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Abstract

Automatic and accurate detection of positive and negative nuclei from images of immu-

nostained tissue biopsies is critical to the success of digital pathology. The evaluation of

most nuclei detection algorithms relies on manually generated ground truth prepared by

pathologists, which is unfortunately time-consuming and suffers from inter-pathologist

variability. In this work, we developed a digital immunohistochemistry (IHC) phantom that

can be used for evaluating computer algorithms for enumeration of IHC positive cells. Our

phantom development consists of two main steps, 1) extraction of the individual as well as

nuclei clumps of both positive and negative nuclei from real WSI images, and 2) system-

atic placement of the extracted nuclei clumps on an image canvas. The resulting images

are visually similar to the original tissue images. We created a set of 42 images with differ-

ent concentrations of positive and negative nuclei. These images were evaluated by four

board certified pathologists in the task of estimating the ratio of positive to total number of

nuclei. The resulting concordance correlation coefficients (CCC) between the pathologist

and the true ratio range from 0.86 to 0.95 (point estimates). The same ratio was also com-

puted by an automated computer algorithm, which yielded a CCC value of 0.99. Reading

the phantom data with known ground truth, the human readers show substantial variability

and lower average performance than the computer algorithm in terms of CCC. This shows

the limitation of using a human reader panel to establish a reference standard for the eval-

uation of computer algorithms, thereby highlighting the usefulness of the phantom devel-

oped in this work. Using our phantom images, we further developed a function that can

approximate the true ratio from the area of the positive and negative nuclei, hence avoid-

ing the need to detect individual nuclei. The predicted ratios of 10 held-out images using

the function (trained on 32 images) are within ±2.68% of the true ratio. Moreover, we
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also report the evaluation of a computerized image analysis method on the synthetic tis-

sue dataset.

I. Introduction

Immunohistochemical (IHC) staining of tissue sections is routinely used in pathology to aid in

diagnosis and to characterize malignant tumors in humans and in animals [1–3]. It also plays a

vital role in selecting an appropriate systemic therapy for cancer patients [2]. Certain stains are

accepted in medical practice as important predictive markers of tumor aggressiveness (Ki67)

or tumor type (ER, PR and HER2Neu) and are used to determine the type and intensity of

therapy for a given patient [4]. All these markers are used according to specific guidelines

where the intensity of stains and the number of positive cells are expressed as percentage of all

malignant cells.

Considering the importance of these markers, technical aspects of stains such as tissue fixa-

tion, tissue processing and quality of stains are becoming strictly regulated and monitored to

assure reproducible results [5]. In the majority of cases, IHC stain interpretation is rendered

by a trained pathologist using a light microscope and a manual method, which consists of

counting each positively stained cell [5]. As expected, the manual method of enumeration of

positive cells suffers from poor reproducibility even in the hands of an expert pathologist [6,

7]. Moreover, due to human reader limitations, true counting of IHC positive and negative

cells can only be performed for a limited number of cells [8–11]. Thus, by necessity IHC stains

are counted only in small fragments of tumors selected by the pathologist. Such random sam-

pling may be representative of tumors with a homogenous pattern of staining; however, the

majority of malignant tumors show a heterogeneous pattern of staining with some areas

enriched in positive cells and others with only a few positive cells. Consequently, the counting

of IHC positive cells using random sampling of small areas of IHC stained heterogeneous

tumors is often biased and does not represent the true nature of the tumor [12]. Oversampling

of predominantly positive areas results in overestimation, and oversampling of IHC poor areas

results in underestimation of IHC positive cells.

An alternative approach to quantify percentage of positive cells in a high number of cells is

estimation based on visual perception of areas without actually counting the positive cells [6].

Due to the limited ability of the human reader to efficiently and reproducibly count hundreds

or thousands of cells, the pathologist replaces counting with a more crude method such as esti-

mation (gestalt) [9]. Not surprisingly, such a method introduces substantial bias and variabil-

ity, and results in poor reproducibility. Considering these difficulties, it is logical that a marked

effort is underway to develop computer algorithms to accurately, precisely and reproducibly

enumerate IHC stained cells using high resolution images of histological sections. Using differ-

ent approaches, several competing algorithms have been developed and are currently being

tested for clinical use in pathology. Comparison of accuracy and reproducibility between these

platforms is based on a reference standard established by human reader interpretation of IHC

stains. Paradoxically, all computer method generated results are still compared to results that

are generated by a human reader [13]. Using reference standards based on human reader

interpretation of images hampers standardization of computer IHC methods mainly due to

high inter- and intra-reader variability of humans.

We have developed an in silico phantom comprised of both IHC positive and IHC negative

(counterstained) cells with a known ground truth, thereby avoiding the need for a reference
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standard built by human readers. This phantom is generated by our specialized software that

uses large collections of high resolution images of different negative and positive cells and gen-

erates virtual tissue sections with a known percentage of positive and negative cells. The pro-

portion can be varied from less than 1% to 100% of positive cells. The distribution of positive

and negative cells can be adjusted to mimic true histological sections where positive cells can

be distributed evenly throughout the tissue or may show focal clustering depending on the

intention of the operator. A cluster of cells can be comprised of positive cells with different

intensities of staining, different patterns of staining, different cell size with cells showing good

separation and cells overlapping (to provide a more challenging task of cell segmentation for

computer algorithms).

II. Methods

We extracted a group of Ki-67 positive and negative nuclei from images of Ki-67 stained lym-

phoma biopsies [6, 14]. Each group consists of single nuclei as well as nuclei clumps having

two to five nuclei. For simplicity we call these nuclei (single or clumped) “objects.” In total, we

have 50 Ki-67 positive objects and 40 Ki-67 negative objects. Fig 1 shows examples of some of

these positive and negative objects. The IRB was approved (Study Number: 2007C0069) by the

Office of Responsible Research Practices and The Institutional Review Board at the Ohio State

University. It is worth mentioning that all images used in this study were fully anonymized.

Let Li
þ

and Lj
�

denote the positive and negative objects, respectively. Here i = 1,2,3,� � �50

and j = 1,2,3,� � � 40. To create a synthetic image IS, we perfrom the following steps.

1. Create canvas of 1000x1000 pixels.

2. For each pixel in the canvas, generate a three element vector (with elements corresponding

to RGB colors) using a uniformly distributed pseudorandom integer generator between 190

and 250. These values serve as background for the canvas.

3. Select 900 equally spaced points/locations on the canvas. Let (xa,yb) represents the set of 900

locations, where a = 1,2,3,� � �30 and b = 1,2,3,� � �30.

4. Using a uniformly distributed pseudorandom integer generator, create a set of 900 pairs of

random integers between -11 and +11. Let (Rxa,Ryb) represent the set of 900 value pairs.

5. Disturb the 900 equally spaced points by adding them with (Rxa,Ryb), i.e. (Pxa,Pyb) =

(Rxa, Ryb) + (xa, yb). This will perturb the points slightly and will remove the systematic

look of computer generated points.

6. To insert G% positive nuclei to the canvas, randomly draw positive objects with replace-

ment from Li
þ

until the total number of nuclei reaches Gx900/100. For instance, to create

an image with 40% positive nuclei, we will keep on drawing positive objects until we have

drawn a total of 360 nuclei. Then the selected objects are randomly scaled to resemble all

different cell sizes in real Ki67 stained tissues.

7. Let us assume that we require N positive objects to create an image with G% positive nuclei.

We place these N positive objects in randomly selected N locations from (Pxa,Pyb).

8. We repeat step 6 and 7 to place negative objects on the canvas. The only difference is that

we exclude the N positions already filled by positive objects during extraction of random

integers. As a final step, we perform Gaussian filtering on the edges of all positive and nega-

tive objects in the canvas.
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Using this method we created a set of 42 images with different concentrations of positive

and negative nuclei. Fig 2 shows an example of two synthetic images created using this

method. The 42 synthetic images created using the proposed method were used to investigate

the following three questions on Estimation, Mapping, and Validation which are outlined

next.

II.a Estimation

Is a visual estimation of the ratio of positive to total number of nuclei by a group of board certi-

fied pathologists consistent with the true ratio? Let rn denote true ratio (i.e., the ratio of posi-

tive to total number of nuclei during synthetic image generation)

Fig 1. Examples of positive and negative objects used in creation of synthetic images. All objects were cropped

from Follicular Lymphoma whole slide images stained for Ki67.

https://doi.org/10.1371/journal.pone.0196547.g001

Fig 2. Examples of synthetic images generated by the proposed method. Left) An example image with only a few Ki67 positive nuclei. Right) An

example image with higher concentration of Ki67 positive nuclei.

https://doi.org/10.1371/journal.pone.0196547.g002
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To answer the first question, a total of four board certified pathologists took part in the

study. We shared the images through a customized web application, which allowed the pathol-

ogists to remotely view the images and provide their visual approximation of rn, which is

denoted as Pj
rn

(j = 1,..4). The pathologists also provided their visual approximation of the fol-

lowing ratio:

rt ¼
Areaof positivenuclei
Areaof theimage

ð1Þ

II.b Validation

Can one of our recent nuclei detection algorithms [15] approximate rn?

In order to evaluate the robustness of the computer based solutions on the artificial dataset,

we tested it against one of our recently published nuclei detection algorithms [15]. The algo-

rithm starts by calculating two score maps for blue and brown objects, which correspond to

negative and positive nuclei respectively. After calculating the score maps, the algorithm analy-

ses the connected components for different threshold values and finds the optimal threshold

value, which maximizes the number of separated nuclei. Finally, the algorithm uses this coarse

segmentation result and splits the merged nuclei by detecting elliptical arcs and applying a

super pixel method [16].

II.c Mapping

Can we find a function C(ra) which maps ra! rn, where ra corresponds to the ratio of the

area of the positive nuclei to the total area of nuclei? The aim is to determine if we can replace

the computationally expensive nuclei detection step with the less expensive area estimation.

In order to answer the second question, we divided the 42 synthetic images into 10 subsets

(SS1, SS2, SS3,. . .,SS10) as shown in Table 1. The third row in Table 1 contains the number of

images in each subset. To approximate a function that maps ra! rn, we randomly held out one

image from each subset (a total of 10 images which we will use for testing) and computed the

following difference for the remaining images (a total of 32 images which we used for training):

D ¼ ra � rn ð2Þ

III. Results

For ease of comparison and to avoid redundancy, we combined the results of Subsections II.a
(Estimation) and II.b (Validation) under Subsection III.a. The results for Subsection II.c are

outlined in Subsection III.b.

III.a Estimation & validation

The results of our experiment are shown in Tables 2, 3 and 4. Table 2 shows the summary sta-

tistics of the pathologists and the computer algorithm in estimating rn (the ratio of true

Table 1. Division of synthetic images into 10 subsets. Here SSi correspond to the ith subset. The second row contains the ratio of positive to all nuclei within each SSi.

The third row contains the number of images in each subset.

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS1

rn< 0.1 0.1� rn< 0.2 0.2� rn< 0.3 0.3� rn< 0.4 0.4� rn< 0.5 0.5� rn< 0.6 0.6� rn< 0.7 0.7� rn< 0.8 0.8� rn< 0.9 rn � 0.9

4 4 7 4 5 6 3 3 3 3

https://doi.org/10.1371/journal.pone.0196547.t001
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number of positive to total number of nuclei in an image). The four pathologists’ estimation of

rn is represented by Pi
rn

, where i 2 {1,2,3,4}, while the estimation by the computer algorithm is

represented by Pc
rn

. Likewise, Table 3 shows the summary statistics of the four pathologists and

the computer algorithm in estimating rt (ratio of the area of the positive nuclei to the total area

of the image). Here the total area of the image corresponds to the image size. Similarly, Table 4

Table 2. Summary statistics of pathologists’ and computer’s estimation of rn (the ratio of true number of positive to total number of nuclei). Here

P1
rn
; P2

rn
; P3

rn
; P4

rn
; Pc

rn
denote the estimation of rn by pathologist 1, pathologist 2, pathologist 3, pathologist 4 and the computer algorithm, respectively.

P1
rn

P2
rn

P3
rn

P4
rn

Pc
rn

rn Mean ± SD 51.05 ± 31.4 54.2 ± 30.2 53.6 ± 30.6 49.1 ± 32.5 43.1 ± 27.4

Bias ± SD 5.5 ± 8.4 8.6 ± 12.8 8.1 ± 7.5 3.5 ± 9.3 -2.5 ± 2.2

CCC 0.94 0.86 0.93 0.95 0.993

(95% C.I.) (0.90, 0.97) (0.77, 0.92) (0.88, 0.96) (0.91, 0.97) (0.987, 0.996)

Rank Corr. 0.98 0.90 0.99 0.97 0.998

(95% C.I.) (0.96, 0.99) (0.83, 0.95) (0.98, 0.99) (0.94, 0.98) (0.996, 0.999)

Pearson Corr. 0.97 0.91 0.97 0.97 0.997

(95% C.I.) (0.94, 0.98) (0.83, 0.95) (0.95, 0.99) (0.94, 0.98) (0.994, 0.998)

https://doi.org/10.1371/journal.pone.0196547.t002

Table 3. Summary statistics of pathologists’ and computer’s estimation of rt (the ratio of the true area of positive nuclei to total image area). Here

P1
rt
; P2

rt
; P3

rt
; P4

rt
; Pc

rt
represent the estimation of rt by pathologist 1, pathologist 2, pathologist 3, pathologist 4 and the computer algorithm, respectively. The CCC is lowest

for the computer because of the near perfect negative correlation between bias and the number of nuclei (see Fig 5).

P1
rt

P2
rt

P3
rt

P4
rt

Pc
t

rt Mean ± SD 45.8 ± 30.6 43.8 ± 26.2 46.5 ± 28.5 38.7 ± 29.9 18.0 ± 8.4

Bias ± SD 14.5 ± 15.6 12.5 ± 13.8 15.2 ± 13.1 7.4 ± 15.5 -13.3 ± 7.7

CCC 0.68 0.68 0.69 0.76 0.53

(95% C.I.) 0.57, 0.76) (0.56, 0.78) (0.59, 0.77) (0.68, 0.82) (0.41, 0.63)

Rank Corr. 0.98 0.90 0.99 0.97 0.992

(95% C.I.) (0.97, 0.99) (0.82, 0.94) (0.97, 0.99) (0.94, 0.98) (0.985, 996)

Pearson Corr. 0.97 0.90 0.98 0.95 0.995

(95% C.I.) (0.94, 0.98) (0.82, 0.94) (0.97, 0.99) (0.91, 0.97) (0.991, 0.997)

https://doi.org/10.1371/journal.pone.0196547.t003

Table 4. Summary statistics of pathologists’ and computer’s estimation of ra (the ratio of the true area of positive nuclei to area covered by all nuclei). Here

P1
rn
; P2

rn
; P3

rn
; P4

rn
; Pc

ra
represent the estimation of ra by pathologist 1, pathologist 2, pathologist 3, pathologist 4 and the computer algorithm, respectively. The aim of comput-

ing this statistics was to check if pathologists’ are unconsciously computing ra when asked to approximate rn.

P1
rn

P2
rn

P3
rn

P4
rn

Pc
ra

ra Mean ± SD 51.05 ± 31.4 54.2 ± 30.2 53.6 ± 30.6 49.1 ± 32.5 51.8 ± 27.8

Bias ± SD -6.0 ± 8.2 -2.83 ± 12.9 -3.4 ± 6.1 -7.9 ± 10.2 -5.2 ± 4.1

CCC 0.94 0.90 0.97 0.91 0.97

(95% C.I.) (0.90, 0.97) (0.82, 0.94) (0.95, 0.98) (0.85, 0.94) (0.95, 0.98)

Rank Corr. 0.98 0.91 0.99 0.97 0.999

(95% C.I.) (0.96, 0.99) (0.83, 0.95) (0.98, 1.00) (0.95, 0.99) (0.997, 0.999)

Pearson Corr. 0.97 0.90 0.98 0.96 0.99

(95% C.I.) (0.95, 0.98) (0.83, 0.95) (0.97, 0.99) (0.92, 0.98) (0.98, 0.99)

https://doi.org/10.1371/journal.pone.0196547.t004
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shows the summary statistics of the four pathologists and the computer algorithm in estimat-

ing ra (the ratio of the true area of positive nuclei to area covered by all nuclei). It is worth

mentioning that we never explicitly asked the pathologists to estimate ra. We used pathologists’

estimates of rn as their surrogate estimate of ra in computing the performance metrics in

Table 4 and our aim here was to check if the pathologists were unconsciously estimating ra
when requested to estimate rn. CCC and C.I. in all three (Tables 2, 3 and 4) corresponds to

Concordance Correlation Coefficient and Confidence Interval, respectively. Similarly Figs 3, 4

and 5 show the results in terms of Bland-Altman plots. These plots enable us to better under-

stand bias and variability among pathologists and the computer algorithms relationship to

ground truth.

We also performed a separate analysis for each pathologist to allow the relationships to dif-

fer by reader. As expected, a pathologist’s estimate of the percentage of positive nuclei can

(almost) be perfectly explained by either the true percentage of positive cells rn and ra (see

Table 5 for details).

III.b Mapping

Table 6 shows the approximation of rn for the 10 test images. Here brn represents the approxi-

mation of rn through Eq 5. Table 6 was generated using leave-one-out cross validation meth-

odology. Fig 6 shows a plot of D (as dots) for 32 training images along with a function that

approximates these values. The horizontal axis in Fig 6 corresponds to ra while the vertical axis

represents D. The objective is to find a function that maps ra to rn. The dotted lines in Fig 6

correspond to the 95% confidence interval. The continuous solid line represents a function

Fig 3. Bland Altman Plots for rn. Bias and variability of the pathologists’ estimates of rn increased with the percentage

of positive nuclei. However, the bias and variability of the computer’s estimate was relatively smaller than the

pathologists’ estimate of rn.

https://doi.org/10.1371/journal.pone.0196547.g003
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that approximates D using the following 2nd degree polynomial:

D � CðraÞ ¼ a� ðraÞ
2
þ b� ra þ c; ð3Þ

where a ¼ � 0:007; b ¼ 0:64; c ¼ 1:26

We determined the coefficients a,b,c by solving the following minimizing problem:

minxkDðxÞ � rak2 ð4Þ

Here x corresponds to the vector of coefficients a,b,c, i.e., x ¼
a
b
c

2

4

3

5.

This means that rn can be approximated by substituting D with C(ra) in Eq 2, i.e.

CðraÞ � D ¼ ra � rn ð5Þ

rn � ra � CðraÞ ð6Þ

IV. Discussion and conclusions

The bias and agreement of the pathologists relative to the ground truth and those of our com-

puter algorithm [15] are described in Tables 2–4 and the Bland-Altman Plots in Figs 3, 4 and

5. The level of agreement is captured in Tables 2–4 by the value of the CCC. Generally, the

Fig 4. Bland Altman Plots for ra. The absolute bias and the variability of the pathologists’ estimates of ra decreased

with the increasing percentage of positive nuclei. This shows that for images with higher concentrations of positive

nuclei, pathologists’ estimates deviate from accuracy in ways that are not present in the algorithm’s estimates.

https://doi.org/10.1371/journal.pone.0196547.g004
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larger values of CCC indicate better reproducibility between two variables. Pathologist bias

and agreement with rn and ra were less biased and in better agreement than their estimates of

rt. However, variability and absolute bias of the pathologists’ estimates of rn increased as the

number of positive cells increased (Fig 3) while the opposite was true when pathologist esti-

mates were compared to ra (Fig 4). There was a strong increasing linear relationship between

pathologist bias in estimating rt and the percentage of positive cells (Fig 5). The computer algo-

rithm exhibited low bias and almost perfect agreement with rn and ra, but there was an almost

perfect decreasing linear relationship between the computer algorithm bias and the percentage

of positive nuclei. In contrast to the pathologist estimates, the variability of the computer’s esti-

mates was smaller and was independent of the number of positive nuclei. From the summa-

rized statistics in Table 2, it is clear that visual estimations by pathologists are not a reliable

means to approximate rn.

Table 6 suggests that C(ra) provides a reasonable approximation of rn. The standard devia-

tion of the differences between approximated values of rn and true rn is small (2.68%). State of

Fig 5. Bland Altman Plots for rt. There was a strong increasing linear relationship between pathologist bias in

estimating rt and the percentage of positive nuclei. In contrast, there was an almost perfect inverse linear relationship

between the bias of the computer’s estimates and percentage of positive nuclei.

https://doi.org/10.1371/journal.pone.0196547.g005

Table 5. Multiple regression analysis of pathologist rn. Total R2 is the proportion of the total variability explained by the true rn and ra. R2 is the proportion of variability

explained by either rn or ra alone. Semi-Partial R2 is the additional proportion of total variability explained by the rn or ra beyond the amount explained by the other factor.

rn ra
Pathologist Total R2 R2 Semi-Partial R2 R2 Semi-Partial R2

1 0.9449 0.9421 0.0005 0.9444 0.0027

2 0.8190 0.8164 0.0003 0.8187 0.0026

3 0.9699 0.9692 0.0023 0.9677 0.0007

4 0.9333 0.9146 0.0040 0.9293 0.0187

https://doi.org/10.1371/journal.pone.0196547.t005
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the art nuclei detection algorithms result in around 5–10% false detection rate [13, 17–19]. So,

from that perspective, this is an extremely useful result as it 1) has the potential to replace com-

putationally expensive nuclei detection algorithm with inexpensive area estimation, and 2)

promises to produce more accurate or at least as good results as any state of the art nuclei

detection method. But it still requires extensive validation and testing on a real dataset. At the

moment, the synthetic nature of our images allowed us to compute ra by simply counting the

number of positive and negative nuclei. However, the generalization of the mapping function

to real data requires a selection of an automatic segmentation algorithm to approximate ra.

Accurate IHC quantification is essential; improper quantification of IHC stains can deny a

patient an important therapy option or result in unnecessary treatment. Unfortunately, IHC

quantification can vary significantly between readers, as well as within readers [20, 21], for rea-

sons that are neither fully understood nor easily addressed. Both quality assurance and pathol-

ogist training programs designed to standardize IHC stain interpretation suffer from lack of

absolute standards with known ground-truth. Our Phantom generator allows creation of

unlimited quantities and varieties of digital images that can be used for quality assurance pro-

grams, training of pathology residents and development of computer algorithms that will help

to solve problem of poor reproducibility of IHC stains interpretation and quantification in

clinical practice of pathology.

IHC stains are used to characterize the repertoire of antigens (mostly proteins) that are

expressed by malignant cells. Certain antigens are very specific and some are less specific but

sensitive in determination of cell types and properties. For example most of carcinoma cells will

express various keratin molecules and appear negative for common leukocyte antigen CD45.

On the other hand, most leukemia/lymphoma cells will be negative for keratin and will be posi-

tive for CD45 antigen. Similarly different antigens are expressed by sarcoma cells. These anti-

gens are negative in carcinoma and lymphoma cells while antigens expressed by carcinoma and

lymphoma cells are negative in sarcoma cells. IHC stains are essential in detecting these differ-

ences and thus very useful in differentiating between carcinoma, lymphoma and sarcoma cells.

Computationally, this finding suggests savings on computation time, considering that most

nuclei detection algorithms [19, 22] take hours (if not days) to approximate the number of

nuclei to facilitate the computation of rn. This mapping function if used in conjunction with the

method in [6, 14] has the potential to reduce this time to minutes. However, this function (i.e.g
C(A)) is specific to images of Ki-67 stained follicular lymphoma biopsies. Its generalization to

other tumors may require re-estimation of C(A). It is important to perform a detailed analysis

Table 6. Approximation of rn for the 10 test images. Here brn represents the approximation of rn through Eq 5.

Test image ra(%) rn(%) brn (%)

1 61.99 44.11 46.98

2 49.27 35.18 32.86

3 97.47 97.82 97.89

4 29.92 18.21 15.56

5 42.92 28.68 26.63

6 75.11 58.87 63.83

7 43.82 29.13 27.48

8 55.72 38.95 39.75

9 14.92 8.70 5.62

10 63.95 47.81 49.35

Standard deviation of the difference between rn and brn ±2.68%

https://doi.org/10.1371/journal.pone.0196547.t006
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of Fig 6 to understand the quadratic behavior of the mapping function, C. When there are only

a few positive nuclei, it results in the smallest error. This is evident from the y-axis of the plot in

Fig 6; the errors are small when there are few positive nuclei and increase as the percentage of

positive nuclei approaches 50%. The function starts to decrease in a quadratic fashion after this

point until it reaches a point where the image only contains positive nuclei. So, it is essentially a

function of homogeneity; it results in least amount of error when the image contains one type

of nuclei. The function increases with the increase in heterogeneity.

By generating a series of virtual tissues (phantoms) with different proportions and distribu-

tion of positive and negative cells, the exact number of positive and negative cells is known,

therefore, it can be used as a gold standard for the following purposes:

• An IHC standard for the industry to test computer algorithms for enumeration of IHC

stained cells.

• IHC standards for pathology quality assurance programs such as those administered by 9AP

and similar organizations for programs used to standardize breast cancer pathology, lung

cancer pathology, lymphoma pathology, etc.

• Using these Phantom standards with different proportions of positive and negative cells, one

can print hundreds of high resolution slides on glass that can be used for testing with light

microscopy and for testing of high resolution slide scanners.

• By further expanding this model, one can generate 3D phantoms of tissue with different pro-

portions of negative and positive cells. Using 3D printers, one can print artificial tissue using

a cartridge of collagen, or other matrix, with a positively and negatively stained suspension

of cells. These 3D printed tissues could be used to standardize histology processing of tissue

fixation and tissue cutting. Using 3D printers with cartridges of collagen or other Matrix and

unstained cells with a known immunophenotype, one can generate (print) 3D artificial tis-

sues that can be used as a standard for tissue fixation, tissue processing, IHC staining using

different IHC platforms, image acquisition, and image IHC analysis.

The main objective of this study was to provide a reliable approach to generate ground

truth in the study and analysis of IHC stained tissues. In most studies of IHC stained images,

Fig 6. The plot shows a function which facilitates the mapping of ra! rn. The horizontal axis corresponds to

different values of ra while the vertical axis represents D, i.e. error. Each individual dot represents the error between ra
and rn for the training images. The solid line corresponds to the mapping function C which facilitates the mapping of

ra to rn while the dotted lines represent the confidence interval.

https://doi.org/10.1371/journal.pone.0196547.g006
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obtaining the ground truth is a major challenge due to various factors such as limited availabil-

ity of experts to perform annotations, inter- and intra reader-variability and limited datasets.

Often, the ground truth is either a generalization of reader consensus or the average of read-

ings among multiple readers which may be biased, hence disputed. This method allows gener-

ating virtual images mimicking IHC stained tissue with exact proportions of positive and

negative nuclei with controlled distribution of stained nuclei. These virtual tissue images can

be used as the gold standard for IHC quantification for both computer based image analysis

methods and quality assurance programs for manual evaluation of IHC stained tissue by

pathologists. It creates virtual IHC stained sections with a known percentage of positive and

negative cells and eliminates bias that is associated with IHC standards where the ground truth

is based on manual counting of positive nuclei by pathologists. The study also showed that it is

possible to approximate the ratio of positive to total number of nuclei from areas of positive

and negative nuclei. The study also evaluated the performance of one of our recently developed

nuclei detection algorithms [15].

In the future, we are planning on generating whole slide images which contain structures

like blood vessels and other types of nuclei. We are also planning on extending it to other dis-

ease types including lymphoma, different types of breast cancer, lung cancer, prostate cancer,

etc. For each tumor type phantom tissue can be further complicated by introduction of other

objects such as lymphocytes, histiocytes, blood vessels, nerve bundles, fibrotic fibers, and arti-

facts such as hemorrhage of necrosis.

The current approach lacks the ability to generate complex structures like ducts and lobules

in breast. Moreover, it is relatively hard to generate a particular distribution of nuclei with the

current design. Similarly, it requires a bit of tuning if the objective is to orient nuclei in a cer-

tain direction.

Supporting information

S1 File. Interactive Image Compression for Big Data Image Analysis: Application to Hot-
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(PDF)
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