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Machine learning and artificial intelligence (ML/AI)

have become important research tools in molecular

medicine and chemistry. Their rise and recent success

in drug discovery promises a rapid progression of de-

velopment pipelines while reshaping how fundamental

and clinical research is conducted. By taking advantage

of the ever-growing wealth of publicly available and

proprietary data, learning algorithms now provide an

attractive means to generate statistically motivated

research hypotheses. Hitherto unknown data patterns

may guide and prioritize experiments, and augment

expert intuition. Therefore, data is a key component in

the model building workflow. Herein, I aim to discuss

types of chemical and biological data according to their

quality and reemphasize general recommendations for

their use in ML/AI.

Introduction
Drug discovery is cornerstone for improved and sustainable

healthcare. Its success is tightly connected to advances in

chemistry and biology research that eventually provide in-
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novative chemical matter for unexplored, yet disease-rele-

vant drug targets and signalling pathways [1–3]. Over the

years, a significant amount of data has been accumulated – by

academia and the pharmaceutical industry – to a point where

it is now humanly impossible to process all information

enclosed [4]. Indeed, the generalized non-linearity of data

correlations coupled to a perceived human inefficiency at

integrating information from more than four variables simul-

taneously warrants the development of improved strategies

to extract knowledge and efficiently advance discovery pro-

grams [5,6].

Recent advances in machine learning/artificial intelligence

(ML/AI) heuristics, computing power and storage capacity

now allow for correctly parsing and performing correlation

analyses with the ever-growing amount of chemical and

biological data, as annotated in both publicly-available (e.g.

ChEMBL) and proprietary/corporate datasets. Moreover, the

diminishing hardware costs and wide advocacy for open

source tools democratizes the access to and development

of bespoke ML/AI for myriad, real-world applications [7,8].

The use of ML/AI for retrosynthetic planning [9–13], de novo

design [14–16], reaction product prediction [17–19], and drug

target deconvolution [20,21], among others has been pro-

spectively validated and thoroughly reviewed on multiple

occasions [22–24]. While the latter contributions commonly

focus on the ML/AI model architectures and strategies for

formalizing expert knowledge, less attention has been given
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Fig. 1. High-throughput experimentation driven by robotic systems
generates reproducible, high quality datasets for machine learning
applications. The knowledge base may then be harnessed to generate
statistical models that could be employed for predicting outcomes of
new experiments.
to a key component of the model development process – data

source quality. One may argue that despite the growing

amount of data, its collection is still a bottleneck in ML/AI

for drug discovery. This is especially true for new ML/AI

applications where labelled data is not necessarily available,

or when a deep learning heuristics is employed and responsi-

ble for the feature engineering task. Data curation and quality

check is also critical, time-consuming and an underappreci-

ated task by the less informed community. However, the use

of non-curated datasets can have a significant impact on the

harmonization of information and, subsequently, on model

quality and utility. Taking into account potential pitfalls,

herein, I highlight the good (high quality and complete), the

bad (moderate quality and sparse) and the ugly (low quality)

in chemical and biological data for knowledge abstraction in

ML/AI. To that end, I analyze and discuss the quality of

information enclosed in select publicly available and propri-

etary databases. Based on those examples, I aim to pinpoint

their caveats and reemphasize general guidelines for data

inspection and curation to the least experienced medicinal

chemistry researchers.

The good
ML/AI has seen numerous applications in discovery sciences

and engineering through abstraction of expert knowledge.

Thus, access to data for learning is key. While working with

labelled data can influence the choice for supervised (classifi-

cation/regression models for labelled data) over unsupervised

(clustering/dimensionality reduction models for unlabelled

data) methods, it is unquestionable that any ML/AI method

requires quality data from where meaningful patterns are

identified to describe a given event [5]. The utility of super-

vised ML/AI methods can be evaluated retrospectively and in

intuitive fashion by comparing predicted values and classes

with the ground truth, for the examples used in the model-

training phase. Indeed, good practice usually suggests the

assessment of supervised learning models through cross-vali-

dation studies without or with randomized target variables

[25]. In the latter case, real data patterns are expected to be

disrupted and lead to poorer model performance – a realiza-

tion that was recently re-emphasized by machine learning

practitioners in chemistry and biology [26]. Unsupervised

learning can also be evaluated retrospectively, albeit less

intuitively. For example, using well-established principles

in information theory to compare the difference of two

probability distributions, i.e. cross-entropy.

In real world, drug discovery scenarios, quality data in

chemistry and biology can be heterogeneous and scarce.

Specifically, data that is related to new discoveries or in

new research fields is, by definition, not abundant. Also,

the generation of data in different laboratories with different

equipment and researchers, the different data acquisition

methodologies and the often non-comparable experimental
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endpoints affect the harmonization of the information in

datasets [7]. Taken together, experiments tend to suit a very

specific research need, and are not designed for building

databases or with a ML/AI application in mind. Moreover,

data collection and labelling is very time consuming, expen-

sive and requires domain knowledge [5]. This offers limited

operational solutions for the majority of ML/AI researchers

but to mine pre-existing datasets. Ideally, collection of infor-

mation follows a standardized method while monitoring

goal-oriented endpoints (e.g. reaction yield, IC50 value) that

can be abstracted by relevant descriptors/features, such as

physicochemical properties. Also, the number of training

objects must be representative of the search space. This not

only impacts on the applicability domain of the implemen-

ted ML/AI, but also influences the utility of the models for

prospective use. Admittedly, extrapolation from a ML/AI

model with narrow domain of applicability confers high

uncertainty to its predictions, relative to in-sample predic-

tions.

The abovementioned limitations can be surpassed by high

throughput experimentation enabled by fully automated

robotic systems. These offer a solution to more rapidly ac-

quire data [27,28]. Among the numerous advantages of min-

iaturizing and parallelizing experiments, a salient feature of

automating chemistry and biology experiments is the repro-

ducibility of procedures that must be thoroughly documen-

ted and hardcoded in order to correctly capture information

for abstraction. Given the specificity of chemistry experi-

ments and absence of tailored datasets for most needs, gen-

erating on-demand information to deploy ML/AI models has

been pursued and can be recommended (Fig. 1). As reported

by Doyle and co-workers [29], 4608 Buchwald-Hartwig ami-

nation reactions were performed and simultaneously evalu-

ated in 1536-well plates to generate the knowledge base

required for ML/AI modelling. Furthermore, 640 deoxyfluor-

ination reaction data was generated to train a random forest

that could efficiently predict reaction outcomes given a de-

scriptor set encoding educts [30]. Similarly, Cronin and col-

leagues generated own reactivity training data to leverage an

active learning strategy as means of charting hitherto un-
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known reactivity space and ultimately discover new reactions

that may find applicability in the chemist’s toolbox [31].

Understandably, despite the potential of these approaches,

their feasibility may be currently limited to research groups

with appropriate automation equipment. However, the ab-

sence of full automation to generate training datasets does

not preclude the use of ML/AI in chemistry applications by

the wider community. One may argue that more important

than collecting data from hundreds or thousands of experi-

ments is ensuring that all performed experiments are highly

informative [32]. Moreover, the experiments ought to be

diverse and devoid of anthropogenic biases [33] that could

skew ML/AI models towards decisions in human-preferred

search spaces – i.e. including a high percentage of positive,

low risk outcomes. With that in mind, Reker et al. recently

demonstrated that bespoke active learning heuristics explor-

ing a small set of randomly performed experiments afford a

solution to minimize biases and to identify optimized reac-

tion conditions with minimal synthetic effort and in com-

petitive fashion to human intuition [34]. Despite this latter

application, one can foresee that future data-driven research

may become increasingly automated through robotic sys-

tems, as these technologies are progressively democratized

and made accessible to the wider academia and industry

communities [27,35–37]. As such, information generated

through probability computations in statistical learning cou-

pled to state-of-the-art robotics, i.e. with minimal human

intervention, will be preferred given the potentially balanced

nature of the enclosed information, which will include both

positive and negative results.

The bad
Undeniably, chemical and biological sciences of today evolve

at an unprecedented speed with new chemical reactions, drug

targets and signalling pathways being constantly discovered

or clarified. While an immense amount of data is generated in

this process, it is also true that databases aggregating chemical

and biological findings are usually imbalanced [38,39] – i.e.

focused on certain regions of search spaces or biased towards

certain outputs (e.g. high yielding reactions) – and redundant

in some instances, given that experiments are performed with

a clearly defined goal and research question in mind. In this

regard, data and information are not interchangeable terms,

as a high amount of data may offer limited information for

ML/AI. One may also argue that despite the wealth of avail-

able data, most database entries are not fully annotated

resulting in sparse datasets, which may not be ideal for

statistical learning. Therefore, construction of ML/AI models

from out-of-the-box chemistry (e.g. US patents) and chemo-

genomic (e.g. ChEMBL and BindingDB) data repositories –

when access to high-throughput experimentation is limited –

might be ill advised. The resulting models will most likely

under-perform in previously unseen prospective examples if
careful data curation is not made. Common errors in data-

bases include impossible valences in chemical structures,

wrongly annotated tautomers and miscalculation or swap-

ping of concentration values and units [40–42]. While a

quality check can be manually executed, the need for a

standardized data curation procedure has led to the imple-

mentation of automated pipelines capable of identifying

erroneous structures, scoring the annotated data and remov-

ing outliers, to promote meaningful cheminformatics studies

[43–45]. Some of these methods are open-source and do not

require a specialized knowledge in order to be employed by

the medicinal chemistry community [44].

Pharmaceutical patents have been a rich source of reliable

information for the implementation of retrosyntheses rec-

ommender tools based on deep learning architectures [7].

However, mining of >1.1 million unique patent reactions in

the 1976–2015 period revealed selection biases towards cer-

tain reaction types, e.g. acylation, alkylation, arylation

among others [46]. Understandably, the accuracy of ML/AI

tools built from this dataset will be poorer when predicting

retrosynthetic routes for molecules requiring transformations

less commonly present in the knowledge base. Additionally, a

recent survey on the same patent data showed that reported

yields are frequently inconsistent when comparing text-

mined and calculated values for a given reaction in the same

method description (Fig. 2). For example, 47,358 reactions (or

10% of all parsable patent data) presented a discrepancy of

>10% yield between text-mined and calculated values. More-

over, the distribution of reported yields was highly skewed

and in almost 50% of all reaction entries a yield was not

reported [7]. These observations do not invalidate the utility

of the dataset, but rather should caution the less experienced

researcher regarding potential limitations that may invali-

date downstream modelling.

Issues can also be found in chemogenomic databases, war-

ranting caution in their use. As mentioned before, more often

than desirable, molecular structures are not machine readable,

which can invalidate all respective bioactivity annotations and

values. While this might not impact the implementation of

robust quantitative–structure activity relationship models for

highly explored targets, the same is not true when information

is scarce, as in the case of new and unexplored targets. It is

however worth reemphasizing that sufficient amount of data

might be available but a high bias for certain bioactivity values

again limits the applicability of ML/AI. One of such examples

refers to the global emergence of SARS-CoV2. The inexistence

of medications/vaccines with proven clinical efficacy against

this coronavirus at a time of pandemics has prompted an

enormous worldwide effort to identify therapeutics to mitigate

the disease, control the pressure on health systems and limit

the death burden. Numerous reports have recently surfaced,

detailing not only the epidemics of the disease, but also dis-

closing the potentially actionable drug targets [47] or potential
www.drugdiscoverytoday.com 5
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Fig. 2. Chemical reaction data in US patents from 1976 to 2015 period is highly heterogeneous and potentially unsuitable for bespoke machine learning
applications. A high proportion of all reactions (47%) do not report a yield and >10% of reactions with both a calculated and text-mined yield show a
discrepancy between both values. The reaction centre and functional groups originating from the depicted reaction are highlighted. Data extracted from
Ref. [7].
repurposing strategies [48]. Given there is a high sequence

identity (>95%) [49] between the main protease (3C-like) of

SARS-CoV2 and SARS-CoV it is reasonable to recycle data from

previous target-based high-throughput primary screen pro-

grams (e.g. https://pubchem.ncbi.nlm.nih.gov/bioassay/

1706) for ML/AI. The dataset is however highly unbalanced,

as only 0.1% of all screening compounds showed any sort of

weak/moderate activity at a concentration of 6 mM against the

main protease of SARS-CoV. Thus, while classification-based

ML/AI algorithms are likely impracticable here, due to the lack

of positive (active) examples, regression methods may be more

applicable, yet not advisable. In regression, the goal is not to

distinguish between a highly (inactive) and lowly (active)

represented class, but predicting a real value. The distribution

of target values should cover a range as wide as possible, which,

admittedly, is not verifiable in this case since >99% of all

entities are inactive against the main protease. Due to the

narrow spread of bioactivity values, the utility of such a regres-

sion model likely is limited. Ultimately, this leads to a focused

domain of applicability and high uncertainty for potential out-

of-sample predictions. For quantitative structure activity rela-

tionship studies a minimum of 3 log unit spread in IC50, KD/i
6 www.drugdiscoverytoday.com
values is advisable [50], which, from my experience, is not

always the case for all targets in ChEMBL – a publicly available

chemogenomic data repository.

The ugly
Several data resources are, per se, not ideal for direct use as

knowledge bases in ML/AI applications. Rather, they require

extensive curation by expert chemists, biologists and data

scientists, in order to extract only the relevant and informa-

tive data, and eliminate noise that could decisively compro-

mise the utility of the implemented methods. Although I

argue that no dataset is in itself useless, inappropriate exploi-

tation of the underlying information may lead to important

pitfalls and erroneous conclusions. Thus, bad practice con-

stitutes a disservice to the community and may further

generate scepticism relative to the utility of ML/AI tools in

drug discovery. For example, in line with the discussed infor-

mation heterogeneity in pharmaceutical patents, one may

also find a high percentage of reaction protocols (9%) report-

ing yields above 100% and a skewed distribution of yields

towards high values [7]. As knowledgeable synthetic chemists

may recognize, this is an alternative reality that frequently

mailto:tiago.rodrigues@ff.ulisboa.pt
mailto:tiago.rodrigues@ff.ulisboa.pt


Vol. 32, No. 2019 Drug Discovery Today: Technologies |

Poorly soluble
molecule

Colloidal aggregates Unspecific binding

Drug Discovery Today: Technologies

Fig. 3. Colloidal aggregation is the major source of false positive
readouts in biological screening assays. Poorly soluble molecules form
colloidal structures at micromolar concentrations, which are able to
sequester and partly denature proteins adsorbed at their surface. This
unspecific interaction leads to apparent drug target inhibition.
arises from misannotation and no reasonable repair can be

recommended. Naturally, while the reaction protocols and

product structures may still be valid and useful for bespoke

applications – e.g. prediction of reaction products, reaction

condition design or retrosynthetic planning – the same reac-

tion description should not be considered if the goal is the

prediction of a reaction yield from a set of educts.

Similarly, ML/AI heuristics have gained traction in recent

years as a means of predicting on- and off-target effects for

small molecules, either in quantitative or qualitative fashion

[51,52]. These computations require a significant amount of

biological data that is usually collected at different com-

pound concentrations in order to obtain concentration–

response curves. From those, an EC50, KD or Ki value is

calculated and can be used as target value in ML/AI. How-

ever, at typical high-throughput screen concentrations, ag-

gregation of small molecules into colloidal particles

(SCAMs) is common, which may lead to sequestration

and partial protein denaturation [24,53] (Fig. 3). Indeed,

this is a widespread and unspecific mode of action for the

grand majority of single and double-digit micromolar hits.

As colloidal aggregation of hits and leads for drug discovery

is still insufficiently controlled for, it is comprehensible that

publicly available datasets are silently polluted with nui-

sances that may diverge attention in development programs

to attrition prone and less promising chemical matter. In-

deed, it has been estimated that up to 7% of all ChEMBL

ligands may aggregate, which ultimately compromises the

reliability of the biological data annotated to those entities

[24,54]. ML/AI heuristics for affinity prediction harness this

data and their utility may be questioned in cases where the

number of training examples is small – i.e. where false

biological patterns encoded in small colloidally aggregating

molecules may stand out. With appropriate awareness for

the aggregation problematic, chemogenomic datasets can be

substantially improved. Dynamic light scattering and target-

based screens with and without Triton X-100 should be more

routinely performed to (de-)validate the identified ligand–

target relationships.
Outlook
Data is a key component for any ML/AI-driven research

program. The fast pace at which drug discovery unfolds,

coupled to the rise of automation technologies has led to

the generation of massive amounts of data. As discussed

herein, such level of data wealth can become both a blessing

(for experienced practitioners) and a curse (for the less expe-

rienced) given their heterogeneity. Data will tend to be

appropriate for modelling when collected for a specific need.

Conversely, repurposing previously assembled and curated

datasets may lead to ill-informed decisions based on ML/AI

artefacts. In this concise review I highlight a grand challenge

in modern ML/AI research – identifying the good, the bad,

and the ugly in chemical and biological data, as a function of

their quality and completeness. This has been discussed by

providing select examples for each case and with the goal of

cautioning the casual ML/AI user for the associated short-

comings. In line with the on-going call for disclosure of ML/

AI code and knowledge bases in published studies, it would

also be beneficial for the community to standardize data

collection and reporting methods. Although recommenda-

tions have been made in this direction, their adoption is still

insufficient. Such measures can improve the quality of the

generated ML/AI models to more effectively advance future

drug discovery.
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