, including inhibitory control, attention control, and motor control. The role of the rCG is
to generate neural impulses that control the execution of movement. The rCG plays a role in the
distribution of cognitive resources to synchronized auditory and visual information [31]. Accordingly,
clinical research has revealed that the rCG has an essential role in neurological disorders, such as
schizophrenia and depression [32,33]. The right-middle frontal gyrus (rMFG) was associated at the
stage where response inhibition and sustained attention were supposed to happen. Additionally, the
rMFG has been shown to be a crucial area for maintaining visual attention. Therefore, the rMFG
has been considered as an important brain region for maintaining attention instead of stopping the
action [34,35]. Additionally, the right-parietal lobe (rPL) has been linked to the perception of emotions
in facial recognition. However, the rPL is generally considered related to the visual stimuli that are less
precisely related to human inhibition function [34]. The rPL plays a functional role in the integration of
sensory information from various regions of the human brain. It also plays a role in the processing of
information related to the sense of touch [36]. The rPL is involved with visuospatial processing in the
human brain [37]. The rPL receives somatosensory and visual information through motor signals and
controls the movement of the arm, hand, and eyes [38]. Moreover, changes in brain activity and its
associated neural network were investigated under human inhibitory control in five brain regions—(1)
the left-superior temporal gyrus (lSTG), (2) right-superior temporal gyrus (rSTG), (3) right-cingulate
gyrus (rCG), (4) right-middle frontal gyrus (rMFG), and (5) right-parietal lobe (rPL). We utilized their
components and dipole sources’ location to measure the EEG activities during visual stimuli and
auditory alarms under human inhibitory control. For the first time our work investigates the effect of
auditory alarms on visual stimulation in the human brain. This work revealed how neural networks’
pathways change from visual stimulation to auditory alarms.
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2. Materials and Methods

2.1. Participants

Twelve male university students joined in on the auditory stop signal task. All were between
25 and 30 years old (mean ± SD age: 27.66 ± 1.54 years). All subjects joined the stop signal task for
human inhibitory control of both left-hand and right-hand responses. In this study, left-hand and
right-hand response inhibitions were used to increase the complexity of the experimental design similar
to a real environmental setting; the tendency to use either hand during inhibition is more natural.
All participants were right-handed and had no hearing or visual impairment. All participants gave
their written informed consent in accordance with the laws of the country and the Research Ethics
Committee of National Taiwan University, Taipei, Taiwan. This study was carried out in accordance
with the recommendations of the Institutional Review Board (IRB) of the National Taiwan University,
Taipei, Taiwan. The study was approved by the Research Ethics Committee of the National Taiwan
University, Taipei, Taiwan.

2.2. Experimental Design

In this study, all subjects performed a stop-signal task or go/no-go task [1,16]. When the stop trial
completes before the go-trial, the subject’s response is inhibited, and when the go-trial completes before
the stop trial, the response is permitted. In this experimental paradigm, all the participants carried
out a primary task, which in this study was a task of identifying shapes, that required participants to
differentiate between a square and a circle (visual stimuli), as presented in (Figure 1). Furthermore,
an auditory alarm (beep sound) was used as a stop signal and subjects were instructed to stop their
left and right-hand responses. As the delay between the primary task and the stop signal delay
(SSD) increases, the probability of response to the stop signal increases [16,39]. This experimental
presentation started when participants pressed the ‘Enter’ key on the keyboard. The response keys
were ‘Z’ for the square stimulus and ‘/’ for the circle stimulus. The trial was terminated when the ‘ESC’
key was pressed. In the go-trials, participants respond to the shape of square and circle as a visual go
stimulus (a “square” requires a left-hand response (LHR) and a “circle” requires a right-hand response
(RHR)). In the stop-trials, a beep sound (auditory alarm) was used as a stop signal; we instructed the
participants to inhibit their hand response when they heard the beep.
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Figure 1. The stop signal task used for visual stimuli and auditory alarms: (A) In the go-trials,
participants responded to the shape of a go stimulus (a “square” requires a left-hand response (LHR)
and a “circle” requires a right-hand response (RHR). The square and a circle shapes were used as visual
stimuli. (B) In the stop-trials, a beep sound (auditory alarm) was used as a stop signal, to instruct the
participants to control their response. The behavioral parameters measured in this experiment included
fixation, reaction time (RT), stop signal delay (SSD) and stop signal reaction time (SSRT).
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In the go-trials (75% of all trials), only the visual stimuli were used and the participants were
instructed to respond to the visual stimuli as quickly and correctly as possible. The size of the visual
stimulus was 2.5 × 2.5 cm (height ×width, 1 × 1 in). In the stop trials (25% of all trials), the participants
were instructed to stop their responses based on the presentation of the auditory alarms. The fixation
signal, the square and circular shaped visual stimuli, were shown in white on a black background in the
center of a computer display. Each go-trial was started with the display of a white central fixation cross
signal for a randomized duration (0.5 s to 6.5 s), followed by the display of a square or circular symbol
for 1000 ms. The inter-stimulus interval (ISI) was 1000 ms and it was independent of the reaction time
(RT). The visual stimuli remained on the screen until the subjects responded, or until they had passed
1000 ms (maximum RT). In the stop trials, all participants heard an auditory alarm tone binaurally
through headphones. This short, (750 Hz, 100-ms-long) beep sound was presented as a stop-signal that
indicated to participants that they should inhibit their left or right-hand response in the primary task,
regardless of the symbol displayed. In stop-signal trials, a stop signal was presented after a variable
stop signal delay (SSD). The SSD was initially set at 250 ms and it was adjusted continuously by the
staircase tracking procedure. According to the staircase tracking method, when the inhibition was
successful, SSD increased by 50 ms, and when the inhibition was unsuccessful or failed, the SSD
decreased by 50 ms. This method increased the complexity of the stop-signal task. The staircase
procedure was intended to converge on an SSD that caused the subject to successfully inhibit 50% of
the stop trials. This allows for the calculation of the stop signal reaction time (SSRT) by subtracting
the critical SSD latency from the RT [16,34,35]. In this study, 60 stop trials and 180 go trails were
executed for each subject. The behavioral performance feedback parameters, such as RT, SSD, SSRT,
hit percentage, and miss percentage, were investigated according to the presentation of visual stimuli
and auditory alarms.

2.3. Acquisition and Pre-Processing of EEG Signals

The EEG signals were acquired from healthy subjects using a Scan NuAmps Express system
(Compumedics USA Inc., Charlotte, NC). The EEG cap of 32 channels was used with the international
10–20 system for electrode positioning. First, the EEG artifacts were removed manually, after which we
performed independent component analysis (ICA) in EEGLAB toolbox [17–19]. During the artifact
removal process, we observed that about 10% of the epochs were bad in the raw EEG signal. Therefore,
the sample size of the EEG data set was reduced 10% by eliminating various artifacts, such as muscle
and blinking artifacts [17–19]. The EEG data set was down-sampled from 1000 to 500 Hz. To eliminate
linear trends, we performed an infinite impulse response (IIR) Butterworth filter using Matlab functions,
filtfilt and butter. The setting of the IIR Butterworth filter was fixed at a high band-pass filter cutoff

frequency of 1 Hz, and a low band pass filter cutoff frequency of 50 Hz, after the down-sampling. The
EEG signals were preprocessed using MATLAB R2012b (The MathWorks Inc., Natick, MA, USAA) and
EEGLAB toolbox (10.2.2.4bVersion, UC San Diego, Swartz Center for Computational Neuroscience
(SCCN), La Jolla, CA, USA) [17]. The ICA method was used to eliminate various artifacts, including
eye movement and blinking artifacts, and noise from the indoor power line. The decomposition of
ICA is a preferred computational method for the separation of blind sources in the processing of EEG
signals [18,19]. In this study, we used runica algorithms for Infomax ICA decomposition [40]. To identify
several types of artifacts, we inspected the scalp map, power spectrum, and dipole source location of
each independent component. We executed artifact identification of the EEG signals with scalp map,
power spectrum, and dipole location by visual inspection. Based on these criteria we separated good
and bad components, back-projecting the retained components to clean the EEG signal. After that,
we used the clean EEG signals to perform the ERSP analysis, using functions of the EEGLAB toolbox
(10.2.2.4bVersion) [17]. Following the ICA, the EEG dataset was used for ERSP and coherence analysis
of visual and auditory stimuli. Each epoch was extracted from –500 to 0 ms as a baseline and from 1 to
1300 ms for the stop and go-trials. The EEG data from the successful-go (SG) trials, successful-stop (SS)
trials, and failed- stop (FS) trials were used in the analysis of human inhibitory control. To study brain
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dynamics after visual stimuli and auditory alarms, each trial was independently transformed into the
time and frequency domain through event related spectral perturbation (ERSP) analysis [17]. In this
study, we investigated ERSP based on independent component and dipole analysis.

2.4. Behavioral Analysis

Behavioral analysis was performed using parameters, such as SSD (i.e., visual reaction time),
SSRT (i.e., auditory reaction time) in stop trials, and Go-RT (i.e., visual reaction time) in go-trials. Since
the response inhibition reaction time itself cannot be measured directly, the SSRT was calculated by
subtracting SSD from the RT. The efficiency of the response inhibition for individual participation was
determined. In go-trials, the success rate (hit%) for each participant was acquired from the number of
successful responses in the go-trials. In stop trials, the success rate (hit%) for each participant was
obtained from the number of successful response inhibitions in stop trials. In go-trials, the miss rate
(miss%) was defined as the number of missed responses (excluding the incorrect answers) relative to
the total number of go-trials. In stop trials, the miss rate (miss%) was defined as the number of failed
response inhibitions relative to the total number of stop trials [16,17].

2.5. Independent Component and Dipole Clusters Used as Regions of Interest (ROI)

In our study, independent component clusters were used as regions of interest (ROI). The
investigation of independent component analysis (ICA) was performed using EEG-Lab [17]. After
ICA processing, component clustering was analyzed using DIPFIT2 routines, an EEGLAB plug-in,
to find the 3D location of an equivalent dipole within the brain [17–19]. DIPFIT2 performs source
localization by fitting an equivalent current dipole model using a non-linear optimization technique
and a 4-shell spherical model [17–19]. We removed the noisy components and dipoles from across
subjects. After that we performed the K-means clustering (K = 5) and dipole-coordinate fitting methods
to identify the best cluster of components and diploes across subjects [17]. For the analysis of IC’s
clusters, after the decomposition of ICA, we stored the ICA weight matrix (EEG.icaweight) of each IC.
The EEG.icaweight matrix of each IC was used for the K-means clustering analysis. For the analysis of
dipole clusters, we utilized each diploe’s X, Y, Z coordinates. The K-means clustering analysis was
processed using MATLAB R2012b function kmeans with EEGLAB toolbox (10.2.2.4bVersion) [17,40].
Among components and dipoles from all subjects, those with similar scalp maps, dipole locations, and
power spectra were clustered. We found five independent component and dipoles clusters, including
the left-superior temporal gyrus (lSTG), right-superior temporal gyrus (rSTG), right-cingulate gyrus
(rCG), right-middle frontal gyrus (rMFG), and right-parietal Lobe (rPL). We used those five clusters
as regions of interest (ROI) in this study. Those five brain regions were selected owing to variances
among their visual and auditory modalities, as shown by ERSP analysis.

2.6. Analysis of Brain Connectivity under Human Inhibitory Control

In previous studies, EEG-coherence analysis has been recognized as having great potential in
studying the human brain’s neural network [24]. EEG signals coherence analysis was conducted
herein to quantitatively compute the linear dependency between two EEG signals. The coherence
computed between two EEG signals that were acquired at different brain regions of the scalp map
reveals a functional relationship between the underlying brain networks. The coherence values, such
as, ‘1′ and ‘0′, represent the mutually dependent and unrelated EEG signals, respectively. Coherence
was acquired statistically by cross spectral analysis. The methodical aspects of such an EEG-coherence
study have been comprehensively evaluated previously [24,41]. The source information flow toolbox
(SIFT) in EEGLAB was used to obtain the optimal multivariate autoregressive model [42]. A brain
connectivity model was then developed based on the EEG coherence analysis of five dipole clusters
under human inhibitory control. We utilized five dipole clusters and their Montreal Neurological
Institute (MNI) space coordinates’ X, Y, and Z values to compute the volume of each dipole cube
using the open access software “Talairach Client -Version 2.4.3” (This software was developed by Jack
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Lancaster and Peter Fox at the Research Imaging Institute of the University of Texas Health Science
Center, San Antonio, TX, USA), as shown in Table 1. A brain connectivity model was then developed
based on the EEG coherence analysis of five dipole clusters (i.e., five brain regions), using combined
visual stimuli and auditory alarms during human inhibitory control. These five brain regions were
selected owing to variances among their visual and auditory modalities; such inhibitory-control-related
neural signals generally arrive from the frontal cortex and the presupplementary motor area [34].

Table 1. Five dipole clusters in human brain, and the Montreal Neurological Institute (MNI) coordinates
of their source distributions during visual and auditory stimuli, under human response inhibition.

Component
Clusters

Side Brain Regions
MNI Coordinates (mm) Cluster Size

(voxels)X Y Z

1 Left Superior Temporal Gyrus −59 −25 30 18
2 Right Superior Temporal Gyrus 51 −40 24 12
3 Right Cingulate Gyrus 0 4 56 15
4 Right Middle Frontal Gyrus 43 36 45 59
5 Right Parietal Lobe 5 −60 42 55

2.7. Statistical Analysis

In the behavioral analysis, the ANOVA: Single Factor test was utilized to match the response time
between three groups—RT, SSD, and stop signal reaction time (SSRT)—in LHR and RHR inhibitions.
In addition, an ANOVA was performed between four groups, the hit% versus miss% in visual stimuli
and hit% versus miss% in auditory stimuli, for both LHR and RHR inhibitions. Post hoc comparisons
were carried out with Fisher’s least significant difference test. In the EEG analysis, the post-stimulus
effects in the brain dynamics from the stop and go-trials were studied by transforming the EEG data
after each epoch into the time and frequency domain using the ERSP routine [17]. The statistically
significant differences between visual stimuli and auditory alarms in the time-frequency domain were
evaluated using the bootstrap method [17,43], with the significance threshold at p < 0.05. The mean
ERSP value was computed per cluster at each time-frequency domain. For the power spectral analysis,
we used the spectopo function in EEGLAB with Matlab [17,20]. We set the parameters for EEG power
spectral analysis as follows: The EEG signal sampling frequency, Fs, to 1000 Hz, the length of the
EEG signals from −500 to 0 ms as a baseline, and from 1 to 1300 ms as the go-trial and stop trial
range. A pairwise t-test was used to compare the visual and auditory affects in delta (1–4 Hz), theta
(4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) spectral bands during response inhibition. Power
spectral analysis shows the power spectrum of a time series and describes the power distribution
in frequency components, so that we can observe the increase and decrease of brain activity elicited
by visual stimuli and auditory alarms. The coherence was acquired statistically by cross spectral
analysis in Matlab. The methodical aspects of the EEG-coherence study have been comprehensively
evaluated elsewhere [24,41]. The source information flow toolbox (SIFT) in EEGLAB was used to
obtain the optimal multivariate autoregressive model [42]. EEG-coherence analysis was used to
develop a visual-auditory cross model neural network, as it allows for the computation of connections
between different brain regions during human inhibitions [24].

3. Results

3.1. Behavioral Results

In Figure 2 the different behavioral response times, RT, SSD, and SSRT, for the different tasks
are shown; asterisks indicate significance differences (*** p < 0.001) between conditions calculated
using a single factor ANOVA. The ANOVA test shows a significant difference in LHR between RT
(580.48 ± 64.61 ms), SSD (338.92 ± 87.83 ms), and SSRT (241.55 ± 66.31 ms) (F (2, 33) = 61.69, p < 0.001;
Figure 2A). In addition, the ANOVA test shows a significant difference in RHR between RT (574.96 ±
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63.23 ms), SSD (356.31 ± 103.34 ms), and SSRT (218.64 ± 85.76 ms) (F (2, 33) = 48.35, p < 0.001; Figure 2B).
Post hoc comparison shows that the RT was observed to be significantly higher than SSD and SSRT,
in both LHR and RHR inhibitions.

In Figure 2C,D the ANOVA test shows significant differences in multiple group comparisons,
between hit% (i.e., accuracy rate) and miss% (i.e., inaccuracy rate) in visual and auditory stimuli,
during LHR and RHR inhibitions. The ANOVA revealed the significant difference in LHR between
hits (96.35%) and misses (3.64%) during visual stimuli, and in auditory stimuli between hits (57.07%)
and misses (42.92%) (F (3, 44) = 82.07, p < 0.001; Figure 2C). Moreover, the ANOVA test showed the
significant difference in RHR between hits (95.20%) and misses (4.79%) during visual stimulation, and
with auditory stimulation, between hits (56.83%) and misses (43.16%) (F (3, 44) = 79.25, p < 0.001;
Figure 2D). The post hoc comparison revealed that the visual stimulus elicited a significantly higher
accuracy rate (hit; 96.35 %) than the accuracy rate (hit; 57.07 %) of the auditory stimulus, in LHR and
RHR inhibitions.
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Figure 2. (A) Behavioral outcomes between visual stimuli and auditory alarms during LHR inhibition.
(B) Behavioral results of visual stimuli and auditory alarms in RHR inhibition. Asterisks indicate
pairwise significance difference (*** p < 0.001) in ANOVA: Single factor between the RT, SSD, and SSRT
conditions. (C,D) Comparisons between hit% (i.e., accuracy rate) and miss% (i.e., inaccuracy rate)
while responding to the visual-auditory stimuli during LHR and RHR inhibitions. Asterisks show
significance difference in ANOVA between the hit% and miss% with visual stimuli and auditory alarms.

3.2. EEG Results

3.2.1. EEG-Scalp Maps and Dipole Source Locations

In this study, the independent components and dipoles extracted from all subjects with similar
scalp maps and dipole source locations were clustered into the same group, as presented in Figure 3.
The five dipole clusters were identified on the basis of similar scalp map, power spectra, and diploe
source locations across all subjects. We found major changes in EEG activities in the lSTG, rSTG, rCG,
rMFG, and rPL of the brain during visual stimuli and auditory alarms, as shown in Figure 3A–E. The
dipole source locations and directions of the five clusters of interest were plotted together in Figure 3F.
All five clusters and the MNI coordinates of their source distributions during visual and auditory
alarms while under inhibitory control are shown in Table 1. These five regions of the brain were used
to investigate the effect of visual stimuli and auditory alarms by ERSP, as described below.
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Figure 3. Scalp maps and dipole source locations of five groups of independent components (IC) in
all subjects. Right panel: Plot of 3D dipole source locations and their projections onto the MNI brain
template: (A) left superior temporal gyrus (lSTG), (B) right superior temporal gyrus (rSTG), (C) right
cingulate gyrus (rCG), (D) right middle front gyrus (rMFG), (E) right parietal lobe (rPL) and (F) the
direction of five dipoles. Left panel: average maps of the scalp from all independent components
within a cluster. Cluster 1—left-superior temporal gyrus (n = 10). Cluster 2—right-superior temporal
gyrus (n = 8). Cluster 3—right-cingulate gyrus (n = 9). Cluster 4—right-middle frontal gyrus (n = 5).
Cluster 5—right-parietal lobe (n = 5). n is the number of diploes estimated in a cluster.

3.2.2. Event Related Spectral Perturbation (ERSP) Analysis

Figures 4–8 show the average ERSPs of all subjects; non-significant ERSP values are shown in
green and significant ERSP values (p < 0.05) are shown in yellow and red colors. The ERSP plots were
obtained for successful go (SG) (i.e., effect of visual stimuli), successful stop (SS) (i.e., effect of auditory
alarms) trials during LHR and RHR inhibitions. The neural mechanisms of the auditory alarms were
explored by contrasting the combined audio-visual (AV) and visual (V) stimuli in the ERSP plots
under (AV-V) or (SS-SG) conditions. The ERSP maps of cortical distributions were plotted for different
time-frequency ranges of interest. In each ERSP plot (Figures 4–8), the horizontal and vertical axes
represent the time domain and frequency, respectively. The color scale to the right of each ERSP plot
displays the non-significant ERSPs (green) and highly significant ERSPs (red), at an FDR-adjusted
p < 0.05. The delta (1–4 Hz) and theta (4–7 Hz) synchronizations (i.e., increased power in delta–theta
band) were detected in the rMFG upon presentation of visual-auditory alarms in SS trials during LHR
and RHR inhibitions (see Figure 4). These findings are consistent with previous studies of inhibitory
control [34]. Correspondingly, the frontal brain area is actively associated with the response inhibition
mechanisms. The delta (1–4 Hz) and theta (4–7 Hz) bands’ power synchronizations, and the alpha
(8–12 Hz), beta (13–30 Hz) bands’ power desynchronizations were also observed in the rMFG under
SG condition, following the onset of response to the visual stimuli (see Figure 4). The ERSP activities
may have been caused by the hand movements in SG condition. The role of frontal cortex in successful
inhibitory control was suggested by a significant increase in delta–theta band power, under SS-SG
condition, during LHR and RHR inhibitions (see Figure 4).

The ERSP plots in Figure 5 present the delta, theta, alpha, and beta band power synchronizations
in the rCG upon presentation of auditory alarms in SS trials under inhibitory control. The delta–theta
synchronization was elicited by the visual stimuli in SG trials in LHR and RHR inhibitions.
The prominent role of rCG in the response inhibition mechanisms was suggested by significant
synchronization of the inhibition related theta-alpha band power, and auditory alarm related delta-beta
band powers under SS-SG condition in LHR and RHR inhibitions. The neural signatures, such as
theta-alpha band power synchronization under the SS-SG condition in LHR and RHR inhibitions, may
be associated with the inhibitory control.
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Figure 4. The event-related spectral perturbation (ERSP) plots showing the post-stimuli EEG
modulations in right middle frontal gyrus (rMFG) of the brain under combined visual (V) stimuli and
auditory (A) alarms. The successful go (SG) trial is elicited by only visual stimuli, and the successful
stop (SS) trial is elicited by auditory alarms. In (SS-SG) condition, the ERSP plots display the EEG
modulation of auditory alarms by comparing the ERSP plots of audio-visual (AV) and visual V) stimuli;
(AV-V). Purple dashed line: Onset of the visual stimuli. Black dashed line: Onset of the auditory alarms.
Blue dashed line: Onset of response. Color bars show the amplitude of the ERSP; statistical threshold
at p < 0.01.
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Figure 5. The ERSP plots showing the post-stimuli EEG modulations in the right cingulate gyrus (rCG)
of the brain under combined visual (V) stimuli and auditory (A) alarms. The successful go (SG) trial is
elicited by only visual stimuli, and the successful stop (SS) trial is elicited by auditory alarms. In (SS-SG)
condition, the ERSP plots display the EEG modulation of auditory alarms by comparing the ERSP plots
of audio-visual (AV) and visual (V) stimuli; (AV-V). Purple dashed line: Onset of the visual stimuli;
black dashed line: Onset of the auditory alarms; blue dashed line: Onset of response. Color bars show
the amplitude of the ERSP; statistical threshold at p < 0.01.

In addition, Figure 6 shows the auditory-related beta band power synchronization, and theta-alpha
band power desynchronization were observed in the rSTG under SS condition in response to the
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visual-auditory alarms during LHR and RHR inhibitions. The increased power levels in delta,
theta, alpha, and beta bands are evident in the rSTG under SG conditions, following the onset of
response to the visual stimuli during LHR and RHR inhibitions. The auditory alarm related delta
and beta synchronizations were also observed in the rSTG under SS-SG condition during LHR and
RHR inhibitions.

In addition, Figure 7 displays the alpha desynchronization following the visual stimuli and
auditory alarms in the lSTG under SS-SG condition. Figure 8 reports the synchronization of the delta
band power and the desynchronization of alpha band power in the rPL under SS-SG condition during
LHR and RHR inhibitions.
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Figure 7. The ERSP plots showing the post-stimuli modulations in left superior temporal gyrus (lSTG)
of the brain under combined visual (V) stimuli and auditory (A) alarms. Purple dashed line: Onset of
the visual stimuli; black dashed line: Onset of the auditory alarms; blue dashed line: Onset of response.
Color bars show the amplitude of the ERSP; statistical threshold at p < 0.01.



Brain Sci. 2019, 9, 216 12 of 20

Brain Sci. 2019, 9, x FOR PEER REVIEW 12 of 20 

 

Figure 7. The ERSP plots showing the post-stimuli modulations in left superior temporal gyrus (lSTG) 

of the brain under combined visual (V) stimuli and auditory (A) alarms. Purple dashed line: Onset of 

the visual stimuli; black dashed line: Onset of the auditory alarms; blue dashed line: Onset of 

response. Color bars show the amplitude of the ERSP; statistical threshold at p < 0.01. 

 

Figure 8. The ERSP plots showing the post-stimuli modulations in right parietal lobe (rPL) of the brain 

under combined visual (V) stimuli and auditory (A) alarms. Purple dashed line: Onset of the visual 

stimuli; black dashed line: Onset of the auditory alarms; blue dashed line: Onset of response. Color 

bars show the amplitude of the ERSP; statistical threshold at p < 0.01. 

Figure 9 displays the power spectral analysis, during visual stimuli and auditory alarms. 

Pairwise t-tests showed significant differences between visual and auditory alarms during human 

inhibitory control at the rMFG, rCG, and rSTG areas of the brain. We observed that auditory alarms 

had significantly higher theta and beta band power than the visual stimuli in rMFG (t (4) = 3.10, p < 

0.05; t (4) = 2.81, p < 0.05; Figure 9). We determined that auditory responses had significantly higher 

delta, theta, alpha, and beta band power than the visual stimuli’s in rCG (t (8) = 1.91, P < 0.05; t (8) = 

2.03, p < 0.05; t (8) = 2.17, p < 0.05; t (8) = 2.23, p < 0.05; Figure 9). In addition, we observed that auditory 

alarms caused significantly higher delta band power than the visual stimuli in rSTG and lSTG (t (7) 

= 2.10, p < 0.05; Figure 9). The power change of delta–theta bands is related to the neural mechanism 

of human inhibitory control in rMFG. In this study, we found inhibition related delta–theta neural 

makers in rMFG. The changes in EEG activities of the delta and theta bands’ power reveal that rMFG 

is related to inhibition. These EEG signatures were similar to those obtained in earlier studies of 

Figure 8. The ERSP plots showing the post-stimuli modulations in right parietal lobe (rPL) of the brain
under combined visual (V) stimuli and auditory (A) alarms. Purple dashed line: Onset of the visual
stimuli; black dashed line: Onset of the auditory alarms; blue dashed line: Onset of response. Color
bars show the amplitude of the ERSP; statistical threshold at p < 0.01.

Figure 9 displays the power spectral analysis, during visual stimuli and auditory alarms. Pairwise
t-tests showed significant differences between visual and auditory alarms during human inhibitory
control at the rMFG, rCG, and rSTG areas of the brain. We observed that auditory alarms had
significantly higher theta and beta band power than the visual stimuli in rMFG (t (4) = 3.10, p < 0.05;
t (4) = 2.81, p < 0.05; Figure 9). We determined that auditory responses had significantly higher delta,
theta, alpha, and beta band power than the visual stimuli’s in rCG (t (8) = 1.91, P < 0.05; t (8) = 2.03,
p < 0.05; t (8) = 2.17, p < 0.05; t (8) = 2.23, p < 0.05; Figure 9). In addition, we observed that auditory
alarms caused significantly higher delta band power than the visual stimuli in rSTG and lSTG (t (7) =

2.10, p < 0.05; Figure 9). The power change of delta–theta bands is related to the neural mechanism
of human inhibitory control in rMFG. In this study, we found inhibition related delta–theta neural
makers in rMFG. The changes in EEG activities of the delta and theta bands’ power reveal that rMFG is
related to inhibition. These EEG signatures were similar to those obtained in earlier studies of human
inhibitory control [34]. Consequently, rMFG is associated with inhibition of the human response.
We investigated the prominent role of the rCG in human response inhibition by showing that the
inhibition related theta and alpha bands’ power increased significantly. In addition, we observed that
delta and beta bands’ power increased during auditory alarms in rCG areas of the brain. However, the
rCG has a potential role in executive function and cognitive control, such as in attention, inhibition,
and auditory stimulation [32,33]. Furthermore, the power of the delta band increased significantly
in both the rSTG and lSTG of the brain, which are related to auditory alarms. The EEG signatures
(Figure 9) are related to auditory stimulation in rSTG-lSTG of the brain. Previous research has reported
that the superior temporal gyrus (STG) is involved in auditory stimulation [29,30].

3.2.3. The Neural Connectivity of Visual and Auditory Modalities in Human Inhibitory Control

Figure 10 shows the average results of all subjects in visual and auditory modalities. The
non-significant connectivity magnitudes are shown in blue and significant connectivity magnitudes
(p < 0.05) are shown in yellow and red colors [42]. The brain’s neural networks were developed
under visual stimuli (RT) during the SG condition in LHR inhibition, as shown in Figure 10. After
the presentation of visual stimuli, all the subjects exhibited increased coherence of the delta, theta,
alpha, and beta bands’ powers, and higher magnitudes of connectivity between all the neural network
pathways, such as the rPL–rCG–rMFG, rMFG–rSTG, rPL–rSTG, and rCG–rSTG (see Figure 10).
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Figure 10. The design of visual and auditory cross-model neural networks under human inhibitory
control of left-hand response (LHR). The neural network between five brain regions, including left
superior temporal gyrus (lSTG), right superior temporal gyrus (rSTG), right cingulate gyrus (rCG),
right middle front gyrus (rMFG), and right parietal lobe (rPL). The green arrow shows the change of the
visual neural network to the auditory neural network. Color bars shows the scale of the connectivity
strength; statistical threshold at p < 0.01. The outflow was obtained between two dipole sources.
The gray node shows the high and low outflow strength between the two dipoles. Connectivity (edge
color mapping): The color of the edges was mapped to connectivity strength (amount of information
flow along that edge). Red = high connectivity and green = low connectivity. ConnMagnitude (edge
size mapping): The size of edges of the graph (connecting “arrows”) was mapped to connectivity
magnitude (i.e., absolute value of connectivity strength).
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3.2.4. Change of Visual to Auditory Neural Networks

The brain’s neural networks were changed under auditory alarm effect (SSRT) during the SS
condition in LHR inhibition, as shown in Figure 10. Compared to the visual stimuli (RT), the connectivity
magnitudes of neural network, excluding the rCG-rSTG pathway, were significantly higher in the
delta, theta, alpha, and beta bands, in response to the auditory effect (SSRT) based on EEG coherence
analysis (see Figure 10). Specifically, the neural networks in delta, theta, alpha, and beta bands,
and the connectivity magnitudes among the lSTG-rSTG, lSTG-rPL, and lSTG-rMFG neural network
pathways, were higher in response to the auditory stimuli those that of the visual stimuli (see Figure 10).
In multimodal neural networks between lSTG-rMFG and lSTG-rSTG pathways, higher connectivity
magnitudes were observed in theta-alpha and beta bands during auditory modalities compared to the
visual modalities (see Figure 10).

Moreover, we also measured neural network pathway response to visual and auditory stimuli
during RHR inhibition. We inferred that the human brain neural mechanisms and neural network
pathways observed during LHR and RHR inhibitions were relatively similar, as both left and
right-hand performed a similar protocol of the response inhibition task. In addition, we investigated
how a multimodal neural network was changed under auditory alarms and visual stimuli. Some neural
network pathways were highly consistent with those in previous studies of response inhibition [44].
The activation of each brain region was based on the maximum frequency coherence at a specific
brain area.

4. Discussion

In this study, we investigated how visual stimuli and auditory alarms affect the neural networks in
the human brain. As for the behavioral results, the significant differences in the behavioral parameters,
such as RT, SSD, and SSRT were identified between visual stimuli and auditory alarms during inhibitory
control. The RT observed was significantly greater than the SSD and SSRT in LHR and RHR inhibitions.
The RT and SSD values were significantly higher than those obtained previously [45,46]. Significantly
higher hit% and lower miss% values were observed for all participants in response to the visual stimuli,
in comparison with the response to the auditory alarms. These findings suggested that behaviorally,
all participants performed better in response to visual stimuli than auditory alarms. In terms of EEG
results, five brain regions, including rMFG, rCG, rPL, rSTG, and lSTG were identified by their similar
dipole source locations and power spectra in the brain [35]. The neural mechanisms were investigated
in auditory alarms and visual modalities among these five brain regions.

The functional role of the lSTG and rSTG relates to the perception of emotions [29,30]. The lSTG
and the rSTG play an important function in auditory stimulation, as well as in source of poor language.
It has been reported that the superior temporal gyrus plays an important role in neural network
pathways of the prefrontal cortex and the amygdala cortex of the brain; these brain regions have been
implicated in the development of social cognition [29,30]. An fMRI analysis study has shown a link
between vision-based problem solving and activity in the right anterior superior-temporal gyrus [30].
Moreover, the functional role of rCG is important in inhibitory control, attention control, and motor
control. The rCG plays a role in the distribution of cognitive resources in synchronized auditory and
visual information [31]. In addition, clinical EEG research has revealed that the rCG has an essential
role in neurological disorders, such as schizophrenia and depression [32,33]. The rMFG has been
associated with the stages where response inhibition and sustained attention have been proposed
to happen [47]. The rMFG is also considered an important brain region for maintaining attention,
instead of stopping an action [34,35]. The rPL has been linked to the perception of emotions via facial
recognition. The rPL is considered generally related to visual stimuli compared to the human response
inhibition [34]. The rPL plays a functional role in the integration of sensory information from various
regions of the human brain [36]. The rPL is involved with visuospatial processing in the human
brain [37,38].
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The main EEG results discussed are the following: The rMFG was identified to have a role in
response inhibition, as shown by delta–theta band power synchronizations investigated under the
SS-SG condition (see Figure 4). These EEG signatures were similar to those obtained in earlier studies
of inhibitory control [34]. Accordingly, the rMFG is associated with response inhibition. The ERSP plot
(see Figure 5) revealed the prominent role of the rCG, in response inhibition, by exhibiting significant
inhibition related theta and alpha band power synchronizations and auditory alarm related delta and
beta band power synchronizations under the SS-SG condition, during LHR and RHR inhibitions [32].
Figure 6 shows the beta band power synchronization and the desynchronizations of the delta-alpha
band powers in the rSTG, during inhibitory control in the SS-SG condition. These EEG signatures are
related to the auditory alarm response [48].

Cross-modal interference occurs when incompatible information is delivered by different senses.
For example, when we listen to someone’s voice, watching the movement of their lips can improve
speech intelligibility under noisy conditions [49–51]. When the EEG signals of visual stimuli and
auditory alarms do not coincide, as for a person who is seeing another person speaking one syllable
of speech while listening to another, the listener characteristically reports hearing a third syllable
characterizing a combination of what he saw and heard [52]. Revealing where and how multisensory
information is combined and processed in the human brain is fundamental to understanding how
auditory inputs affect auditory perception and behavior [53]. Additionally, various brain regions,
including primary areas, sometimes receive different inputs from more than one of the senses, as occurs
in the auditory cortex, which in humans is sensitive to some visual stimuli, as well [54,55]. Visual stimuli
and auditory alarms can modulate neural oscillations in the primary auditory cortex [56]; a facilitator
role for the above inputs in sound localization has been suggested [57], and the finding supports that
visual inputs can increase the amount of spatial information that is transferred by neurons in the
auditory cortex [58]. In addition, visual stimulation is important to guide the development of the
auditory spatial response properties of neurons in certain regions of the brain. This is most evident in
the superior colliculus of the midbrain, where perceptible visual and auditory inputs are organized into
topographically associated spatial maps [59]. This organization allows each of the sensory inputs that
are associated with a particular event to be converted into suitable motor signals that alter the direction
of a gaze. However, individual neurons of the superior colliculus receive convergent multisensory
inputs, and the strongest responses are often generated by stimuli in close temporal and spatial
proximity [60].

Visual and auditory modalities commonly work together to facilitate the identification and
localization of objects and events in the real world. The human brain critically establishes and
maintains consistent visual and auditory stimulation. Therefore, different sensory signals that are
associated with different objects that can be seen and heard can still be correctly synthesized together [11].
Considering the impacts of visual and auditory stimuli in multisensory integration, where cross-model
response inhibition causes stronger responses than auditory alarms or visual stimuli alone, only the
power of the theta band was found to increase [61]. This outcome is consistent with other studies that
have identified the effects of multisensory integration within the theta band [62]. The spatial distribution
of this response (i.e., theta band power) is consistent with formerly determined topographies that are
present in frontal-central, as well as occipital, lobes of the brain [63]. The delta and theta bands’ powers
reveal interesting effects of audiovisual relationships [64]. In this work, delta–theta band power was
observed in posterior brain regions in response to visual and auditory stimuli, suggesting visual and
auditory stimuli-related EEG signatures in the rSTG and rPL of the brain [48]. The EEG signatures in
the auditory cortex have higher neural activations than those in the visual cortex. Unisensory auditory
alarms can evoke responses in the sensory cortex that have not been specified for visual sensory
domain [65]. This work suggested the inhibition related theta and beta band power synchronization,
and the auditory alarm related delta and beta band power synchronization, occurred in the rCG during
inhibitory control. Therefore, the rCG has a role in executive function and cognitive control, which
involves a set of cognitive processes, which include inhibitory control, attention control, and cognitive
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processes. Accordingly, clinical research has revealed that the rCG has an essential role in neurological
disorders, such as schizophrenia and depression [32,33]. In this study, inhibitory control findings
concerning the theta band power in the frontal cortex was identified as an EEG signature related to
those identified in previous studies [34].

In this work, we investigated how auditory alarms affect neural network pathways during visual
stimuli. In this investigation, the first time, we found that the theta-alpha and beta bands between
lSTG–rMFG and lSTG–rSTG pathways had higher connectivity strength in the brain’s network when
performing the visual tasks changed to receiving the auditory alarms. Previous studies reported
that the functional connectivity role of lSTG and the rSTG have been involved in the perception
of emotions [29,30]. The lSTG–rSTG plays an important role in auditory stimulation, as well as in
language development. Preceding studies have demonstrated that lSTG–rSTG played a significant
functional role in the pathway between the prefrontal and the amygdala cortices [29,30]. Former
clinical research reported that patients with schizophrenia have been found structural-functional
abnormalities in their lSTG–rSTG [29,30]. Furthermore, the significantly increased power of the delta
band has been related to auditory stimulation in rSTG and lSTG of the brain. These neural signatures
have been linked to the auditory stimulation in rSTG and lSTG of the brain [29,30]. The rMFG has
been connected to human inhibition and visual attention. The rMFG has played a functional role in
controlling visual attention. Consequently, rMFG has been considered as an important brain region
to investigate visual attention instead of inhibitory control [34,35]. The increased power of delta and
theta bands has been related to the neural activities of human response inhibition in rMFG. In our
study, we observed delta and theta bands related to inhibition (i.e., neural signatures) in the rMFG of
the brain. These neural signatures discovered that rMFG has an important functional role in human
response inhibition. These neural signatures were observed similarly to those investigated in previous
studies of response inhibition [34]. Moreover, the functional connectivity function of rCG has been
observed during motor control, human inhibitory control, and visual attention. The rCG has generated
neural impulses that control the movement of the hand. The rCG played a role in the neural pathways
of auditory and visual stimulations [31]. Accordingly, a clinical study reported that the rCG plays an
essential role in schizophrenia and depression [32,33]. We observed the functional role of the rCG in
human inhibition. Then, we found that the theta and alpha band powers increased significantly during
response inhibition in the rCG of the brain. In addition, we investigated that delta and beta band
powers increased during auditory alarms in the rCG of the brain. Moreover, the rPL has been related
to visual stimulation [34]. The rPL revealed a functional role in the integration of sensory information
from various regions of human brain [36]. The functional role of the rPL has been found in visuospatial
processing in the human brain [37]. Finally, novel neural network pathways were investigated between
the lSTG, rSTG, rCG, rMFG and rPL of the brain during visual and auditory stimulation.

Further, such higher network connectivity patterns were more pronounced in SS trials than those
of SG trials. These findings suggest that different users have higher levels of connectivity in the neural
network spanning various brain regions for auditory alarm (i.e., inhibitory control). The EEG results
implied that all study participants exhibited higher inhibition-induced neural oscillations in the rCG
from auditory alarms than from visual stimuli. In summary, the novel visual to auditory neural
network pathways under human inhibitory control were developed from the EEG based analysis, and
some pathways of this brain network are consistent with previous response inhibition studies [44].
As a final point, the limitations of the present study are worth stating. All subjects were males, which
may lead to difficulty in generalizing the EEG results to both genders. The experimental scenario in
our work was adapted from a well-known stop signal task, which uses only 2D stimuli and may not be
as representative as more realistic environments. Future work may construct a real-world scenario
with 3D-virtual reality and augmented reality to improve the real-world compatibility of this study.
In the absence of such advanced technologies, we can assume that the brain network model of visual
and auditory perception is accurate to normal conditions and attempt to experimentally strengthen the
principles described in this study. However, more research is required for an entire explanation of the
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emerging neural network model, in both physiological and cognitive terms. In future studies, we will
increase the number of participants and perform inter- and intra-subject analyses.

5. Conclusions

To conclude, in this work we use advanced EEG-dipole source localization methods with
independent component analysis (ICA) and EEG-coherence analysis, to investigate the effect of
auditory alarms on visual stimuli in the human brain. In this study, we investigated the novel brain
network pathways between five activated brain regions that included: lSTG, rSTG, rCG, rMFG,
and rPL, under the effects of visual stimuli and auditory alarms. The present study revealed how
visual stimuli and auditory alarms under inhibitory control affect the neural mechanisms in the
brain. A visual-auditory-cross brain network model was developed to demonstrate the associations
among the five activated brain regions, in the form of different neural pathways related to the visual
and auditory modalities under response inhibition. We inferred that the connectivity magnitudes of
the neural network in theta-alpha band powers were found to be higher in response to auditory alarms
compared to visual stimuli. In addition, the EEG results implied that all study participants exhibited
higher inhibition-induced neural oscillations in the rCG under auditory alarms compared to visual
stimuli. These results provided new knowledge about changes in neural network pathways from
visual stimuli to auditory alarms in a realistic environment.
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