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Abstract: Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes 
CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by 
dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, 
infection and during steady-state conditions. Besides host cells, many bacteria also have 
CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory 
response. The major function for adenosine is anti-inflammatory, and most recent research has 
focused on adenosine’s control of inflammatory mechanisms underlying various autoimmune 
diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a 
feedback to control tissue damage mediated by a host immune response, it can also contribute 
to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the 
host but eventually helps by killing the invading pathogen. The role of adenosine in dampening 
inflammation has been an area of active research, but the relevance of the CD39/CD73-axis 
and adenosine receptor signaling in host defense against infection has received less attention. 
Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis 
and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial 
persistence. We also explored a possible role for the CD73/adenosine pathway in regulating 
innate host defense function during infection. 
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1. Introduction 

The immune response is a highly regulated and interconnected cellular system that functions to 
maintain and restore the steady-state condition in the host. This mission is accomplished by guarding 
organs for indication of microbial invasion or tissue injury triggering protective inflammatory and corrective 
responses following infection or injury [1,2]. The balance between immune activation and suppression  
is intricately regulated, allowing optimal host response against infection, while simultaneously limiting 
collateral immune-mediated damage to the host tissues. One biomolecule that has been implicated in  
the control of host response to infection and tissue injury is adenosine. Adenosine is produced from ATP 
(adenosine-5'-triphosphate) catabolized by enzymes CD39 (nucleoside triphosphate dephosphorylase) and 
CD73 (ecto-5'-nucleotidase) which are expressed by myriads of cells and tissues. Any alteration of this 
catabolic machinery can change the outcome of many pathophysiological events, such as autoimmune 
diseases, atherosclerosis, ischemia-reperfusion injury, cancer and infections [1]. Also, the production 
and expression adenosine/CD73 can be regulated by the inflammatory milieu (cytokines) [3] and can 
impact both innate and adaptive immune responses during infection. In this review, we briefly discuss 
the recent knowledge and advancement in the host expression of CD39/CD73 and adenosine receptor 
(AR) signaling during both intracellular and extracellular Gram-negative bacterial infections and their 
role in the disease pathogenesis. 

2. Adenosine Generated by CD39/CD73 Expression and Its Mechanism of Action 

Adenosine is a purine nucleoside that accumulates in inflamed or hypoxic tissues largely due to  
the action of nucleoside triphosphate dephosphorylase mediating the dephosphorylation of ATP to ADP 
(adenosine-diphosphate) and then to 5'-adenosine mono-phosphate (AMP), which is the substrate for 
CD73/ecto-5'-nucleotidase that catalyzes the terminal reaction to convert 5'-AMP to adenosine [4,5]. 
The numerous responses mediated by adenosine act via four G-protein-coupled P1 purinergic cell 
surface receptors (GPCR): A1, A2A, A2B and A3. Adenosine receptors function through the inhibition or 
stimulation of adenylyl-cyclase to decrease or increase intracellular cyclic adenosine monophosphate 
(cAMP) levels: A1 and A3 receptors activate an inhibitory regulative G-protein (Gi)-mediated decrease 
in cAMP levels, while stimulative regulative G-protein (Gs) receptors of the A2 family increase cAMP 
concentrations [1,5,6]. Adenosine might also enter cells by passive and active transporter channels and 
exert its effects inside the cells independently of receptor engagement [3,7]. Extracellular adenosine 
signaling functions to prevent excessive inflammation by suppressing proinflammatory cytokines, 
inhibiting leukocyte entry into tissues through down-regulation of adhesion molecules and chemokines, 
and triggering the production of anti-inflammatory cytokines such as IL-10 [8–10]. 

During inflammation, multiple cell types release extracellular ATP (eATP) either by cell lysis or  
non-lytic mechanisms [1]. The first step in the metabolism of nucleotides (ATP) is accomplished by 
CD39, which dephosphorylates extracellular ATP to AMP. CD39 expression has been studied in several 
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cell types of mouse and human immune systems, including neutrophils, monocytes, B cells, natural killer 
(NK) cells, NK T cells and is present on the surface of helper T cells [11–15]. Pulte et al. described 
CD39 expression and activity in human leukocytes during disease states [13]. The expression of CD39 
can also be regulated by proinflammatory cytokines, oxidative stress, and hypoxia [1,16,17] through 
transcription factors Sp1 [17], Stat3, and zinc finger protein growth factor independent-1 (Gfi-1) transcription 
factor [18]. 

Ecto-5'-nucleotidase/CD73 [EC 3.1.3.5] is the rate-limiting enzyme in adenosine production. The second 
and terminal step in the metabolism of purines is accomplished by CD73, which dephosphorylates 
extracellular AMP to produce adenosine. CD73 is a ubiquitously expressed protein in many immune 
cells and tissues [19]. CD73 is also expressed in diverse mouse cells [20]. In both human and mouse immune 
systems, CD73 is expressed in subsets of T cells, myeloid cells, bone marrow stromal cells, thymic epithelial 
cells and human B cells [21]. Numerous reports showed that CD4+CD25+Foxp3+ regulatory T cells 
(Treg) express CD39 and CD73 and that their presence enhances Treg cell function through the production 
of adenosine [22–24]. Reports suggest that the expression and function of this enzyme are generally 
upregulated under hypoxia [25,26], as well as by the presence of several pro-inflammatory cytokines, 
including tumor growth factor (TGF)-�, interferons (IFNs), tumor necrosis factor (TNF)-�, interleukin 
(IL)-1� and prostaglandin E2 [27,28]. Recent work by Niemela et al. [29] showed that IFN-� induces a 
time- and dose-dependent long-term up-regulation of CD73 in endothelial cells, but not in lymphocytes, 
both at the protein and RNA (ribonucleic acid) levels. Moreover, CD73-mediated production of adenosine 
is increased after IFN-� treatment of endothelial cells, resulting in a decrease in the permeability of these 
cells. So, various cytokines, including IFN-�, can be a relevant in vivo regulator of CD73 expression in  
the endothelial-leukocyte microenvironment during infection/inflammation. In activated hepatic stellate 
cells, up-regulation of CD73 transcripts are reported to occur via specific Sp1 and Smad promoter 
elements [30]. Recent evidence suggests that the intestinal microenvironment is also a preferential site 
for the generation of adenosine [31]. We and others have shown that in both mice and human gastric 
tissues, CD73 is abundantly expressed and activation can modulate its expression [21,31–34]. Furthermore, 
CD73 expression and downstream adenosine signaling are critical in the compensatory responses to 
tissue ischemia [9,35,36]. 

Besides host cells, many pathogens (e.g., Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, 
Toxoplasma gondii, and Trichomonas vaginalis) are armed with CD39/CD73-like machinery, that can 
aid pathogen colonization and dissemination [37–40]. Further, Staphylococcus aureus adapts to exploit 
immunosuppressive pathways to increase its own survival [39]. Reports suggest that pathogens produce 
adenosine from AMP via adenosine synthase A (AdsA), an extracellular ectonucleotidase expressed  
on the surface of the cell wall of bacterium which allows evasion of host immune surveillance [39]. 
Other studies demonstrate the existence of bacterial ectotriphosphate diphophohydrolase, similar to human 
CD39, which is critical for the intracellular multiplication of Legionella pneumophila [41,42]. Recently, 
a second eukaryotic-type NTPDase, Lpg0971, from L. pneumophila was reported, which gives the 
pathogen the ability to hydrolyze ATP within an intracellular compartment [43]. By contrast, in certain 
situations, CD39 and CD73 can also control infections and associated inflammation and mortality [44,45]. 
This evidence suggests that pathogens can also manipulate the host’s adenosine signaling pathways for 
its own benefit as a strategy to subvert the immune system. 
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3. Adenosine Generated by CD39/CD73 Expression and Impairment of Immunity to Infections 

The CD39/CD73 axis has gained increasing importance due to its critical role in the control of 
inflammation in vivo [33,44,46–48]. Also, the CD39/CD73 pathway is a critical checkpoint, and through 
its coordinated activity, it regulates the duration of purinergic signaling in response to various extracellular 
conditions (e.g., cytokines). Although the concept that adenosine, generated through CD73, provides a 
feedback to control the tissue damage mediated by host immune responses, it is possible that it can also 
contribute to a detrimental degree of immunosuppression. During infection, adenosine can harm the host 
as it dampens the protective anti-microbial response, which is mostly designed to fight the invading 
pathogen during the early stages of infection. At the same time, over-exuberant inflammation during 
acute infection can be deleterious to the host. The complexity of the outcome of host responses may 
depend on the type and stages of infection. The role of adenosine in dampening inflammation has been 
an area of active research; the relevance of the CD39/CD73-axis and adenosine receptor signaling to 
host defense against infection has received less attention. 

3.1. CD73-Regulated Immune Response during Helicobacter-Induced Gastritis and Persistent Infection 

Helicobacter pylori causes a lifelong infection in humans and the infection of C57BL/6 mice with  
H. pylori or H. felis results in chronic active gastritis [49]. Typically, T cells in the stomach are biased 
largely toward the Th1 phenotype, producing more IFN-� but very little IL-4 [50–52]. Regardless of the 
strong gastric inflammation associated with Helicobacter infection, the bacteria persists for life. Inability 
to clear the infection may lead to compensatory induction of Th cells with regulatory function to protect 
the gastric mucosa. In fact, several reports suggest that Th cells resembling Treg are present in the gastric 
mucosa during H. pylori infection of humans and mice [53–56]. Rad et al. [57] have proposed that these 
Treg contribute to pathogen persistence. Treg may produce sufficient levels of IL-10 and transforming 
growth factor (TGF)-� to attenuate responses rather than to prevent gastritis totally. Deaglio et al. [22] 
recently reported that, in murine Th cells, the expression of CD39 and CD73 by Treg and the presence 
of A2AAR on activated effector Th cells generate immunosuppressive loops, whereby Treg generates 
adenosine that inhibits the function of effector Th cells. Similarly, Kobie et al. [24] showed that murine 
Treg express CD73 that converts 5'-AMP from extracellular sources into adenosine, which, in turn, 
suppresses effector Th cells. We also demonstrated that human CD4+CD25+Foxp3+ Treg from peripheral 
blood or gastric tissue are enriched for the expression of CD39 and CD73, suggesting that such  
Treg contribute to adenosine synthesis which, in turn, mediates an anti-inflammatory function [58].  
We further showed that when CD73-KO mice were infected with Helicobacter felis—a model of H. pylori 
infection—they develop a more severe gastritis with increased levels of IL-2, TNF-�, IFN-� mRNA and 
impaired Treg function in gastric tissue than wild-type mice, but cleared the infection more efficiently [58]. 
Similarly, feeding an A2AAR agonist to IL-10 deficient mice suffering from gastritis due to H. pylori 
attenuated gastritis and lowered TNF-� and IFN-� in the gastric mucosa, but led to increased bacterial 
colonization [32]. These data suggest that when adenosine/CD73 inhibits pro-inflammatory host responses, 
it may favor persistent infection. The expression of CD39 and CD73 by Th cells and the enrichment of 
both enzymes in Treg in humans suggest that Th cells contribute to local adenosine accumulation and 
the control of inflammation. Moreover, diminished generation of adenosine in CD73-KO mice was 
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associated with impaired Treg function, enhanced gastric inflammation, and reduced levels of colonization 
upon challenge. These observations support the notion that the production of adenosine and its ability to 
limit inflammation may contribute to the persistence of Helicobacter infection [58]. 

3.2. CD73-Regulated Immune Response during Salmonellosis 

Salmonella infection is a leading cause of bacterial gastroenteritis in humans. Salmonella can lead to 
severe systemic infection and even death in immunocompromised individuals [59]. Salmonella infection 
in HIV patients is particularly of importance, as the host’s suppressed immunity provides an opportunity 
for a persistent Salmonella infection. The hallmark of the immune response to Salmonella infection is 
characterized by an increase in Th1-type response [60–62] and innate host responses generated by 
phagocyte oxidase and inducible nitric oxide synthase (iNOS) [63–67]. Since CD39/CD73 is abundantly 
expressed in Th cells that help generate adenosine locally, it is likely that the host immune response 
during Salmonella infection can be regulated by CD73/CD39 pathways. We recently reported that 
Salmonella infection in C57BL/6 mice can down-regulate CD73 expression along with CD39, both at 
the transcriptional and protein levels in the intestine, liver and spleen, including in Th cells [34]. Salmonella 
infection stimulates a general surge of protective pro-inflammatory cytokines like IL17A and IFN-� [68,69]. 
Furthermore, we observed that Salmonella infection induced endogenous down-regulation of CD73 
resulting in the concomitant production of Th1 cytokines [70], suggesting that the host tries to respond 
to infection by reducing extracellular adenosine generation which allows increased pro-inflammatory 
cytokine production critical to fighting the infection. 

When CD73 expression was pharmacologically inhibited by adenosine 5'-(�,�-methylene) diphosphate 
(APCP), a selective CD73 enzyme inhibitor, and then challenged with Salmonella whole cell lysate, 
cultured splenocytes produced increased levels of pro-inflammatory cytokines IL-17A and IFN-� [34]. 
Again, CD73 KO mice appeared quite healthy but, upon infection with Salmonella, increased levels of 
intracellular pro-inflammatory cytokines, such as IFN-� and IL17A were produced by splenocytes and 
CD4 Th cells. Similarly, the liver tissues from these mice showed significantly higher mRNA expression 
levels for pro-inflammatory cytokines (IFN-�, TNF-�, and IL-1�) and inducible nitric oxide synthase 
(iNOS) [34]. Reduced extracellular adenosine or lack of CD73 expression during infection can help to 
generate protective pro-inflammatory responses through both an early adaptive response and possibly 
also by the innate host response, resulting in a reduced Salmonella burden in the tissue. 

Although CD73 is widely the expressed in many cells, including effector T cells, its expression in 
CD4+CD25h Treg cells is of particular importance, as these immunosuppressive T cells are believed to 
function through the production of adenosine generated by the expression of CD39/CD73 [22–24,34,57,58]. 
In addition, earlier studies have suggested that CD4+CD25+Foxp3+ Treg cells regulate inflammation and 
contribute to the persistence of Helicobacter pylori infections [57,58]. Depletion of CD4+CD25+ Treg cells 
enhances effector T cell activation and reduces pathogen burden during Leishmania major infection [71]. 
Similarly, a correlation was observed between the increased persistence of Plasmodium falciparum with 
upregulation of TGF-�1, Foxp3, and CD4+CD25+ Treg cells during human malaria infection [72]. Indeed, 
mouse splenocyte-derived CD4+CD25+ Treg cells expressed the highest level of CD39/CD73 and 
Salmonella infection reduced the percentage of CD39+CD73+ cells and also CD73. This indicates Treg cells 
can become less effective and produce less adenosine to allow pro-inflammatory responses [34]. On the 
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other hand, following infection of CD73-KO mice, in the absence of CD73+ cells, Treg cells from these 
mice may not function correctly [34]. A previous report indicated that CD73-KO mouse-derived Treg cell 
are functionally deficient in regulating T effector cells [58]. Also, the expression of an anti-inflammatory 
cytokine, IL-10, did not show any significant up-regulation in the spleen of the infected CD73-KO mice 
compared with infected wild-type mice. Moreover, IL-4, TGF-�1 and IL-13 mRNA responses, which 
are also involved in regulating anti-inflammatory responses by Treg cells, were significantly reduced in 
infected CD73-KO mice [34]. 

CD73 expression can also effect lymphocyte migration in the draining lymph nodes. Earlier studies 
showed an approximate 1.5-fold increase in the size of draining lymph nodes and 2.5-fold increased 
rates of L-selectin-dependent lymphocyte migration from the blood through the HEV (high endothelium 
venule) in the CD73-KO mice compared with wild-type mice 24 h after lipopolysaccharides (LPS) 
administration [73,74]. These responses may also be important during bacterial infection or toll-like 
receptor (TLR) engagement, as CD73 can restrict lymphocyte homing at the infection site thus 
hampering co-operation between innate and adaptive responses and leading to reduced inflammation 
and increased bacterial burden. So far, no studies have been done to investigate the role of CD73 on 
lymphocyte migration during infection. These certainly need further investigation. 

3.3. CD39/CD73 Expression in the Control of Other Infections 

CD39 expression in the control of other infections has also been reported. Theatre et al. [45] showed 
that increased CD39 activity in the airway epithelium of transgenic mice overexpressing human CD39 
can promote bacteria-induced inflammation. Upon Pseudomonas aeruginosa infection of these mice, 
increased inflammatory cell (macrophage and neutrophil) infiltration of the airway, increased production 
of IFN-� and improved bacterial clearance were observed as compared to infected wild type mice. Thus, 
the breakdown of ATP into adenosine by overexpressed CD39 can contribute to a neutrophil-dependent 
inflammatory response that could facilitate pathogen clearance [45]. 

In another study, CD73-deficient mice had significantly more joint swelling after Borrelia infection 
than WT mice, indicating that dysregulation in adenosine generation may play a role in the persistence 
of bacterial infection and development of arthritis [75]. In a sepsis model, A2BAR blockade or A2BAR 
gene-deleted mice are resistant to cecal ligation and puncture (CLP) mortality and showed enhanced 
bacterial clearance [76]. Additionally, the absence of A2B receptor promoted antimicrobial activity against 
Gram-negative bacterial pneumonia [77]. In contrast, Hasko et al. [44] reported that during polymicrobial 
sepsis induced by CLP, CD73-KO mice showed higher mortality in comparison with WT mice, which 
was associated with increased bacterial burden in blood and lavage fluid and elevated inflammatory 
cytokine and chemokine levels in the blood and peritoneum, suggesting that CD73-derived adenosine 
can be beneficial in sepsis. Kolachala et al. [78] showed that A2BAR-KO mice are susceptible to systemic 
Salmonella infection and had attenuated colonic inflammation. Clearly, some of these contrary findings 
underline the complexity of adenosine function during infection or sepsis. Further, some pathogens 
acclimate to exploit immunosuppressive pathways in order to increase their own survival, leading to the 
possibility that adenosine may favor the survival of pathogen if it is present at the right time and context. 

Recently, Boer et al. [79] demonstrated the expression of CD39 on Mycobacterium-activated human 
CD8+ T cells. They reported a functional role for CD39 on human Bacillus Calmette-Guérin (BCG)-activated 



Biomolecules 2015, 5 781 
 

 

CD8+CD39+ Treg cells and showed that CD39 expression marks a CD8+ Treg-cell subset which co-expresses 
LAG-3, CD25, Foxp3, and CCL4, and that CD39 might play a direct role in exerting CD8+ Treg-dependent 
suppression. In this regard, CD8+CD39+ Treg cells represent a new player in balancing immunity and 
inflammation and control mycobacteria infection [79]. The role of CD39 or CD73 on CD8+ cells is 
another new area that deserves attention. Recently, Toth et al. [80] reported that HIV-infected patients 
had reduced CD73 expression in CD8+ T-cells and observed that CD8+CD73+ T cells produced more 
IL-2 upon stimulation, correlating with immune activation and T-cell exhaustion. 

4. Adenosine Generated by CD39/CD73 Expression in the Innate Host Response to Infection 

4.1. Role of Adenosine in Macrophage and Dendritic Cell (DC) Function 

Host defense responses to infection are principally orchestrated by mononuclear phagocytes.  
During infection, these immune cells are activated by a wide array of stimuli, including PAMPS 
(pathogen-associated molecular patterns, e.g. microbial products like DNA, RNA, LPS, etc.) and DAMPS 
(danger-associated molecular patterns; e.g. ATP, mammalian DNA, protein, host derived peptide or  
non-peptide regulatory factors). Upon activation, macrophages secrete various inflammatory and anti-bacterial 
mediators, including cytokines, reactive oxygen species (ROS), and nitric oxide (NO) [66,67,81]. 
Macrophages, function in the innate host defense against Salmonella and other intracellular pathogens 
by efficient phagocytosis of pathogens, and the production of pro-inflammatory cytokines (e.g. IL-1�, 
TNF-�). It is likely that adenosine produced through the expression of CD39 and CD73 in macrophages 
can regulate innate response. 

A previous report suggests that macrophages express A2BAR, and A2BAR blockade enhances bacterial 
phagocytosis [76]. As with Th cells, the expression of CD39 and CD73 in the macrophage are not well 
studied. Recent reports suggest that murine peritoneal macrophages mainly express CD39 and it has 
been found that cAMP upregulates CD39 transcription in murine macrophages [82]. The increase of 
CD39 mRNA expression in the murine macrophage cell line, RAW 264.7, by cAMP is dependent on protein 
kinase A (PKA), phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) [82]. 
CD39-deficient peritoneal macrophages pre-stimulated with a TLR-4 agonist (LPS) or a TLR-2 agonist 
(Pam3CSK4), followed by treatment with ATP, released more IL-1� as compared to WT cells [83].  
This increase in IL-1� was not found with agonists of TLR-5 (flagellin) or TLR-3 (poly I:C). Thus, 
CD39 expression can selectively regulate TLR-mediated cytokine production. It was recently shown that 
CD39-expressing macrophages played a role in modulating the P2X7-dependent production of IL-1� [83,84] 
in the presence of exogenously added ATP. TLR-stimulated macrophages synthesize, release, and hydrolyze 
ATP via CD39 to regulate their own activation state. Moreover, the loss of CD39 expression on macrophages 
prevents regulatory macrophage development and leads to lethal inflammatory responses and septic 
shock in mice [84]. 

We have recently reported that RAW 264.7 cells express both CD39 and CD73 at the transcriptional 
level and Salmonella LPS or Salmonella whole cell lysate (WCL) treatment downregulates CD39/CD73 
expression. Further, CD73 inhibition increases iNOS induction and production of IL1-� [85]. This observation 
supports our earlier report that liver from infected CD73-KO mice had increased iNOS expression 
suggesting the possible involvement of macrophages in CD73-mediated innate host response [34].  
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Hasko et al. [86] also suggest that engagement of A2BAR agonists suppresses NO production in  
LPS-treated RAW 264.7 macrophage. Therefore, adenosine may regulate NO production, possibly 
through macrophage function, to influence the innate host response. It would be interesting to examine 
the role of CD39/CD73/adenosine axis in the generation of NO by macrophages. 

Human monocyte-derived DCs (moDCs) express CD39 and CD73 at both the mRNA and functional 
level [87]. While murine epidermal DCs express CD39 at the mRNA and protein level [88], murine 
bone-morrow derived DCs (BMDC) constitutively express CD39 but do not express CD73, even after 
exposure to TLR agonists, and are therefore unable to convert AMP to adenosine [89]. TGF-� induces 
CD73 expression in DCs, enabling these cells to generate adenosine within an immune-regulatory 
microenvironment [3,89]. 

4.2. Role of Adenosine in Neutrophil Function 

Neutrophils also play a pivotal effector function during innate defense against bacterial infections [90].  
A key feature of these inflammatory cells is their ability to sense hostile conditions, rove toward 
compromised tissues, and trigger a series of antimicrobial effector mechanisms [91]. Neutrophils widely 
express CD39 [13] and, to some extent CD73 [92], both of which appear to be critical players in the 
regulation of neutrophil activity by controlling extracellular purinergic gradients [93]. It is not yet clear 
how neutrophil expression of CD39/CD73 can regulate the outcome of an infection. In particular, 
inadequate activity of the CD39/CD73 axis has been associated with amplified and uncontrolled 
activation of neutrophils [94,95], amplified chemotactic functions [96,97], and an increased adhesion  
to the vascular endothelium [94,98]. Recently, Barletta et al. [77,91] reported that neutrophils from 
A2BAR-KO showed six-fold greater bactericidal activities and enhanced production of neutrophil 
extracellular traps compared to WT mice when incubated with Klebsiella pneumoniae, thus promoting 
host defense against Gram-negative bacterial pneumonia. More research is needed to understand how 
neutrophil expression of CD39/CD73 can regulate the outcome of an infection. 

4.3. Role of Adenosine in Natural Killer (NK) Cell Function 

NK cells are effector lymphocytes of the innate host response that control several types of tumor and 
microbial infections by limiting their propagation and subsequent tissue injury [99]. NK cells can 
produce various cytokines and chemokines, i.e., IFN-�, TNF-�, granulocyte-macrophage colony stimulating 
factor (GM-CSF), macrophage inflammation protein (MIP)-1� and RANTES (Regulated on Activation, 
Normal T cell Expressed and Secreted) in response to infection and play an important role in the control 
of viral, parasitic and certain intracellular bacterial diseases [99,100]. In resting human NK cells,  
the expression of CD39 is reported to be very low (~5%) [13]. According to Beldi et al. [14], murine 
NK cells can abundantly express CD39 mRNA, including A2A and A2B receptors, but very little CD73 
mRNA, suggesting that extracellular adenosine can be produced during inflammation and modulate 
immune function. To date, no reports are available exploring the role of CD39/CD73 pathways in NK 
cells during active infection. 
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Figure 1. ATP is catabolized by CD39/CD73 expressed in immune cells to generate 
extracellular adenosine that regulates the outcome of inflammatory response and pathogen 
persistence during infection. In the normal situation (center), infection-induced immune 
activation increases the extracellular adenosine level. When immune activation takes place 
in an adenosine-enriched environment (right side), effector functions of immune cells are 
insufficient to eliminate pathogens due to poor pro-inflammatory responses; therefore, 
outgrowth of infectious agents may result. Contrary to this, in the absence or reduced levels 
of CD39/CD73-Ado (left side), an increased inflammatory response may help the host to 
clear pathogens. At the same time, uncontrolled activation may lead to collateral tissue 
destruction. Any unregulated intervention to increase the expression of CD39/CD73 may 
dampen inflammation and impair immunity to infection. 

4.4. Role of Adenosine in the Inflammasome 

The inflammasome is a multiprotein cytosolic complex expressed by myeloid cells and is part of the 
innate immune system. The inflammasome is assembled during cellular activation [101–104]. Purinergic 
receptors P2X7 bind eATP and participate in the activation of inflammasome via processing of procaspase-1 
to active caspase-1, which, in turn, cleaves pro-IL-1� to mature IL-1� [105–108]. In macrophages, Salmonella 
also induces the activation of caspase-1, which is necessary for the maturation of the proinflammatory 
cytokines IL-1� and IL-18. Xiang et al. [109] recently reported that ATP helps fight against bacterial 
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infection in mice. ATP induced the secretion of IL-1� and chemokines by murine bone marrow-derived 
macrophages in vitro. Furthermore, the intraperitoneal injection of ATP elevated the levels of IL-1� and 
chemokines in the mouse peritoneal lavage. A protective role for ATP during bacterial infection was 
demonstrated and the effect was related to NLRP3 inflammasome activation [109]. Ouyang et al. [110] 
demonstrated that adenosine, acting via the A2A receptor, is a key regulator of inflammasome activity. 
They further reported that inflammasome regulation by adenosine is initiated by a wide range of PAMPs 
and DAMPs. A cAMP/PKA/CREB/HIF-1� signaling pathway downstream A2A receptor is activated, which 
results in up-regulation of pro-IL1� and NLRP3 and greater caspase-1 activation. It is also reported that 
the inflammasome promotes a pro-inflammatory response which can be dependent on ROS generation [111]. 
ATP can also drive ROS generation [112] and, particularly, eATP-P2X7-mediated cellular ROS generation 
can also play an important role for microbial persistence and inflammation [113,114]. To our knowledge, 
there are no published reports assessing whether the CD39/CD73-axis modulates cytokine responses during 
infection, mediated by NLRs, [101–103] which is a topic worthy of future study. 

5. Conclusions 

Adenosine is one of the many biomolecules that accumulate in the inflammatory milieu, conferring 
pleiotropic effects which can be beneficial or harmful. Extracellular adenosine produced by catabolizing 
enzymes, like CD39 and CD73, can add to the local adenosine pool. Adenosine generated through CD73 
can provide feedback to control the tissue damage mediated by the host immune response. At the same 
time, during bacterial infection, it can also contribute to a harmful degree of immunosuppression leading 
to increased pathogen load (Figure 1). The studies outlined in this short review support the notion that 
adenosine production through the CD39/CD73-axis, and the ability of extracellular adenosine to limit 
inflammation may favor bacterial survival, thereby broadening the impact of infection. 
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