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Abstract

Among thousands of long non-coding RNAs (lncRNAs) only a small subset is functionally characterized and the functional
annotation of lncRNAs on the genomic scale remains inadequate. In this study we computationally characterized two
functionally different parts of human lncRNAs transcriptome based on their ability to bind the polycomb repressive
complex, PRC2. This classification is enabled by the fact that while all lncRNAs constitute a diverse set of sequences, the
classes of PRC2-binding and PRC2 non-binding lncRNAs possess characteristic combinations of sequence-structure patterns
and, therefore, can be separated within the feature space. Based on the specific combination of features, we built several
machine-learning classifiers and identified the SVM-based classifier as the best performing. We further showed that the
SVM-based classifier is able to generalize on the independent data sets. We observed that this classifier, trained on the
human lncRNAs, can predict up to 59.4% of PRC2-binding lncRNAs in mice. This suggests that, despite the low degree of
sequence conservation, many lncRNAs play functionally conserved biological roles.
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Introduction

Functional annotation of the noncoding part of transcriptome

(70–90% of transcribed matter [1,2,3]) remains inadequate.

Noncoding RNAs (ncRNAs) is a broad class of transcripts,

consisting of well known transcripts with structural (rRNAs,

tRNAs, snRNAs, snoRNAs, etc.) and regulatory (miRMAs,

piRNAs, etc.) roles, and transcripts whose functions remain

largely unknown [3,4,5]. The latter includes sense/antisense

transcripts, ranging in length from 200 bp to 100 kb. Collectively

they are called long non-coding RNAs (lncRNAs) [4] and

sometimes referred to as genomic ‘dark matter’ [6]. A once-

popular view that lncRNAs are by-products of the background

transcription, i.e. ‘‘simply the noise emitted by a busy machine’’

[7] was related to their low abundance and poor evolutionary

conservation. However, some large-scale evolutionary properties

of the bulk of lncRNAs [8] and the existence of approximately two

hundreds of experimentally characterized lncRNAs [9,10] suggest

that many of them have well-defined biological function [5,6]. The

first large-scale computational annotation of lncRNAs [11] has

been based on the ‘guilt-by-association’ principle [12]. In this

study lncRNAs were functionally characterized from their

coexpression with - as well as their genomic adjacency to -

protein-coding genes [11].

Initially, lncRNAs were found by ‘tiling arrays’, which are

overall similar to microarrays but differ from them in the nature of

probes, allowing for coverage of the entire genome at high

resolution [2,13,14,15,16]. Many of these transcripts appeared at

very low detection levels, close to the detection limit of qPCR and

Nothern blots [17]. Another technology was employed by the

FANTOM consortium which revealed over 3,500 mouse non-

coding transcripts, also at low abundance and poor sequence

conservation [1,18]. Recently, Guttman et al. [19] identified

approximately 1,600 lncRNAs located in intergenic regions (long

intergenic noncoding RNAs, lincRNAs), enriched in a certain

chromatin signature, which is characteristic of active transcription

(K4–K36 domains) in four mouse cell types. Surprisingly, only

a small fraction (,11%) of the Guttman et al. [19] set matched the

FANTOM lncRNA catalogue [20]. Finally, transcriptome se-

quencing (RNA-Seq) – the technology that has for a large part

supplanted microarrays because it does not suffer from cross-

hybridization [21] and is able to accurately detect expression at the

lower end of the dynamic range of the transcriptome [22] – was

applied to study the ‘dark matter’ transcriptome [23]. It has been

shown that many of the transcripts identified using tiling arrays

were, indeed, false positives. Nevertheless, the presence of

thousands of low-abundance, unannotated transcripts was con-

firmed (22% of reads in human and 51% in mouse) [23]. Thus, the

existence of lncRNA transcripts, albeit at low abundance, has been

repeatedly confirmed at different levels of technical resolution.

Yet, the existence by itself does not answer the question of whether

these lncRNAs have functions, or whether most of them are mere

byproducts of active transcription of the protein-coding genes.
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Among the thousands of lncRNAs, ca. forty mammalian

lncRNAs are functionally characterized in detail [9]. Recently,

Lee [24,25] suggested that the low abundance Xist lncRNA, which

is involved in X chromosome inactivation, exemplifies a regulatory

model for other lncRNAs. Lee’s ‘‘guides and tethers’’ hypothesis

states that lncRNAs may contain binding sites for chromatin

modifiers and may serve as ‘‘tethers’’ that recruit chromatin

modifiers to their own genomic address during in cis regulation,

while others may guide these complexes to other locations in trans.

This hypothesis suggests lncRNAs as potential regulators of spatial

and temporal expression during development, because the RNA

transcription itself occurs in a developmentally-specific manner

[24,25]. Recently discovered the low-copy lncRNA HOTTIP,

which is transcribed from the 59 of HOXA locus [26], regulates in

cis the expression of several 59 HOXA genes. Another HOX-

associated lncRNA HOTAIR, transcribed from the HOXC locus,

targets PRC2 and is necessary for HOXD locus silencing in trans

[27]. It also may serve as a scaffold for targeting of chromatin

modifier complexes PRC2 and LSD1 to hundreds of genes across

the genome for silencing [28]. Several other lncRNAs were

recently functionally characterized (see [29] for a review), and

their various functionalities can be summarized as large-scale,

tissue-specific, and developmental regulation of gene expression.

Functional annotation of lncRNAs on a genomic scale has been

elusive for a long time [9]. Recently, however, experimental

studies have demonstrated that more than 20% of lncRNAs in

human and many lncRNAs in mouse are bound by PRC2 [30,31].

Polycomb proteins are conserved in flies and mammals and PRC2

complex represses the transcription of specific genes via trimethy-

lation of H3K27 (see [32] for a review). While in D.melanogaster

Polycomb proteins are recruited to their target genes via GA-rich

DNA-sequence elements, called Polycomb Response Elements

(PREs), PREs in mammals were not identified. The observations

that thousands of lncRNAs are bound by PRC2 in human as well

as in mouse cell lines [30,31], and recent data on numerous

lncRNAs occupancy sites [33] indicate the possibility of the

functional classification of lncRNAs on a genome-wide scale into

two classes: lncRNAs that function similarly to PREs and bind

PRC2 complex in mammals and the rest of lncRNAs.

The functional similarity between PREs and PRC2-binding

lncRNAs triggers the question whether the PRC2-binding

lncRNAs constitute a set of closely similar sequences, as PREs

do. The answer to this question is negative: known PRC2-binding

lncRNAs are too diverse to be alignable at the sequence level (see

Materials and Methods section for human and mouse local and

global alignment scores between PRC2-binding lncRNAs) and do

not share obvious structural similarities. The question, however,

can be stated more generally: Do PRC2-binding lncRNAs

constitute a family where members share similar sequence-

structure patterns, in the same way as do the members of the

families in the RNA families (Rfam) database [34]? If they do,

then, based on the sequence-structure features, the PRC2-binding

lncRNAs can be distinguished from the rest of lncRNAs. To the

best of our knowledge this question has not been answered yet.

Supervised learning has been used for a variety of complex

sequence-related problems in molecular biology for decades (e.g.

[35]). Whether or not the two lncRNAs classes can be

distinguished from one another can be reliably answered in the

supervised learning framework. We consider three relatively

modern machine learning techniques, namely support vector

machine (SVM) (see [36] for a review), Shrinkage Discriminant

Analysis (SDA) (introduced as a classification approach in [37]),

Random Forest (RF) [38], and also one classical approach,

Logistic Regression (LR) [39]. Using the catalogue of human

PRC2-binding and PRC2 non-binding lncRNAs [30], we first

identify sequence-structure features that are significantly different

between the two lncRNAs classes. Second, we construct four

different classifiers (SVM, SDA, RF and LR), test their perfor-

mance via leaving-one-out cross-validation (LOOCV), and iden-

tify SVM-based classifier as the one with the highest performance

and the lowest misclassification rate. Third, we demonstrate that

the SVM-based classifier correctly predicts several known PRC2-

binding lncRNAs and also can predict up to 59.4% of PRC2-

biding lncRNAs in murin embryonic stem cells.

In this study we demonstrate the existence of the two

functionally different lncRNAs classes computationally. We

believe that these two classes occupy only a small area inside the

lncRNA functional landscape and more detailed functional

classification of lncRNAs will become available as experimental

data continues to accumulate.

Results

Molecular mechanisms of how lncRNAs regulate transcripts

can be divided into those mediated through: (1) interactions with

PRC2 and other chromatin modifiers; (2) interactions with binding

sites for general transcription factors (TFs) and interactions with

proteins recognizing dsRNAs; (3) base-paring of a candidate gene

and the complementary antisense [3,40,41,42]. Below we describe

these mechanisms in more detail.

PRC2 Chromatin Modifier
About 20% of lncRNAs expressed in different cell types are

bound by the Polycomb chromatin repressive complex PRC2 [30].

When additional chromatin modifiers are included, the proportion

of bound lncRNAs becomes 38% [30]. The exact molecular

mechanism, beyond the shown physical interaction, is unknown.

However, there are several examples of the role of the secondary

structure in binding. For example, RepA Xist (the internal

noncoding transcript from the Xist locus) that folds into

a conserved stem-loop structure [43], binds PRC2 directly and is

sufficient to recruit PRC2 in vivo without Xist [44,45]. The analysis

of lncRNA HOTAIR, which also interacts with PRC2 [28], has

demonstrated that secondary structures of exons 1 and 6 are

conserved among five mammalian species [46]. Although RepA

Xist has a different secondary structure than HOTAIR exons, one

can hypothesize that PRC2 recognizes not a conservative second-

ary structure, but a set of structural patterns, for example,

conserved stem-loops.

dsRNA-binding Site
Recently it was discovered that certain lncRNAs that contain

a single Alu element can interact with an Alu element in mRNA

39UTR forming a binding site for proteins that recognize dsRNA

[42].

General TF -binding Sites
Some lncRNAs tend to be derived specifically from enhancer

and promoter regions and may contain TF binding sites [4]. Some

may even regulate transcription of the corresponding transcription

factors via feedback loop, as was shown for four evolutionary

conserved lncRNAs encoded at loci with Nanog and Oct4 binding

sites [47].

Sense-antisence Interaction
Many lncRNAs are transcribed antisense to the corresponding

genes. They regulate the cognate gene expression via many

Polycomb-Associated Long Non-Coding RNAs
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different molecular mechanisms (from changing chromatin con-

formation to alternative IRS site) [3,40].

The aforementioned mechanisms of how lncRNAs regulate

gene expression can be viewed as an unknown combination of

sequence-structure features, such as: (1) secondary structure

patterns; (2) transcription factor binding sites; (3) short oligonu-

cleotides describing sequence content and; (4) the repeat structure

of the region (sequence complexity).

Features Evaluation
We hypothesize that certain combinations of sequence-structure

features can reliably distinguish between PRC2-binding and the

rest of lncRNAs. The set of all patterns we considered is listed in

the Materials and Methods section. RNA sequence-structure

patterns (RSSPs) employed here were 397 RSSPs describing 42

highly structured families from Rfam10 database [48]. Motif

binding sites were extracted as 1314 Position-Weight Matrices

(PWMs) from Jaspar Transcription Factor Binding Profile

database [49]. As short oligonucleotides we considered all k-words

of length k=2, 3, 4, 5, 6, 7, 8. The sequence complexity was

measured as an approximation of Kolmogorov Complexity (KC)

using the Lepel-Ziv data compression algorithm. KC [50] is

a characteristic of sequence ‘randomness’ and is inversely related

to the number of repetitive elements.

To prepare sets of positive and negative examples for classifiers

training we carefully filtered PRC2-binding and PRC2 non-

binding lncRNAs presented by Khalil et al. [30] (see Material and

Method for detail). We obtained 314 and 454 PRC2-binding and

PRC2 non-binding lncRNAs, respectively, followed by a random

selection of 314 sequences from the set of negative examples to

equalize the sample sizes.

First, we identified sequence-structure features, which are

significantly different between the two lncRNAs classes. As

a feature selection criterion, a two-sample t-test at two different

significance levels (liberal, p,0.05 and conservative, p,0.01) was

employed. The two significance levels (in addition to cross-

validation) were selected to assess the overfitting problem, which

could happen if too many features are selected at a liberal

significance level (see below).

The number of short oligonucleotides (k-words), significantly

different between the two lncRNAs classes growth with the lengths

of k is shown in Table 1. Dinucleotide and trinucleotide

frequencies were not significantly different, while there were

already 1104 k-words, significantly different for k=8. To

characterize these oligonucleotides qualitatively we constructed

consensus sequences for all k-words (k=4,…,8), significantly

enriched in PRC2-binding and PRC2 non-binding lncRNAs

separately. As the Table 1 shows, for PRC2-binding lncRNAs and

different k the consensus sequences are represented by consistent

AT-rich signature. Interestingly, there is no consistent signature

for lncRNAs that do not bind PRC2 (Table 1). This observation

indicates that, indeed, sequence-structure patterns are different

between the two classes of lncRNAs and lncRNAs that do not bind

PRC2 constitute more diverse set of sequences. The latter

observation is supported by values of KC for the two classes: the

complexity of PRC2-binding lncRNAs is significantly lower

(p,0.01) than the complexity of PRC2 non-binding lncRNAs.

We selected the length k=6 (196 oligonucleotides) as a descriptive

length for oligonucleotide features to be included in the prediction

rule. This value of k is a reasonable compromise between the

number of features and the information content of the signal. At

the more conservative significance level 29 oligonucleotides were

significantly different between the two classes (k=6).

There were 68 motifs represented as PWMs, which were

significantly different between the two lncRNAs classes at the 0.05

level of significance. These motifs include various binding sites for

transcription factors, mostly represented by helix–turn–helix and

zinc finger classes. We were not able to discern a straightforward

trend for the transcription factor binding sites overrepresented in

the two different classes of lncRNAs. This observation is most

likely related to: (1) diversity of lncRNAs binding proteins in the

both classes and (2) low sequence specificity of the transcription

factors. At the conservative significance level there were only 5

sites, different between the two classes.

There were no RSSPs significantly different between the two

classes at different significance levels. This result might be related

to the choice of RSSPs (see Material and Methods section): only

highly structured RFAM10 families (all families with a consensus

secondary structure containing at least 5 stem-loop substructures)

were included. This criterion may be too restrictive, and if less

stringent RSSPs are used the results can be different. We defer the

detailed answer to this question for the future studies.

Finally, the two sets of features consisting of {6-words, KC,

motifs} at 0.05 (265 features) and 0.01 (35 features) significance

levels were formed. The extent of overfitting was evaluated from

classifier performance (see below).

Evaluation of Classifiers
We evaluated the performance of four different classifiers:

support vector machine with linear kernel (SVM) [36], Shrinkage

Discriminant Analysis (SDA) [37], Random Forest (RF) [38], and

Logistic Regression (LR) [39]. However, all of them have a nice

property in common: they behave better than the classical

approaches (e.g. Fisher LDA) for high-dimensional data sets,

containing more variables than observations. Their performance

was evaluated with five different performance measures, namely

specificity, sensitivity, misclassification rate, accuracy, and an

empirical area under the curve (AUC). To avoid overfitting, all

performance measures were estimated using LOOCV, where

a single observation from the original sample is considered as the

testing sample, and the rest is used as the training samples; the

process is repeated for all observations. Because the feature

selection step is not included in the cross-validation, the error rate

is not expected to be overoptimistic [51]. Hyperparameter tuning

for SVM was performed as the nested cross-validation.

We tested the performance of different classifiers given the set of

features selected at the 0.05 significance level. The visualization of

the performance based on the probability to belong to a particular

class is shown in the Figure 1. It can be seen that SVM and SDA

yield slightly better separation of the two classes than RF and LR.

Table 1. Consensus motifs enriched in PRC2-binding and
PRC2 non-binding lncRNAs.

Length Number of motifs Enriched in PRC2+a) Enriched in PRC22b)

k = 4 15 WWHH c) SBSC

k = 5 47 TYKWW SSYCV

k= 6 196 WWWRW SKSCSM

k= 7 568 WWWWWW SYSMSMS

k= 8 1104 WWWWWWWW BHMRVMAD

a)PRC+: PRC2-binding lncRNAs.
b)PRC2: PRC2 non-binding lncRNAs.
c)IUPAC nucleotide code: http://www.bioinformatics.org/sms/iupac.html.
doi:10.1371/journal.pone.0044878.t001

Polycomb-Associated Long Non-Coding RNAs
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Indeed, the areas under the curves computed from receiver

operating characteristic curves (ROCs) for SVM and SDA are

larger than for RF and LR (Figure 2). The full evaluation of the

performance is presented in Table 2. The SVM with linear kernel

has higher specificity and sensitivity and lower misclassification

rate, as compared to other classifiers. For the set of 35 features, the

class separation for all classifiers was worse, but still sufficient for

classification (SVM accuracy: 0.697). This indicates that the

possibility of overfitting due to the large number of parameters is

not an issue. The full evaluation of performance of the classifiers is

presented in Table 3. Interestingly, the performance of SVM and

SDA is always better than those of Random Forest and Logistic

Regression classifiers (Tables 2, 3); however the performance of

SVM classifier is always better than that of SDA. We also studied

the performances of different classifiers with normalized and non-

normalized data. The performance of SDA classifier was

significantly worse and the performance of LR classifier was

significantly better for standardized data. We therefore normalized

the data in the case of LR classifier only.

Based on the evaluation results we build SVM-based classifier

with the linear kernel given the set of 265 features, in order to test

the ability of classifier to generalize on the independent data sets.

Predicting PRC2-binding lncRNAs using Independent
Data Sets

Examples for human lncRNAs. Here we were interested to

test the generalization property of the best performing SVM

classifier with linear kernel. There are not so many examples of

specific PRC2-binding lncRNAs for human. Therefore we selected

only four, yet well documented examples of PRC2-biding human

lncRNAs: three fragments of HOTAIR (1–300, 1–1500 PRC2-

binding, and 1500–2158 PRC2 non-binding fragments), and also

RepA Xist. As a different control set we downloaded the genome-

wide coordinates of PRC2-binding lncRNAs in mouse embryonic

stem cells. There were 215 PRC2-binding mouse lncRNAs

(Supplementary Table S4 in [31]). After filtering (see Materials

and Methods) 106 sequences were left.

Figure 1. Visualization of the classification performance for four classifiers and the set of features, selected at the 0.05 significance
level. The observations along X axis are reordered according to their true class labels. For each observation red and green dots represent the
estimated probabilities to belong to class 0 and 1 respectively. Dotted line separates observations from class 0 and class 1. As it is evident from the
plot, the probability of observation to belong to a specific class is in agreement with its class label.
doi:10.1371/journal.pone.0044878.g001

Polycomb-Associated Long Non-Coding RNAs
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LncRNA HOTAIR has two different binding activities: with

a series of HOTAIR deletion mutants it was shown that PRC2

binds nucleotides 1–300 of HOTAIR, while the fragment 1500 to

2146 binds LSD1 complex, mediating enzymatic demethylation

[28]. The authors suggested that HOTAIR bridges these two

complexes together, acting as a modular scaffold [28]. Interest-

ingly, SVM-based classifier was able to correctly identify the

regions of 1–300 and 1500–2146 as PRC2-binding and PRC2

non-binding lncRNAs, respectively. RepA Xist is well documented

example of PRC2-binding lncRNA [44,45]. In our experiment the

classifier also correctly identified RepA Xist as PRC2-binding

(Table 4). Because RepA Xist in mouse and human are identical,

RepA mouse was also correctly identified as PRC2-binding.

Examples for mouse lncRNAs. It is well known that the

evolutionary sequence conservation of lncRNAs is poor ([6] and

see Materials and Methods section). Surprisingly, for 106 mouse

PRC2-binding lncRNAs the SVM classifier correctly predicted 63

as PRC2-binding. This observation testifies that the built classifier

generalizes well on independent data sets and that PRC2-binding

lncRNAs are well conserved not at the sequence level, but at the

level of sequence-structure features.

HOTAIR is poorly conserved in placental mammals and does

not exists in platypus or the other vertebrates [46]. In addition,

sequence-structure conservation is present for first and sixth exons

of HOTAIR only [46]. Recent study of mouse HOTAIR

(mHOTAIR) has shown that the complete deletion of HoxC

cluster (including mHOTAIR) in mouse embryos had virtually no

effect on HoxD genes [52], though human HOTAIR was shown

to act in trans and regulate the expression of HoxD genes [28].

Should the unexpected difference in the functional role of

HOTAIR in human and mouse be explained by high sequence-

structure divergence resulted in functional divergence, as sug-

gested [52]? This question of course cannot be answered in silico,

but it is still useful to test, even in silico, whether mHOTAR can be

classified as PRC2-binding.

As it was already observed by others, the alignment of human

and mouse HOTAIR is poor. Only scarce fragments of sequence

conservation for human exons 1–5 exist in mHOTAIR (Figure 3).

Figure 2. ROC curves for four different classifiers and the set of features selected at the 0.05 significance level.
doi:10.1371/journal.pone.0044878.g002

Table 2. Classifiers performances (0.05 significance level).

Classifier Specificity Sensitivity Misclassification Accuracy

SVM linear 0.787 0.745 0.234 0.766

Shrincage LDA 0.771 0.682 0.274 0.726

Random Forest 0.704 0.682 0.307 0.693

LogisticRegression 0.688 0.631 0.341 0.659

doi:10.1371/journal.pone.0044878.t002

Table 3. Classifiers performances (0.01 significance level).

Classifier Specificity Sensitivity Misclassification Accuracy

SVM linear 0.688 0.707 0.303 0.697

Shrincage LDA 0.707 0.688 0.303 0.693

Random Forest 0.669 0.659 0.336 0.632

LogisticRegression 0.640

0.694 0.333 0.667

doi:10.1371/journal.pone.0044878.t003

Polycomb-Associated Long Non-Coding RNAs
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However, starting from exon 6, the conservation becomes more

pronounced (Figure 3). We tested the first 500 and the last 500 bp

of mHOTAIR. The SVM classifier predicted the most poorly

conserved (exons 1–5 in human, see Figure 3) the first 500 bp of

mHOTAIR as PRC2-binding, and the last 500 bp of mHOTAIR

as PRC2 non-binding lncRNA (Table 4), as in the case of human

HOTAIR. This observation suggests that it is not the sequence per

se, but the combination of sequence-structure features that is

important for PRC2 binding. It would be interesting to test

mHOTAIR in direct experiment for PRC2-binding. The fact, that

the expression of HoxD genes is seemingly not altered by the

deletion of HoxC cluster [52] does not proof with necessity that

mHOTAIR does not bind PRC2.

Discussion

The small-scale functional annotation of lncRNAs is an area of

active research [4,5,9], but is almost non-existing at the genomic

scale because of the lack of experimental data [9,11]. However, the

interaction of lncRNAs and Polycomb repressive complex (PRC2)

is well documented and the experimental approaches capturing

PRC2-associated transcriptome are rapidly developing [30,31]. In

this study we demonstrate that a set of lncRNAs can be confidently

split into two different classes: PRC2-binding and PRC2 non-

binding.

This classification is enabled by the fact that while all lncRNAs

constitute a diverse set of sequences, the classes of PRC2-binding

and PRC2 non-binding lncRNAs possess characteristic combina-

tions of sequence-structure patterns and, therefore, can be

separated within the features space. Based on this observation,

using a combination of sequence-structure patterns constructed

from transcription factor binding sites, Kolmogorov complexity,

and oligonucleotide frequencies, we built several machine-learning

classifiers and identified SVM-based classifier as the best

performing. The evaluation of SVM classifier performance on

the training data set is promising: the accuracy (0.766) is

reasonably high and the accuracy on the smaller set of features

(0.697) is also acceptable. This indicates that the possibility of

overfitting due to the large number of parameters is negligible.

The SVM-based classifier generalizes well on independent data

sets. Different fragments of human HOTAIR (first and last exons)

were correctly predicted to possess PRC2-binding and PRC2 non-

binding activities, respectively [28]. Well-known PRC2-binding

lncRNA repA Xist was also correctly classified. The surprising

observation that we were able to correctly predict 59.4% of PRC2-

binding mouse lncRNAs has an important biological implication

that many lncRNAs are evolutionary conserved, but only at the

level of sequence-structure patterns. This observation was further

strengthened by the case of mouse HOTAIR lncRNA. Despite

poor conservation of human HOTAIR exons 1–5 in mouse, the

first 500 bp of mHOTAIR were identified as PRC2-binding, and

the last 500 as PRC2 non-binding, similar to the case of human

HOTAIR. Although without experimental confirmation it cannot

be stated that mHOTAIR binds PRC2 similarly to human

HOTAIR, this fact may at least serve as a demonstration that

despite sequence differences, the similarity between human and

mouse HOTAIR lncRNAs is traceable, albeit on the other level.

The drawback of our classifier performance study on the

independent data sets is the absence of negative examples. That is,

while we see that the SVM-based classifier has high sensitivity its

specificity is still unknown. This is because a reasonable set of

negative examples is difficult to find: rarely in an experiment

would one try to proof that a given lncRNA does not bind PRC2.

In addition, by construction the classifier can be used for lncRNAs

only.

The existence of distinguishable lncRNAs classes may also

indicate that not all lncRNAs are evolving fast. While, as in the

case of mouse PRC2-binding lncRNAs, the evolutionary rate can

be high because it may not imply the loss of function, the class of

PRC2 non-binding lncRNAs may have other functional require-

ments and evolve more slowly. Obviously, lncRNAs regulating

expression of genes in antisense should evolve at the rate, similar to

overlapped regions of their cognate genes.

With our ability to classify and functionally annotate lncRNAs

the view that lncRNAs are by-products of the background

transcription is refuted. Further large-scale experiments will allow

classifying lncRNAs into more functionally homogeneous classes

and the ability to computationally predict whether a given

lncRNAs is functioning in cis or in trans for a subset of in cis

lncRNAs will uncover their targets. In conclusion we note that

computational approaches for functional characterization of

lncRNAs may soon become as important as computational

approaches for predicting protein coding genes became two

decades ago.

Materials and Methods

Data Sources
Training samples. We selected as PRC2-associated

lncRNAs the intersection of coordinates of lncRNAs bound to

polycomb repressive complex 2 in the 3 cell types (table 3 in

Dataset S1, [30]) and coordinates of lncRNA exons defined by

Nimblegen tiling microarrays (table 2 in Dataset S1, [30]). We

note that although positive and negative examples of lncRNAs

were taken from the intergenic regions (called ‘lincRNAs’ in the

original study), we use the term lncRNAs everywhere in our

manuscript for the sake of generality. As for lncRNAs, that do not

associate with PRC2 we selected the rest of coordinates of lncRNA

exons. That is, in the positive set of examples we included

sequences given by the intersection of coordinates from tables 3

and 2, and in the negative set of examples we included sequences

with coordinates from table 2, without coordinates from the

intersection of tables 2 and 3. Both data sets were filtered: only

lncRNAs that were also found in human ESTs were retained for

comparison; only sequences more than 100 bp were retained,

resulting in 314 and 454 sequences. To increase the sample size,

instead of the cutoff of 200 nucleotides, commonly used to define

lncRNAs, we used the 100 nucleotides cutoff. It should be noted

that the most up-to-date definition of lncRNAs as ‘‘RNA

molecules that may function as either primary or spliced

transcripts and do not fit into known classes of small RNAs’’

[53] does not include any cutoff based on the sequence length. To

equalize the sample sizes 314 sequences from the set of negative

Table 4. SVM performance on independent data sets.

LncRNA PRC2-binding PRC2 non-binding

HOTAIR 1–300 1 0

HOTAIR 1–1500 1 0

HOTAIR 1500–2146 0 1

repA XIST (human, mouse) 1 0

106 mouse PRC2-binding 63 43

mHOTAIR 1–500 1 0

mHOTAIR 500–2006 0 1

doi:10.1371/journal.pone.0044878.t004
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Figure 3. A fragment of mouse (mHOTAIR) and human (hHOTAIR) HOTAIR lncRNA alignment (positions 1–1120 in human lncRNA
are shown). Exons coordinates are from NC00012.
doi:10.1371/journal.pone.0044878.g003

Polycomb-Associated Long Non-Coding RNAs

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e44878



examples were selected at random. Both sets are available in the

Data File S1.

Sequence characteristics of the training samples. The

ranges of sequence lengths in the sets of positive and negative

examples were 101–7078 bp and 100–3235 bp, respectively

(Figure S1). To estimate the sequence similarities in training

samples we implemented the global (Needleman-Wunsch) and the

local (Smith-Waterman) pairwise alignments for every set (49141

local and 49141 global alignments per set). Nucleotide matches

and mismatches were scored 1 and -3, respectively. For the global

alignment affine gap penalty score -10 was used. There were no

identical sequences in both sets, and the sequence similarities were

generally low (Figure S2, the scores distributions for global and

local alignments in PRC2-binding - and PRC2 non-binding

lncRNAs). The best global (local) alignment scores were -92 (172)

and 0 (191) for the sets of positive and negative examples,

respectively (Figure S2). Even for the best local alignment scores

(172 and 191), the sequence identities (measured as the ratio of the

number of the identical nucleotides in the alignment to the

alignment length) were low (Figures S3 and S4).

Independent data sets. The genome-wide coordinates of

PRC2-binding lncRNAs in mouse embryonic stem cells were

downloaded from Supplementary Table 4 in [31]. There were 215

PRC2-binding mouse lncRNAs (Supplementary Table 4 in [31]).

We selected only those lncRNAs that were found in mouse EST;

only sequences more than 100 bp were left, resulting in 106

sequences set. The range of the sequence lengths was 101–

5230 bp. Again, to estimate the sequence similarities in testing

samples we implemented global (Needleman-Wunsch) and local

(Smith-Waterman) pairwise alignments (5565 local and 5565

global alignments, the scoring matrix was the same as the one used

for training samples). There were no identical sequences. The best

global and local alignment scores were -157 and 132, respectively

(Figure S5). For the best local alignment score 132 the sequence

identity (measured as the ratio of the number of the identical

nucleotides in the alignment to the alignment length) was low

(Figure S6). We also estimated the sequence similarities between

mouse PRC2-binding lncRNAs (106 sequences set) and the

training set of human PRC2-binding and PRC2 non-binding

lncRNAs. Again, there were no identical sequences. The best

global (local) alignment scores were -127 (43) between human and

mouse PRC2-binding lncRNAs and -130 (33) between mouse

PRC2-binding - and human PRC2 non-binding lncRNAs (Figure

S7). Local alignments for the best local alignment scores 33 and 43

are shown in Figures S8 and S9, respectively. It is clear that even

between PRC2-biding lncRNAs from different species the

sequence conservation is poor (Figure S9).

RepA Xist corresponds to position 292 to 713 in mouse

(gi|37704378) and 350 to 770 in human (gi|340393) [54]. As

mRNA for human HOTAIR we used gi|145688388. Mouse

predicted HOTAIR RNA (Gm16258) corresponds to RefSeq

AK035706 transcript [52].

Sequence Features
RNA sequence-structure patterns (RSSPs). We consid-

ered 397 RSSPs describing 42 highly structured families (all

families with a consensus secondary structure containing at least 5

stem-loop substructures) from RFAM10 database, compiled by the

authors of the Structator software [48].

Motifs and oligonucleotides. The frequencies of short

oligonucleotides and motifs, represented as Position Weights

Specific Matrices (1314 PWMs extracted from Jaspar database)

were calculated using the Biostrings package in Bioconductor

implemented in the R language [55]. For motifs, as the resulting

frequency we took the average of frequencies over both strands.

Kolmogorov complexity. Formally, the absolute amount of

information in a string is the size of the smallest program (p) of an

optimal Turing Machine (U) that is needed for generating that

string: K(x)=min{|p|:U(p) = x} and is called ‘Kolmogorov com-

plexity’ (K(x) of a string x) [50]. In our case lncRNA sequence is

such a string. To approximate Kolmogorov Complexity the well-

studied Lempel-Ziv algorithm was employed [56].

Performance Measures
The performance of all classifiers was estimated using leaving-

one-out cross-validation (LOOCV), where each classifier is trained

on (N-1) samples (where N is the sample size) and then tested on

the one sample left, repeating this step N times. The performance

was estimated as iterationwise average performance.

We estimated average

sensitivity~
TP

TPzFN
, specificity~

TP

TPzFp
,

accuracy~
TPzTN

TPzTNzFPzFN

ð1Þ

and misclassification rate for every classifier. We also evaluated the

performance of classifiers measuring receiver-operating character-

istic curve (ROC) area under the curve (AUC).

Implementation
When the number of observation (n) is less than the number of

variables (p) popular approaches for classification (e.g. Linear

Discriminant Analysis, LDA) do not perform well and other

methods, introduced in the context of high-dimensional genomic

data such as microarrays should be employed. Although in our

case the number of variables has never exceeded the number of

observations, an application of classical LDA resulted in poor

performance (data not shown). We therefore selected relatively

modern classifiers tuned for higher dimensionality. The most novel

classifier considered here is the Shrinkage Discriminant Analysis,

an extension of classical discriminant analysis, that overcomes the

problem of not invertible covariance matrix when n,,p by using

a covariance estimation procedure [37]. We also considered more

established techniques, such as Support Vector Machine [36] and

Random Forest (RF) [38], and as the most classical approach we

employed Logistic Regression (LR) [39]. SVM classifier is known

to be sensitive to the parameters, and its performance decreases

significantly without tuning. We used here a linear kernel and the

only tuning parameter was the cost (C). We considered a grid for

the cost parameter and employed the nested cross-validation,

resulting in the value of hyperparameter that gave the smallest

misclassification rate (C= 0.1). All computations were performed

in Bioconductor package CMA (‘Classification for MicroArrays)
[57], implemented in the R language [55].

Supporting Information

Data File S1 The sets of PRC2-binding and PRC2 non-binding

lncRNAs (positive and negative examples) used in this study to

train classifiers.

(TXT)

Figure S1 The distributions of sequence lengths for the sets of

training samples.

(TIFF)
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Figure S2 The distributions of local and global alignment scores

for human PRC2-binding and PRC2 non-binding lncRNAs.

(TIFF)

Figure S3 The best local alignment between human PRC2-

binding lncRNAs.

(TIFF)

Figure S4 The best local alignment between human PRC2 non-

binding lncRNAs.

(TIFF)

Figure S5 The distributions of local and global alignment scores

for mouse PRC2-binding lncRNAs.

(TIFF)

Figure S6 The best local alignment between mouse PRC2-

binding lncRNAs.

(TIFF)

Figure S7 The distributions of local and global alignment scores

between mouse PRC2-binding lncRNAs and 1) human PRC2

binding lncRNAs and 2) PRC2 non-binding lncRNAs.

(TIFF)

Figure S8 The best local alignment between mouse PRC2-

binding and human PRC2 non-binding lncRNAs2.

(TIFF)

Figure S9 The best local alignment between mouse and human

PRC2-binding lncRNAs.

(TIFF)
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