Manchanda et al. BMC Genomics (2020) 21:193
https://doi.org/10.1186/s12864-020-6568-2

BMC Genomics

SOFTWARE Open Access

GenomeQC: a quality assessment tool for
genome assemblies and gene structure

annotations

Check for
updates

Nancy Manchanda', John L. Portwood II°, Margaret R. Woodhouse?, Arun S. Seetharam?,
Carolyn J. Lawrence-Dill**, Carson M. Andorf* and Matthew B. Hufford"”

Abstract

assembly types.

assemblies.

Background: Genome assembilies are foundational for understanding the biology of a species. They provide a
physical framework for mapping additional sequences, thereby enabling characterization of, for example, genomic
diversity and differences in gene expression across individuals and tissue types. Quality metrics for genome
assemblies gauge both the completeness and contiguity of an assembly and help provide confidence in
downstream biological insights. To compare quality across multiple assemblies, a set of common metrics are
typically calculated and then compared to one or more gold standard reference genomes. While several tools exist
for calculating individual metrics, applications providing comprehensive evaluations of multiple assembly features
are, perhaps surprisingly, lacking. Here, we describe a new toolkit that integrates multiple metrics to characterize
both assembly and gene annotation quality in a way that enables comparison across multiple assemblies and

Results: Our application, named GenomeQC, is an easy-to-use and interactive web framework that integrates
various quantitative measures to characterize genome assemblies and annotations. GenomeQC provides researchers
with a comprehensive summary of these statistics and allows for benchmarking against gold standard reference

Conclusions: The GenomeQC web application is implemented in R/Shiny version 1.5.9 and Python 3.6 and is freely
available at https://genomeqc.maizegdb.org/ under the GPL license. All source code and a containerized version of
the GenomeQC pipeline is available in the GitHub repository https://github.com/HuffordLab/GenomeQC.

Keywords: R, Shiny, Genome assembly, Gene annotations, Web interface, Docker containers

Background

Over the past few decades, numerous plant genome as-
semblies have been generated, ranging in size from 63
Mb in Genlisea aurea [1] to 22 Gb in Pinus taeda [2].
The genomic resources generated from such projects
have contributed to the development of improved crop
varieties, enhanced our understanding of genome size,
architecture, and complexity, and uncovered mecha-
nisms underlying plant growth and development [3, 4].
With the declining cost of sequence, the number of

* Correspondence: mhufford@iastate.edu

'Department of Ecology, Evolution and Organismal Biology, lowa State
University, Ames, IA 50011, USA

Full list of author information is available at the end of the article

K BMC

genome assemblies has increased exponentially (Add-
itional file 1: Figure S1). The NCBI assembly database
[5] currently hosts more than 800 plant genome assem-
blies with varying degrees of contiguity and increasingly
includes multiple genome assemblies per species (Add-
itional file 1: Figure S2).

The growing number of assemblies and gene annota-
tions has necessitated the development of metrics that
can be used to compare their quality. Such metrics also
allow evaluation of the performance of various assembly
and annotation methods using the same data. Length
metrics (N50/NG50 and L50/LG50 values) provide a
standard measure of assembly contiguity [6]. The most
commonly reported N50/NG50 values are calculated for

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6568-2&domain=pdf
http://orcid.org/0000-0003-3945-1143
https://genomeqc.maizegdb.org/
https://github.com/HuffordLab/GenomeQC
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:mhufford@iastate.edu

Manchanda et al. BMC Genomics (2020) 21:193

the 50% threshold, but NG(X) plots across all thresholds
(1-100%) provide a more complete picture [6]. Annota-
tion quality metrics include number of gene models,
exons per gene model, and the average lengths of genes,
exons and transcripts [7]. Such length and count metrics
are useful, but they do not fully capture the complete-
ness of assemblies.

Completeness is better gauged using a set of genes that
are universally distributed as orthologs across particular
clades of species [8]. A summary of complete single-copy,
duplicated, fragmented, and missing Benchmarking Univer-
sal Single-Copy Orthologs (BUSCO) genes is often provided
as a quantitative measure of genome completeness based on
expected gene content. While BUSCO is limited to assess-
ment of the gene space, the LTR Assembly Index (LAI [9];)
is capable of gauging completeness in more repetitive gen-
omic regions by estimating the percentage of intact LTR ret-
roelements. LAI is particularly useful for assessing plant
genome assemblies, which are often largely comprised of re-
peats. Recently, dramatic increases in the completeness of
repetitive portions of plant genomes have been achieved
due to improvements in long-read data [9].

Here, we describe an easy-to-use and interactive web
framework based on the R/Shiny package [10] that inte-
grates a suite of quantitative measures to characterize
genome assemblies and annotations. Our application,
named GenomeQC, provides researchers with a sum-
mary of these statistics and allows for benchmarking
against gold standard reference assemblies. We have also
developed a Docker container of the GenomeQC pipe-
line that calculates these metrics and supports analysis
of large (>2.5Gb) genomes.

Page 2 of 9

Implementation

Comparison with similar software programs

Although several tools exist for evaluating and visualizing
the quality of genome assemblies, they are often challen-
ging to install and configure, do not support assessment of
gene structure annotations, and do not determine the
completeness of the repetitive fraction of the genome
based on LTR retrotransposon content. We tested the
GenomeQC tool along with two other genome assembly
evaluation tools, QUAST-LG [11] and REAPR [12] on
three maize genome datasets (B73_v4, Mol17 and W22) as
input. Table 1 shows the comparison of the output met-
rics generated by each tool along with their run time on
the test datasets. The full details of the outputs and the
datasets used for benchmarking the tools are included in
the Additional file 2 (Table S1, Table S2, Table S3, Table
S4, Table S5, Table S6) along with parameters and com-
mands used in running these tools.

Design concept

Workflow of the web application

The web-application of the GenomeQC tool (Fig. 1) has
three sections:

Analyze Genome Assembly

Input layer This allows the user to upload a maximum of
two genome assemblies for analysis. Users also have the
option to benchmark the quality of the uploaded genome
assembly with the gold reference genomes by selecting the
names from the drop-down list. Other inputs that the user
needs to provide for this section include: the label for the

Table 1 Comparison of the key metrics and features of the GenomeQC tool with two other assembly evaluation tools QUAST-LG

and REAPR

Metrics GenomeQC QUAST-LG REAPR

Reference-free standard metrics (with just the Yes Yes Yes

genome assembly as input)

Metric based on gene space completeness Yes Yes No

(BUSCO)

BUSCO datasets and training options BUSCO profile datasets: 34, BUSCO profile datasets: 3 (Fungal, Eukaryote, No
Augustus species: all bacterial), Augustus species: 1 (fly)

Metrics based on whole genome alignment to No Yes No

reference genome assembly

Metrics based on mapping raw reads to the No Yes Yes

assembly

Metrics based on repeat space completeness (LAl) ~ Yes No No

Vector contamination check Yes No No

Assessment of gene structure annotations set Yes No No

Web server for the program Yes No No

Dockerfile availability Yes No No

Runtime (CPU hours) ~1116 ~ 2340 ~

2556

Page 3 of 9

Manchanda et al. BMC Genomics (2020) 21:193
p
GenomeQC
g { !
Analyse Compare Analyse
Genome Reference Gene
- Assembly Genomes Annotations
2
kS v v
Input Input Input
* Assembly « Annotation GFF3 file
FASTA file Selegt Re_ferences * Transcripts/Assembly
+ Estimated {indize jice FASTA file
BT G arabidopsis, etc.)
A A
v Yy V vy Yy v \A \J
Assembly Assembly gene Assembly Gene structure
c R
(@) Contamination space contiguity ESEILEL) . Gene stioture annotation
= h e scaffold/contig Annotation
= check for completness analysis: length Metrics length Metrics completness
— adaptor analysis: BUSCO NG(X) analysis: BUSCO
= seguences
3 | | l l |
b 4
O y(v
e Bash script call
g;th jrfnse:ri(;)atlss Bash script calls
R and Python R and Python R and Python python scripts
and BUSCO
Lo and BUSCO
pipeline s
pipeline
‘) l | |
= s Assembly Assembly Annotation Annotation
8_ Cl:ontam!raélon BUSCO plot NG(X) values metrics table metrics table BUSCO plot
= g OL?TA‘E' o emailed as (downloadable as (ownioadable (downloadable as emailed as
8 ile HTML file .csv file) as .csv file) .csv file) HTML file
Fig. 1 Workflow of the web application. The interface layer of the web application is partitioned into 3 sections: comparing reference genomes,
analyzing genome assembly and analyzing gene structure annotations (green). Each of these sections has an input widget panel for file uploads
and parameter selection (green). The input parameters and the uploaded data files are then analyzed for contiguity, gene space and repeat space
completeness, and contamination check (blue) using bash, R and python scripts (blue) and the different metrics and plots are displayed through
the output tabs (yellow)

genome assembly plots, estimated genome size, datasets
and species name for BUSCO analysis and email address
to which the plots will be sent.

Computation layer This calculates standard length and
number metrics like N50, L50, vector contamination
check and gene set completeness.

To calculate the standard length metrics N50, L50,
NG(X) values for the user uploaded assembly, two cus-
tom python scripts NG.py and assembly_stats.py are
employed. The gene space completeness analysis of the
genome assembly is performed using the BUSCO pack-
age version 3.0.2 [8] with genome mode. For vector con-
tamination check, custom script contamination.py is
used which implements a python wrapper for the NCBI
BLAST+ program [13] blastn and a modified version of
the taxify script from the blobtools package v1.1 [14] to

blast (with parameters: task = “megablast”, max_target_
seqs = 1, max_hsps = 1, evalue = 1e-25) the input contigs/
scaffold sequences in the uploaded genome assembly
against the UniVec Database [15] and add the taxon ids
to the blast hits. All the plots are generated using the R
package ggplot2 and python modules pandas and plotly.

Output layer The output layer of the interface displays
the NG(X) plot and the interactive assembly metrics
table. The BUSCO and contamination plots are emailed
to the user at the provided email address.

Compare Reference Genomes
Input layer The input widget of this section takes two

parameters: name of one or more reference genome as-
semblies and the user’s email address.

Manchanda et al. BMC Genomics (2020) 21:193

Computation layer The reference genome metrics are
pre-calculated using the same custom scripts NG.py and
assembly_stats.py and the BUSCO package version 3.0.2.
The R package ggplot2 and a custom python script
(modules pandas and plotly) are used to plot the pre-
computed reference metrics.

The parameters used for the computation of metrics
for the reference genomes of the different plant species
are provided in the GenomeQC user guide accessible at
the GitHub repository.

Output layer The output layer of the interface displays
the NG(X) plot and the interactive assembly metrics
table. The BUSCO assembly and annotation plots are
emailed to the user at the provided email address.

Analyze Genome Annotation

Input layer This allows the user to upload a gene struc-
ture annotation set, genome assembly and transcript file
(optional) for analysis. Users also have the option to
benchmark the quality of the uploaded gene annotations

Page 4 of 9

with the gold reference genomes by selecting the names
from the drop-down list. Other inputs that the user
needs to provide for this analysis section include: labels
for the plots and table, dataset names for BUSCO ana-
lysis and email address to which the plots will be sent.

Computation layer Once the required files and parame-
ters are provided to the tool, it computes the length and
count metrics for different features of the GFF file using
the custom python script gff stats.py and assesses the
completeness of the gene set based on a conserved set of
orthologs using the BUSCO package version 3.0.2 with
transcriptome mode.

Output layer The output layer displays the interactive
annotation metrics table file. The BUSCO stack plots are
emailed to the user at the provided email address.

Workflow of the docker application There are two
docker files: one for analyzing the genome assembly
and a second for analyzing the genome annotation file
(Fig. 2).

GenomeQC
Analyse Analyse
Genome Gene
Assembly Annotations
+—
2
= ;
Input
. - Input
. é::;’;gz Zﬁi:’:‘nfge » Annotation GFF3 file
e * Transcripts/Assembly
FASTA file
=k * BUSCO datasets
Bash script calls PythothBUSCO and LAI scripts Bash script calls Python and BUSCO scripts
c
S [| I b
E A bly gene
E— Assembl Ssell truct
=] C bl Assembly Assembly space Assembly Gene structure Eehes fucliire
o ontamination . S repeat space i annotation
c check for scaffold/contig contiguity completness completess Annotatlon completness
o adaptor length Metrics analysis: NG(X) ?anag/éléz s A length Metrics analysis: BUSCO
QO sequences U
v .
) Contamination Assembly A ot Annotation
= - Assembly length NG(X) values gUSCO metri Assembly LAl nnotation g;5c0 metrics
g potemaledas ik fe file reres index file | length metrics file file
5 ile
O
Fig. 2 Workflow of the docker image of the GenomeQC pipeline. The containerized version of the GenomeQC pipeline requires BUSCO datasets
(highlighted in red) as input in addition to the other input parameters and files (green) required by the web application. Additionally, the
containerized version allows computation of the LAl index for the input genome assembly (highlighted in the red box)
J

Manchanda et al. BMC Genomics (2020) 21:193

Analyze Genome Assembly

Input The docker pipeline takes as input: genome as-
sembly in FASTA format, estimated genome size in Mb,
BUSCO datasets and species name, email address and
the name of the output files and directory.

Computation The pipeline computes the various relevant
assessment metrics like N50, L50, NG(X) values, BUSCO
gene space completeness metrics and vector contamination
check. In addition to these metrics, the docker pipeline pro-
vides the functionality to compute LTR Assembly Index
(LAI) of the input genome assembly to assess the repeat
space completeness of the assembled genome sequence. To
calculate the standard length and count metrics N50, L50
etc. and the NG(X) values for the user input assembly, two
custom python scripts NG.py and assembly_stats.py are
employed. The gene space completeness analysis of the
genome assembly is performed using the BUSCO package
version 3.0.2 with genome mode. For vector contamination
check, custom script contamination.py is used that imple-
ments the python wrapper for the NCBI BLAST+ program
blastn (with parameters: task = “megablast”, max_target
seqs = 1, max_hsps =1, evalue = 1e-25) to blast the input
contigs/scaffold sequences in the uploaded genome assem-
bly against the UniVec Database and a modified version of
the taxify script (from the blobtools package v1.1) to add
the taxon ids to the blast hits. To calculate the LAI score
for the input genome assembly, the pipeline uses the soft-
ware package LTR retriever v2.8.2 [16]. This program is de-
signed to identify intact LTR retrotransposons with high
accuracy and sensitivity. This set of high confidence LTR
retrotransposons are then used to assess the repeat space
completeness of the assembly by calculating the percentage
of fully-assembled LTR retrotransposons in the assembled
genome sequence.

Output The pipeline generates the following output files
and directories:

1) Output file (text file format) containing the NG(X)
values which could be easily plotted in R or Excel
to generate the NG(X) graph.

2) Assembly metrics output file (text file format)
contains all the standard metrics like N50, L50,
total number of bases, %N, etc.

3) Vector contamination plot in HTML format and
the associated blast hits.

4) BUSCO output directory containing the summary
text file for the number of complete, fragmented
and missing BUSCO genes identified in the input
genome assembly.

5) LAI output file (.out. LAI) containing the LAI score
for the input assembly.

Page 5 of 9

Analyze Genome Annotation

Input The docker pipeline takes as input: genome anno-
tation file in GFF format, and transcripts file in FASTA
format BUSCO datasets, and the name of the output
files and directory.

Computation The pipeline computes the various rele-
vant assessment metrics as computed by the web-
server including number and length of gene models,
exons, etc. and the BUSCO gene space completeness
metrics. Custom python script gff stats.py is
employed to calculate the different gene model statis-
tics for the input annotation GFF file. The gene space
completeness analysis of the input genome annota-
tions is performed using the BUSCO package version
3.0.2 with transcriptome mode.

Output The pipeline generates the following output files
and directories:

1) Annotation metrics output file (text file format)
that contains the relevant statistics on the different
features of the GFF file like number of gene models,
exons, transcripts etc.

2) BUSCO output directory containing the summary
text file for the number of complete, fragmented
and missing BUSCO genes identified in the input
genome annotation set.

All the packages used in the web-application and
docker pipeline are mentioned in Table 2, Table 3 and
Table 4.

Results

Input files

Two files are required as input for GenomeQC
analysis.

“Genome Assembly File” is a sequence file in the stand-
ard FASTA format. The file should be gunzipped com-
pressed (.gz) before uploading it to the web-application.
The maximum upload limit for the assembly file is 1Gb.

“Genome Structure Annotation File” is a tab separated
text file in GFF/GTF format [17]. The file should be
gunzipped compressed (.gz) before uploading it to the
web-application.

Optional file

“Transcript FASTA file”: BUSCO analysis of structural
annotations requires a transcript file in FASTA format
as input. Thus, the user could either directly upload a
transcript (DNA nucleotide sequences) file in com-
pressed (.gz) FASTA format or the tool could extract the
transcript sequences from the uploaded assembly and

Manchanda et al. BMC Genomics

Page 6 of 9

Table 2 R packages used in the GenomeQC web-application

R package

Short Description

Shiny version 1.5.9

Tools [17]

Seqinr [18]

Biostrings [19]

R.utils [20]

Tidyverse [21]

Gridextra [22], grid [22], cowplot [23]
Reshape [24]

shinyWidgets [25]

shinyBS [26]

Promise, future and multisession [27]

Package to build interactive web applications with R

Package for file utilities

Package for handling biological sequence data

Package for manipulating biological sequences

Package for handling gunzipped files

Package for formatting and plotting data

Package provides graphical layout capabilities to R

Package for formatting and aggregating the data

Package for customizing input widgets in R shiny applications

Package for adding action and toggle buttons and popover to input or output

Package that provides async programming in R to handle long-running
operations that run in the background

annotation files using the gffread utility v0.9.12 [18].
Currently the tool is configured to first use the informa-
tion from a transcripts file if provided by the user. If the
user does not upload the transcripts file, the tool will
check whether the sequence IDs in the first column of
the GFF file correspond to the headers in the FASTA
file. If there is a discrepancy, the tool will print an error
message. Otherwise, the BUSCO job will be submitted.

Interface design
The tool’s analysis interface is organized into three sec-
tions for three types of analysis.

The “Compare reference genomes” section outputs vari-
ous pre-computed assembly and annotation metrics from
a user-selected list of reference genomes.

The “Analyze your genome assembly” section provides
the user the option to perform analysis on their genome
assembly as well as benchmark the quality of their genome

assembly using pre-computed metrics from gold standard
reference genomes.

The “Analyze your genome annotation” section provides
the user the option to perform analysis on their genome
annotations as well as benchmark their analysis versus
pre-computed reference genomes.

Output tabs
The “Assembly NG(X) Plot” tab calculates NG values for
an uploaded assembly based on the input estimated gen-
ome size at different integer thresholds (1-100%) and gen-
erates a plot showing the thresholds on the x-axis and the
corresponding log-scaled scaffold or contig lengths on the
y-axis. Genome assemblies with larger scaffold/contig
lengths across NG(X) thresholds are more contiguous.

The NG(X) values can be downloaded as a .csv file and
the plot can be saved in png format by right clicking on the
plot.

Table 3 Python packages used in the GenomeQC web-application and standalone application

Python package

Short Description

Sys, 0s, argparse, re, traceback, subprocess,
collections [28]

Standard libraries and modules that are distributed with the python installation.
These packages provide access to system-specific parameters and functions,

functionality to interact with the operating systems, parse command line arguments, etc.

Bio [29] Provides functionality for computation of biological sequence data

Statistics [30]

Provides functionality for mathematical computation

Numpy [31] Fundamental package for scientific computing
Bio.Blast.Applications [13] Provides the NCBI BLAST command line utility for python
Iglob [32] Package to find files in the directory through pattern matching
Pandas [33] Python library for data analysis and manipulation

Plotly.offline plotly.graph_objs [34]
Matplotlib [35]

email.mime.text, email.mime.application
email.mime.multipart, smtplib [36]

Python package for creating interactive plots
Provides plotting functionality to python for data visualization

Python package that provides email handling functionality to python

Manchanda et al. BMC Genomics

(2020) 21:193 Page 7 of 9

Table 4 External tools used in the GenomeQC web-application and standalone application. Note that the LTR retriever package is
included in the standalone application only

External tools

Short Description

BUSCO v3.0.2
Dependencies:

NCBI BLAST+ v2.28.0
Augustus v3.2.1 [37]
HMMER v3.1b2 [38]

Gffread 0.9.12 [39]

NCBI UniVec Database

Taxify module, BtlO.py, BtLog.py
(Blobtools v1.1)

LTR retriever v2.8.2
Dependencies:

NCBI BLAST+ 2.9.0
RepeatMasker 4.0.9 [40]
HMMER 3.2.1

CDHIT 4.8.1 [41]
LTRFINDER parallel [42]
LTRharvest 1.5.10 [43]

BUSCO Package is used for assessing gene space completeness using an ortholog set of conserved genes.
BUSCO assessment of genome assembly involves constructing gene models from the candidate regions
identified by tblastn searches against the consensus sequences. BUSCO pipeline uses AUGUSTUS de novo gene
predictor to construct the gene models. These gene predictions are then used by HMMER which classifies the
matches of gene predictions with the BUSCO lineage profiles as complete and single copy (C&S), duplicated
(D), fragmented (F) or missing (M).

Gffread is a Cufflinks utility that is used to extract the transcript sequences given the genome fasta file and
annotation GFF file. (http://ccb.jhu.edu/software/stringtie/gff.shtml)

Database of vector sequences, adaptors, linkers and primer sequences used in DNA cloning

This script is used to add NCBI TaxID to the blast hits of the input contig/scaffold sequences to the UniVec
Database

LTR retriever package is used to calculate LTR Assembly index (LAI)?® of the input genome assembly. LTRharvest
and LTRFinder tools are first used to obtain retrotransposon candidates. LTR retriever package filters out false
positives and generates high confidence intact LTR retrotransposons from the candidate sequences. Repeat
Masker is used for whole genome LTR annotation to annotate all possible LTR-RTs present in the genome. LAI
is finally calculated as the percentage of the total length of intact LTR retrotransposons present in the assem-
bled genome sequence.

The “Assembly Metrics Table” and the “Annotation
Metrics Table” tabs calculate various length and count
metrics for the uploaded assembly and annotation files

and outputs interactive tables with pop-up plots based
on row selection. These tabs provide the user with quick
summaries of standard assembly and annotation metrics.

(A) Assembly metrics table

E B73
Number of T sew07 — w22
scaffolds 596 306 2560 B Mo
Total size of Ly den0?
scaffolds 2134339606 2133868603 2182615441 | 3
N50 10679169 35520101 10204498 §
L50 62 19 69 0e+00 \

(C) Assembly NG(X) plot

‘ 0 10 20 30 40 50 60 70 80 90 100

length

mentioned maize lines

(B) Annotation metrics table

qv; 100 — 100 —
No. of gene models 39498 40691 38620 g‘:,n &5 . %5, i B rsine

o
Average gene 4173 4330 4076 g 60 — 60 - B fragmented
| h (b . complete
ength (bp) g w0 - 4 - . & duplicate
Average number of 7 7 g - 0 - complete
exons per gene g L &single
Average exon 284 292 297 g °- °

Fig. 3 Summaries and graphical output by GenomeQC. a and b include standard assembly and annotation metrics generated for maize
reference lines B73, W22 and Mo17. ¢ is an NG(X) graph in which the x-axis charts NG(X) threshold values (1 to 100%) and the y-axis shows
scaffold lengths. Each curve represents scaffold lengths of assemblies at different NG levels with a bold vertical line at the commonly used NG50
value. d shows the relative proportion of complete and single copy (blue), complete and duplicated (orange), fragmented (green), and missing
(red) Benchmark Universal Single Copy Ortholog (BUSCO) genes identified for the assembly (left) and gene annotation set (right) of the above-

NG(X)

(D) Assembly and Annotation BUSCO plots

B73_v4 W22 Mol7 B73_v4 W22 Mol7

http://ccb.jhu.edu/software/stringtie/gff.shtml

Manchanda et al. BMC Genomics (2020) 21:193

These tables can be downloaded as comma separated
files.

The “Assembly BUSCO and Contamination Plots” tab:
calculates and emails BUSCO scores for the uploaded gen-
ome assembly and compares it with the pre-computed
values of the user-selected reference genomes. A high qual-
ity genome assembly is expected to contain a higher num-
ber of complete and single copy BUSCO genes (C&S) and
a lower number of missing (M) or fragmented (F) BUSCO
genes [8]. These plots are emailed as png and html files.
The HTML file can be opened in a chart studio and
customized.

The “Annotation BUSCO plot” tab calculates and emails
the BUSCO scores for the uploaded genome annotations
and compares it with pre-computed values of the user-
selected reference genomes. BUSCO and contamination
plots are also emailed as html files. Figure 3 shows the sum-
maries and graphical outputs generated by the GenomeQC
web application.

Conclusions

GenomeQC provides a user-friendly web framework for
calculating contiguity and completeness metrics for gen-
ome assemblies and annotations. The web application is
optimized to compute metrics for small to medium-sized
genomes with an upper limit of 2.5 Gb (the approximate
size of the maize genome). However, the containerized ver-
sion of the pipeline available through our GitHub reposi-
tory can be used to calculate metrics for larger genomes. In
addition to standard length metrics such as N50 and L50,
GenomeQC assesses gene- and repeat-space completeness
of an input genome assembly and screens for both vector
and adapter contamination, a standard check implemented
by NCBI before accepting new assemblies into the database.
The web application of GenomeQC calculates standard
metrics on the fly with just the genome assembly as input,
requiring no additional computational resources or soft-
ware installation. Optional annotation assessments are also
performed by GenomeQC when gene predictions are pro-
vided as input (in GFF format). The report includes stand-
ard statistics of the gene model features like the number
and size of gene models, exons, transcripts, etc. and per-
forms quality assessment of the gene structure annotations
using the BUSCO ortholog gene set. Finally, GenomeQC
allows researchers to benchmark their metrics relative to
gold standard reference genomes. These utilities should
prove useful as the practice of genome assembly increas-
ingly becomes a routine component of a biologists’ toolbelt.

Availability of source code and requirements
Project name: GenomeQC.
Project home page:
https://github.com/HuffordLab/GenomeQC
Operating system(s): platform independent

Page 8 of 9

Programming language: R, R shiny, Python, Shell script
Other requirements: Docker engine
License: Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6568-2.

Additional file 1: Figure S1. Exponential growth in the number of
plant genome assemblies deposited in the NCBI Assembly database from
November 2004 through December 2018. Figure S2. Number of plant
genome assemblies in the NCBI Assembly Database at each level of
assembly contiguity.

Additional file 2. Information on the input data, parameters and output
from the three tools: QUAST-LG, REAPR and GenomeQC. Table S1.
QUAST-LG output with just the genome fasta file as input. Table S2.
QUAST-LG output with reference genome as input. Table $3. QUAST-LG
output with reads as input. Table S4. REAPR output. Table S5. Geno-
meQC assembly output. Table S6. GenomeQC annotation output.

Abbreviations
BUSCO: Benchmark Universal Single Copy Orthologs; LAI: LTR Assembly
Index; LTR: Long Terminal Repeats

Acknowledgements

The authors would like to thank Levi Baber (lowa State University Director of
Research IT) for technical help and Jack Gardiner (Curator at MaizeGDB) for
testing the web application and providing helpful suggestions.

Authors’ contributions

NM, CJLD, CA, and MBH conceived the project. All authors tested the tool,
and provided feedback. NM developed the front- and back-end code and
was the lead writer for the manuscript. MBH, CA, and CJLD were responsible
for funding acquisition. MBH provided project administration. MRW and AS
offered design suggestions and feedback along with running test datasets
through GenomeQC. JLP provided network and system administration sup-
port. All authors have read and approved the final manuscript.

Funding

This work was supported by United States Department of Agriculture-
Agricultural Research Service (Project Number 5030-21000-068-00-D) to
CMA, Specific Coorperative Agreement 58-5030-8-064 to MBH and CJLD,
and lowa State University Plant Sciences Institute Faculty Scholar support to
CJLD. The content is solely the responsibility of the authors and does not ne-
cessarily represent the official views of the funding agency. Mention of trade
names or commercial products in this publication is solely for the purpose of
providing specific information and does not imply recommendation or en-
dorsement by the U.S. Department of Agriculture. USDA is an equal oppor-
tunity provider and employer.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Department of Ecology, Evolution and Organismal Biology, lowa State
University, Ames, |A 50011, USA. 2USDA-ARS Corn Insects and Crop Genetics
Research Unit, Ames, IA 50011, USA. *Genome Informatics Facility, lowa State
University, Ames, IA 50011, USA. “Department of Genetics, Development and

https://github.com/HuffordLab/GenomeQC
https://doi.org/10.1186/s12864-020-6568-2
https://doi.org/10.1186/s12864-020-6568-2

Manchanda et al. BMC Genomics

(2020) 21:193

Cell Biology, lowa State University, Ames, IA 50011, USA. “Department of
Agronomy, lowa State University, Ames, IA 50011, USA.

Received: 31 October 2019 Accepted: 7 February 2020
Published online: 02 March 2020

References

1.

10.
1.

22.

23.

24.

25.

Leushkin EV, Sutormin RA, Nabieva ER, et al. The miniature genome of a
carnivorous plant Genlisea aurea contains a low number of genes and short
non-coding sequences. BMC Genomics. 2013;14:476.

Zimin A, et al. Sequencing and assembly of the 22-gb loblolly pine
genome. Genetics. 2014;196(3):875-90.

Duitama J, et al. Whole genome sequencing of elite rice cultivars as a
comprehensive information resource for marker assisted selection. PLoS
One. 2015;10(4):e0124617.

Cheng et al. Genome resequencing and comparative variome analysis in a
Brassica rapa and Brassica oleracea collection. Scientific Data 3. 2016; Article
number: 160119.

Kitts PA, et al. Assembly: a resource for assembled genomes at NCBI.
Nucleic Acids Res. 2015;44:D73-80.

Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol |, et al.
Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species. Gigascience. 2013;2:10.

Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation.
Nat Rev Genet. 2012;13(5):329-42.

Simao FA, et al. BUSCO: assessing genome assembly and annotation
completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210-2.
Ou S, et al. Assessing genome assembly quality using the LTR Assembly
Index (LAI). Nucleic Acids Res. 2018;46(21):e126.

Shiny. http://shiny.rstudio.com/. Accessed 30 Oct 2018.

Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile
genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34(13):
i142-50. https.//doi.org/10.1093/bicinformatics/bty266.

Hunt M, Kikuchi T, Sanders M, et al. REAPR: a universal tool for genome
assembly evaluation. Genome Biol. 2013;14(5):R47.

Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and
applications. BMC Bioinformatics. 2009;10:421. Published 2009 Dec 15.
https.//doi.org/10.1186/1471-2105-10-421.

Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies
[version 1; peer review: 2 approved with reservations]. F1000Res. 2017,6:
1287. https://doi.org/10.12688/f1000research.12232.1.

The NCBI UniVec Database. https://www.ncbinlm.nih.gov/tools/vecscreen/
univec/. Accessed 20 Sept 2018.

Ou S, Jiang N. LTR_retriever: a highly accurate and sensitive program for
identification of long terminal repeat Retrotransposons. Plant Physiol. 2018;
176(2):1410-22. https;//doi.org/10.1104/pp.17.01310.

R Core Team. R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing; 2019. URL https.//www.R-
project.org/.

Charif D, Lobry JR. SeqginR 1.0.2: A Contributed Package to the R Project for
Statistical Computing Devoted to Biological Sequences Retrieval and
Analysis. 2007. In: Bastolla U, Porto M, Roman HE, Vendruscolo M. (eds)
Structural Approaches to Sequence Evolution: Molecules, Networks,
Populations, Springer Berlin Heidelberg. isbn=978-3-540-35306-5. https.//
doi.org/10.1007/978-3-540-35306-5_10.

Pages H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: Efficient
manipulation of biological strings; 2019. R package version 2.52.0.
Bengtsson H. Ruutils: Various Programming Utilities. 2019. R package version
290. https://CRAN.R-project.org/package=R.utils.

Wickham H, et al. Welcome to the tidyverse. J Open Source Softw. 2019;
4(43):1686. https://doi.org/10.21105/j0ss.01686.

Baptiste Auguie. gridExtra: Miscellaneous Functions for “Grid" Graphics. 2017.
R package version 2.3. https://CRAN.R-project.org/package=gridExtra.

Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for
‘ggplot2’. 2019. R package version 1.0.0. https://CRAN.R-project.org/
package=cowplot.

Wickham H. Reshaping data with the reshape package. J Stat Softw. 2007;
21(12). https.//cran.r-project.org/web/packages/reshape/index-html.

The R shinyWidgets. https://cran.r-project.org/web/packages/shinyWidgets/
index-html. Accessed 20 Oct 2018.

26.

27.

28.
29.

30.

31
32.

33.
34.
35.
36.
37.
38.
39.

40.

41.

42.

43.

Page 9 of 9

The R shinyBS. https://cran.r-project.org/web/packages/shinyBS/index.html.
Accessed 20 Oct 2018.

The R shiny future package. https://github.com/HenrikBengtsson/future.
Accessed 1 Nov 2018.

Python 3 library. https://docs.python.org/3/library/. Accessed 20 Oct 2018.
Biopython package. https://biopython.org/wiki/Getting_Started. Accessed
20 Oct 2018.

Python statistics package. https.//docs.python.org/3/library/statistics.html.
Accessed 20 Oct 2018.

Python numpy package. https://docs.scipy.org/. Accessed 20 Oct 2018.
Python iglob package. https://docs.python.org/3/library/glob.html. Accessed
20 Oct 2018.

Python pandas package. https.//pypi.org/project/pandas/. Accessed 20 Oct
2018.

Python plotly package. https:/plotly/python/. Accessed 20 Oct 2018.
Python matplotib package. https://matplotlib.org/. Accessed 20 Dec 2019.
Python email application package. https://docs.python.org/2/library/email.
html. Accessed 20 Oct 2018.

Keller O, et al. A novel hybrid gene prediction method employing protein
multiple sequence alignments. Bioinformatics. 2011;27:757-63.

Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:
e1002195.

The gffread utility. http://ccb.jhu.edu/software/stringtie/gff.shtml. Accessed
20 Oct 2018.

Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015. http://
www.repeatmasker.org. Accessed 15 Feb 2020.

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-
generation sequencing data. Bioinformatics. 2012,28(23):3150-2. https.//doi.
0rg/10.1093/bioinformatics/bts565.

Ou'S, Jiang N. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling
rapid identification of long terminal repeat retrotransposons. Mobile DNA.
2019;10:48. https://doi.org/10.1186/513100-019-0193-0.

Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible
software for de novo detection of LTR retrotransposons. BMC Bioinformatics.
2008,9:18. https://doi.org/10.1186/1471-2105-9-18.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

http://shiny.rstudio.com/
https://doi.org/10.1093/bioinformatics/bty266
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.12688/f1000research.12232.1
https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/
https://doi.org/10.1104/pp.17.01310
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1007/978-3-540-35306-5_10
https://doi.org/10.1007/978-3-540-35306-5_10
https://cran.r-project.org/package=R.utils
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/package=gridExtra
https://cran.r-project.org/package=cowplot
https://cran.r-project.org/package=cowplot
https://cran.r-project.org/web/packages/reshape/index.html
https://cran.r-project.org/web/packages/shinyWidgets/index.html
https://cran.r-project.org/web/packages/shinyWidgets/index.html
https://cran.r-project.org/web/packages/shinyBS/index.html
https://github.com/HenrikBengtsson/future
https://docs.python.org/3/library/
https://biopython.org/wiki/Getting_Started
https://docs.python.org/3/library/statistics.html
https://docs.scipy.org/
https://docs.python.org/3/library/glob.html
https://pypi.org/project/pandas/
https://plot.ly/python/
https://matplotlib.org/
https://docs.python.org/2/library/email.html
https://docs.python.org/2/library/email.html
http://ccb.jhu.edu/software/stringtie/gff.shtml
http://www.repeatmasker.org
http://www.repeatmasker.org
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1186/s13100-019-0193-0
https://doi.org/10.1186/1471-2105-9-18

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Comparison with similar software programs

	Design concept
	Workflow of the web application
	Analyze Genome Assembly
	Compare Reference Genomes
	Analyze Genome Annotation
	Analyze Genome Assembly
	Analyze Genome Annotation

	Results
	Input files
	Optional file

	Interface design
	Output tabs

	Conclusions
	Availability of source code and requirements
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

