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Many studies have demonstrated that immunobiotics with immunoregulatory functions

improve the outcomes of several bacterial and viral infections by modulating the mucosal

immune system. However, the precise mechanisms underlying the immunoregulatory

and antiviral activities of immunobiotics have not yet been elucidated in detail. The present

study was conducted to determine whether selected lactic acid bacteria (LAB) modulate

toll-like receptor 3 (TLR3) agonist polyinosinic:polycytidylic acid (PolyI:C) induced viral

response in human intestinal epithelial cells (IECs). PolyI:C increased the expression of

interferon-β (IFN-β), interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant

protein (MCP-1), and interleukin-1β (IL-1β) in HCT116 cells, and these up-regulations

were significantly altered when cells were pre-stimulated with LAB isolated from Korean

fermented foods. LAB strains were capable to up-regulate IFN-β but down-regulated

IL-6, IL-8, MCP-1, and IL-1β mRNA levels as compared with PolyI: C. HCT-116 cell

treatment with LABs beneficially modulated the mRNA levels of C-X-C motif chemokine

10 (CXCL-10), 2-5A oligoadenylate synthetase 1 (OSA1), myxovirus resistance protein

(MxA), TLR3, and retinoic acid inducible gene-I (RIG-I), and TLR negative regulators.

In addition, LABs increased IFN-β, IFN-α, and interleukin-10 (IL-10) and decreased

tumor necrosis factor-α (TNF-α) and IL-1β protein/mRNA levels in THP-1 cells. LABs

also protected the cells by maintaining tight-junction proteins (zonula occludens-1 and

occludin). The beneficial effects of these LABs were mediated via modulation of the

interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB) pathways.

Overall, the results of this study indicate that immunobiotics have potent antiviral

and anti-inflammatory activities that may use as antiviral substitutes for human and

animal applications.
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INTRODUCTION

The gastrointestinal tracts (GITs) of humans and animals contain
innate and adaptive immune cells that permit colonization
by trillions of commensal microorganisms, which enhance
digestion, and host mucosal immunity. Of the immune cells,
intestinal epithelial cells (IECs) are the potent innate immune
cells lined as a monolayer in the lumen of the GIT (1). These
cells also act as a first line of defense against invading pathogens,
including viruses such as rotaviruses (2, 3). IECs are able to
sense and respond to various microbial stimuli from foreign
and commensal microbiota via specialized surface membrane
receptors such as toll-like receptors (TLRs) (1, 4). TLRs are a type
of pattern recognition receptor (PRR), which have the ability to
induce innate and adaptive immunity against invading pathogens
by recognizing their molecular patterns (4). Among the TLRs,
toll-like receptor 3 (TLR3) is able to recognize double stranded
RNA (dsRNA) and to triggers intracellular signal transduction
pathways in response to dsRNA viruses (5). After being ligated,
TLR3 activates the transcription factors nuclear factor-kappa
B (NF-κB) and interferon regulatory factor (IRF) via TLR
adaptors molecules such as MyD88, Toll/interleukin-1 (IL-1)
domain containing adaptor inducing IFN (TRIF), and TIRF-
related adaptor molecule (TRAM), to produce inflammatory
cytokines and interferons (IFNs) (6, 7). dsRNA is also recognized
by cytosolic receptors such as retinoic acid inducible gene-I (RIG-
1) and melanoma differentiation associated antigen 5 (MAD-5)
(8, 9), which interact with IFN-β promoter stimulator-1 (IPS-
1)/mitochondrial antiviral-signaling protein (MAVS) adaptor
proteins and thus activate NF-κB and interferon regulatory factor
3 and 7 (IRF3, 7) to augment the expressions of inflammatory
mediators and type I IFNs (7, 8). Collectively, previous reports
suggest that IECs possess more than one receptor to sense dsRNA
and its analog, and that they respond via two separate signaling
pathways (7).

Polyinosinic:polycytidylic acid (PolyI:C) is a synthetic dsRNA
analog that is often used to induce inflammatory responses that
mimic response induced by dsRNA viruses (5). TLR3 and RIG-
I/MDA-5 receptors have been reported to be able to recognize
PolyI:C and to activate transcription factors responsible for
the expressions of inflammatory cytokines/chemokines and type
I IFNs (7, 10). The production of IFNs, especially of type I
IFNs, plays a crucial role in protecting host immune system
from viral invasion. In particular, IFN-β has the ability to
inhibit viral replication (7). The absence of IFN-β in mice was
highly infected by viruses (11). In addition, the activation of
type I IFN signaling induces the expression of several antiviral
genes, such as myxovirus resistance protein (MxA), and 2′-
5′ oligoadenuylate dependent endoribonuclease (RNase-L), that
helps maintain antiviral states induced by IFNs in hosts via
several mechanisms (12, 13).

Lactic acid bacteria (LAB), a group of commensal bacteria that
are able to exert probiotic effects by mutually interacting with
host IECs (14). Lactobacilli and bifidobacteria are the members
of LAB, which are dominantly colonizing in the GIT and boost
the host immune system to combat viral infections (15). Several
studies evaluated the beneficial actions of these strains against

viral and PolyI:C-mediated inflammatory responses (3, 16–18).
In addition, the extracellular polysaccharides (EPS) of these
probiotic strains have also been reported to promote host defense
mechanism and to attenuate inflammatory responses induced
by pathogens or PolyI:C (3, 19, 20). Most studies used IECs
(Human and Porcine IECs) as an in vitro model to study innate
anti-viral immune response of LAB strains against rotavirus
(RV) and PolyI:C (21–23). Human intestinal epithelial (HT-
29) cells potently respond to PolyI:C by up-regulating immune
gene proteins related to the TLR signaling pathway (10), and
a study using porcine jejunal cells (IPEC-J2) showed treatment
with L. rhamnosus GG reduced inflammatory response and RV
infection in vitro (22). Also, PolyI:C increased the mRNA level
of inflammatory cytokines (IL-6, IL-8, MCP-1) and interferon
(IFN-α and IFN-β) in porcine IECs (PIE cells) (17, 23), whereas
PIE cells treated with immunobiotic L. casei MEP221106 up-
regulated IFN-α and IFN-β and down-regulated IL-6 and MCP-
1 in response to the TLR3 agonist PolyI:C (16). These studies
also suggest that IECs are the in vitro useful model to select
and study of probiotic bacteria against viral or PolyI:C induced
immune response in vitro. In addition, IECs would helpful to
study molecular insight into mechanisms involved in the viral
and anti-viral response of PolyI:C and probiotic strains via
analysis of TLRs expression, activation, andmodulation of innate
immune signaling pathways and negative regulatory proteins.
In the present study, we used human colon cell line (HCT116)
to investigate the antiviral effects of probiotic bacteria isolated
from Korean foods. To induce viral response, HCT116 cells
were treated with PolyI:C and then examined for changes in the
expressions of inflammatory cytokines, IFNs, anti-viral proteins,
and TLR negative regulators. In addition, modulations of tight-
junction proteins (ZO-1 and occludin) and signaling molecules
(IRF-3 and IκB-α,) were also examined by western blotting after
treating cells with Lactobacillus plantarum, Weissella cibaria, or
Lactobacillus sakei.

MATERIALS AND METHODS

Bacterial Strains
The strains L. plantarum DU1, W. cibaria DU1, and L. sakei
DU2 used in this study were previously isolated from Korean
fermented foods and maintained in MRS (deMan-Rogosa-
Sharp) medium at −70◦C. LABs were grown at 37◦C for 19 h,
centrifuged, washed with distilled phosphate buffered saline
(PBS), and re-suspended in Roswell Park Memorial Institute
1640 medium (RPMI 1640, Gyeongsagbuk-do, South Korea) at
desired concentrations, then stored at −4◦C until required. The
cytotoxicity of these strains on human cell line was determined
previously using a cell viability assay kit (EZ-CYTOX, DOGEN
Bio Co. Ltd) (24).

Cell Culture
The human colon and monocytic cells (HCT116 cells and THP-
1) were used in this study that were obtained from the Korean
Cell Line Bank (Seoul). HCT116 cells were cultured in RPMI
medium supplemented with 10% fetal bovine serum (FBS), and
1% penicillin/streptomycin (P/S) at 37◦C, under 5% CO2. The
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medium was changed at 1-day interval for 5–6 days. Cells from
passages 20–40 were used in the present study. In addition, THP-
1 cells were also cultured in RPMI-1640 medium containing
FBS (1%), P/S (1%), and mercaptoethanol (0.05mM) at 37◦C,
under 5% CO2 for 5–6 days. To induce differentiation, cells were
incubated with PMA (phorbol-12-myristate-13-acetate) medium
for 48 h and then in fresh RPMI medium for 24 h. PMA medium
was prepared by adding PMA (50 ng/ml) to RPMI medium.

Analysis of Antiviral Activity of LABs in
HCT116 Cells
HCT116 cells (3 × 104 cells/ml) were placed in collagen coated
plates (SPL Life Sciences Co. Ltd, Gyeonggi-do, Korea), and
incubated at 37◦C, under 5% CO2 for 5–6 days. Cultured cells
were then incubated with LAB strains (5 × 107 cells/ml) for
48 h and post-incubated with PolyI:C (10µg/ml) for 3 or 12 h.
HCT116 cells stimulated with PolyI:C and medium alone were
used as positive and negative controls, respectively. The RNA
was extracted from treated cells and the expressions of type I
interferon (IFN-α, IFN-β), antiviral proteins [(MxA, OAS1, C-X-
C motif chemokine 10 (CXCL-10)], signaling receptors (RIG-I,
TLR3), inflammatory cytokines/chemokine (IL-6, IL-8, MCP1,
IL-1β), and TLR negative regulators such as A20, toll-interacting
protein (Tollip), single Ig interleukin 1 –related receptor
(SIGIRR) and IL-1 receptor-associated kinase-M (IRAK-M) were
analyzed by qRT-PCR.

RNA Extraction and Quantitative
Polymerase Chain Reaction (qPCR)
Total RNA was isolated from cells by adding TRIzol reagent
(Invitrogen), and used to synthesize cDNA using a Thermal
cycler (BioRad, Hercules, CA, USA). qPCR was performed
with a 7300 real-time PCR system (Roche Applied Science,
Indianapolis, IN, USA) using SYBR green and targeted primers
(24). PCR reaction mixtures (20 µl) contained 1 µl of cDNA and
19 µl of master mix, which included SYBR green and forward
and reverse primers (1 pmol/µl). Amplifications were performed
using the following procedure; 95◦C for 5min, followed by 40
cycles of 95◦C for 15 s, 60◦-63◦C for 30 s, and 72◦C for 30 s.
β-actin was used as the internal control to normalize cDNA levels.

Co-culture Study
HCT116 cells (3.5 × 104 cells/well) were cultured in apical
transwell culture inserts (transparent PTFE membrane coated
collagen (0.4µm pore size); Transwell-COL, Corning Inc., NY,
USA) at 37◦C under 5% CO2 for 5–6 days. Then, HCT116 cells
were co-cultured with THP-1 cells (1 × 105 cells/well) taken in a
basolateral culture chamber. To examine the anti-viral immune
response of LABs, HCT116 cells monolayer [Transepithelial
electric resistance (TEER value ∼541Ω cm2)] was stimulated
with LABs for 48 h, after which 10µg/ml of PolyI:C was added to
the THP-1 cells cultured chamber and incubated for an additional
12 h at 37◦C. Cell free supernatants from the basolateral chamber
was collected and stored at −4◦C to estimate the protein level of
tumor necrosis factor-α (TNF-α). In addition, RNA from THP-1
was used to analyze the expression of IFN-α, IFN-β, IL-10, and
IL-1β by qRT-PCR.

Enzyme-Linked Immunosorbent
Assay (ELISA)
To determine whether LABs reduced TNF-α production in the
co-culture model, TNF-α levels in THP-1 cell free supernatants
from basolateral sides were quantified using a commercially
available ELISA kit (Human TNF-α Quantikine ELISA kit, R &
D system, MN, USA).

Proteins Extraction and Western
Blot Analysis
HCT116 cells (1.8 × 105 cells/dish) were seeded in dishes
(60mm) and incubated at 37◦C under 5%CO2 for 5–6 days. Fully
confluent cells were then stimulated as follows; cells stimulated
with LAB strains alone (48 h), cells stimulated with PolyI:C
alone (2 h), cells pre-stimulated with LAB strains and combined
with PolyI:C for last 2 h (PolyI:C combined 2 h), cells pre-
stimulated with LAB strains and post-stimulated with PolyI:C
for 2 h (2 h, PolyI:C post-treatment separately), and cells co-
stimulated with LAB strains +PolyI:C (48 h both combined).
Treated cells were washed three times with distilled PBS and
lysed with 200µl of CellLytic M cell lysis reagent (Sigma-Aldrich,
St. Louis, MO) containing phosphatase and protease inhibitors.
Lysed cells were scraped and transferred to fresh Eppendorf tubes
(1.5ml), sonicated at 50% for 3–5 s, and stored at −70◦C until
required. Total protein in collected samples was estimated using
bicinchoninic acid (BCA) assay kits (Thermo Scientific, Pierce,
Rockford, IL, USA) after heating samples at 95◦C for 5 min.

For western blotting, lysed samples were loaded in 10% SDS-
polyacrylamide gels, and separated proteins were transferred
to nitrocellulose membranes (Trans-Blot TurboTM, BioRad)
that were incubated with blocking buffer for 1–2 h and
then incubated with targeted proteins specific primary and
secondary antibodies. Tight junction proteins (zonula occludens-
1, occludin), phosphorylation of interferon regulatory factor
3 (p-IRF3) and nuclear factor kappa B (p-IκB-α) levels were
evaluated by incubating membranes overnight with ZO-1
(D7D12) antibody (ZO-1, Cat. #8193), phosphor-IRF3 (Ser396)
antibody (p-IRF3, Cat. #29047), phospho-IκB-α antibody (p-IκB-
α, Cat. #2859) (Cell Signaling Technology, Beverly, MA, USA),
occludin antibody (E-5: Cat.#SC-133256), and β-actin antibody
(C4, Cat. #SC-47778) (Santa Cruz Biotechnology Inc., Dallas,
Texas) at dilutions of 1,000:1. Membranes were then washed
with TBS-T buffer and incubated with Goat anti-rabbit IgG-
HRP polyclonal antibody (AbFrontier, Cat. #LFSA8002, Seoul).
After 1–2 h of incubation, membranes were washed with TBS-
T buffer, and treated with western blot detection solution (Dyne
ECL Star, Korea). The optical protein bands were detected and
the densitogram peaks were estimated using the Image J software
(National Institute of Health, Bethesda, MD, USA).

Statistical Analysis
The data were expressed as the average (mean ± SD) value
of three repeated experiments. Significant differences among
the groups were determined by one-way analysis of variance
(ANOVA) with Tukey multiple range test using SPSS ver.
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12.0 (SPSS Inc., Chicago, IL, USA). Statistical significance was
accepted for p values of < 0.05.

RESULTS

LABs Modified PolyI:C Induced IFN-β
Expression in HCT116 Cells
We first evaluated whether the three LAB strains (L. plantarum
DU1, Weissella cibaria DU1, and L. sakei) induced IFN-β
production in response to PolyI:C in HCT116 cells. Cells were
pre-incubated with LABs and then post-stimulated with PolyI:C
for different hours. The results of RT-PCR showed that the
expression of IFN-β varied depending on the stimulation hours.
Stimulation of cells with PolyI:C alone increased the expression
of IFN-β at both 3 and 12 h (Figure 1). The PolyI:C induced
IFN-β expression was further up-regulated when cells were pre-
incubated with LABs.W. cibaria and L. sakeiwere significantly (p
<0.05) increased the level of IFN-β in 3 h, whereas L. plantarum
showed level was not significantly higher than PolyI:C. But at
12 h, all LAB strains significantly (p <0.05) increased the mRNA
level of IFN-β in response to PolyI:C in HCT116 cells, indicating
that LABs showed strong antiviral activity against PolyI:C at late
stage of stimulation.

Effect of LABs on Inflammatory
Cytokine/Chemokine Expressions in
HCT116 Cells
To investigate whether LABs inhibit PolyI:C-induced
inflammatory cytokine/chemokine expressions, HCT116
cells were pretreated with LABs and then with PolyI:C, as
described above. As shown in Figure 2, PolyI:C treatment
tended to increase the mRNA levels of IL-6, IL-8, MCP-1 and
IL-1β, but LABs pretreatment altered these expressions in
a time-dependent manner. At 3 h, cells pre-stimulated with
LABs altered the expression of all cytokines, however they were
relatively similar to the levels of PolyI:C (Figure 2). In contrary,
all LAB strains had profound effects on the reduction of IL-6,
IL-8, MCP-1, and IL-1β at 12 h, and these reductions were
significantly (p <0.05) lower than PolyI:C.

LABs Altered TJ Proteins in HCT116 Cells
To analyze the effect of LABs on alternation of TJ, we examined
the level of ZO-1 and occludin proteins in HCT116 cells that were
pre or co-stimulated with LAB strains and PolyI:C or PolyI:C
alone. HCT116 cells treated with PolyI:C decreased the level of
ZO-1, and this decrease was attenuated by pre or co-treated
with LAB strains (Figure 3). As compared to PolyI:C, all LABs
except L. plantarum and W. cibaria showed significantly higher
level of ZO-1 in HCT116 cells post-treated with PolyI:C for
2 h. In addition, higher level of ZO-1 was observed in HCT116
cells co-stimulated with LABs and PolyI:C for 48 h. Relatively,
similar pattern of results were observed in the protein level of
occludin (Figure 4). LABs treatment increased occludin protein
in HCT116 cells that were post-stimulated with PolyI:C for 2 h.
In addition, the occludin was found to be higher in cells that
were co-stimulated with LABs and PolyI:C for 2 and 48 h. These

results indicates that LABs protect the cells against PolyI:C by
maintaining the tight-junction proteins.

LABs Modulated PolyI:C-Induced Cytokine
and Antiviral Protein Expressions in
HCT116 Cells
HCT116 cells were treated with LABs and followed by post-
stimulation with PolyI:C for 3 or 12 h. Relative mRNA levels
of cytokines, antiviral proteins, and signaling receptors were
determined by RT-PCR. CXCL-10 levels were significantly
increased in HCT116 cells treated with PolyI:C for 3 or 12 h
(Figure 5). Pre-stimulation of cells with LABsmodulated PolyI:C
induced cytokine mRNA levels. L. plantarum or W. cibaria
pretreatment increased CXCL-10 level after 3 h of PolyI:C post-
treatment, whereas L. sakei pretreatment had no effect. However,
pretreatment with all three LABs up-regulated mRNA levels
of the antiviral proteins (OAS1 and MxA) as compared with
PolyI:C. The expression of RIG-I and TLR3 weren’t significantly
increased by LAB strains as compared with PolyI:C. In contrary,
the expression of CXCL-10 was significantly (p< 0.05) decreased
when cells were pre-stimulated with LABs except L. sakei for 12 h,
whereas the expressions of OAS1 and MxA were increased by
LABs (exceptW. cibaria for MxA) in HCT116 cells (Figure 5). In
addition, L. plantarum and L. sakei were significantly increased
the level of RIG-I in HCT116 cells. The mRNA level of TLR3
was significantly increased when cells were pre-treated with W.
cibarai as compared with PolyI:C.

Effect of LABs on TNF-α Production in
THP-1 Cells
To investigate the effect of LABs on TNF-α production, we
used a co-culture model mimicking intestinal conditions by
allowing cell crosstalk via the secretions of soluble factors into
the surrounding medium. HCT116 cells were co-cultured with
THP-1 cells and stimulated with LABs and followed by PolyI:C
for 12 h. TNF-α levels in medium were determined by ELISA.
Results are shown in Figure 6A. PolyI:C treatment tended to
increase the production of TNF-α in THP-1 cells; however, LABs
pre-stimulation suppressed THP-1 cells to produce lower level of
TNF-α as compared to PolyI:C treatment alone.

LABs Modulated PolyI:C-Induced IFNs and
Inflammatory and Anti-inflammatory
Cytokines in THP-1 Cells
To investigate whether LABs indirectly modulate PolyI:C
induced type 1 IFNs and cytokines in THP-1 cells via HCT116
cells, we extracted RNA from THP-1 cells that were stimulated
with LABs and PolyI:C. The expression of interleukin-10 (IL-
10), interleukin 1β (IL-1β), IFN-α, and IFN-β was analyzed by
qRT-PCR. The mRNA level of IL-10 was significantly increased
by all three LABs in THP-1 cells post-stimulated with PolyI:C
for 12 h. On the other hand, W. cibaria exhibited significant
reduction in the level of IL-1β in THP-1 cells (Figures 6B,C).
L. plantarum and L. sakei did not significantly diminish IL-
1β expression as compared to PolyI:C. Stimulation of THP-1
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FIGURE 1 | LAB strains up-regulate PolyI:C induced IFN-β in IECs. After HCT116 were treated with LAB strains and PolyI:C, the expression of IFN-β was determined

by RT-PCR. Cells treated with either PolyI:C or medium alone were used as positive and negative controls, respectively. The positive control was used for comparison

of LAB strains treated groups. The mean differences among the different superscript letters (a, b, ab, cd) were significant at 0.05 level. LABs were able to up-regulate

IFN-β level in response to PolyI:C.

FIGURE 2 | LAB strains attenuate the inflammatory response triggered by TLR3 in IECs. After HCT116 cells were treated with LAB strains and PolyI:C, the expression

of IL-6, IL-8, MCP-1, and IL-1β were analyzed by RT-PCR. Cells treated with either PolyI:C or medium alone were used as positive and negative controls, respectively.

The positive control was used for comparison of LAB strains treated groups. The mean differences among the different superscript letters (a, b, ab) were significant at

0.05 level. LABs decreased the expression of PolyI:C induced inflammatory cytokines in HCT116 cells.

cells with PolyI:C increased the expressions of IFN-α and IFN-
β and these expressions were further increased by LABs post-
stimulation (Figure 7).

LABs Modulated the Expressions of TLR
Negative Regulators in HCT116 Cells
To gain more insight into the mechanisms of LABs on
modulation of innate antiviral immune responses of TLR
signaling, we examined the expression of genes that negatively
regulate TLR signaling in HCT116 that were treated with LABs

and PolyI:C. The expression of A20, Tollip, SIGIRR, and IRAKM
was analyzed by qRT-PCR. Stimulation of cells with PolyI:C
increased the mRNA levels of A20, while it didn’t up-regulate
the levels of Tollip, SIGIRR, and IRAKM (Figure 8). The PolyI:C
mediated expressions levels were able to modulate by LAB strains
in a time dependent manner. At 3 h, L. plantarum and L. sakei
treated HCT116 cells showed increase in level of A20, whereas
the level of Tollip was only increased by L. sakei, and this increase
was significantly higher (p < 0.05) than that induced by PolyI:C
and other strains. But, all LABs weren’t significantly increased
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FIGURE 3 | LAB strains modulate TJ protein (ZO-1) in HCT116 cells. Cells were stimulated as follows: control, PolyI:C alone, LABs alone (48 h), LABs+PolyI:C (2 h,

Poly:C combined treatment), LABs+PolyI:C (2 h, PolyI:C post-treatment separately), and or LABs+PolyI:C (48 h both combined). The level of tight-junction protein

(ZO-1) was analyzed by western blot. The loading control beta-actin was reused for illustrative purposes. The bar graphs represent the results of three independent

experiments. The mean differences among the different superscript letters (a, b, ab) were significant at 0.05 level. LABs stimulation modulated ZO-1 level in response

PolyI:C.

FIGURE 4 | LAB strains modulate TJ protein (Occludin) in HCT116 cells. Cells were stimulated as follows: control, PolyI:C alone, LABs alone (48 h), LABs+PolyI:C

(2 h, Poly:C combined treatment), LABs+PolyI:C (2 h, PolyI:C post-treatment separately), and or LABs+PolyI:C (48 h both combined). The level of TJ protein (ZO-1)

was analyzed by western blot. The loading control beta-actin was reused for illustrative purposes. The bar graphs represent the results of three independent

experiments. The mean differences among the different superscript letters (a, b, ab, c, bc) were significant at 0.05 level. LABs alone or co-treated with PolyI:C

increased the level of occludin in HCT116 cells.
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FIGURE 5 | LABs modulate expressions of antiviral proteins and receptors in HCT116 cells. After HCT116 cells stimulated with LABs and PolyI:C for 3 and 12 h, the

mRNA level of CXCL-10, OAS1, MxA, RIG-I, and TLR3 was evaluated by RT-PCR. Cells treated with either PolyI:C or medium alone were used as positive and

negative controls, respectively. The positive control was used for comparison of LAB strains treated groups. The mean differences among the different superscript

letters (a, b, ab, c, bc) were significant at 0.05 level. LABs stimulation decreased the level of CXCL-10, while increased level of other anti-viral proteins at 12 h in

HCT116 cells, post-treated with PolyI:C.

FIGURE 6 | Effect of LABs on modulation of inflammatory and anti-inflammatory cytokines expression in THP-1 cells cultured with HCT116 cells. After HCT116 cells

were stimulated with LABs, and followed by THP-1 cells with PolyI:C for 12 h, the production of TNF-α in the basolateral medium and mRNA level of IL-10 and IL-1β in

THP-1 cells was analyzed by ELISA and RT-PCR. Cells treated with either PolyI:C or medium alone were used as positive and negative controls respectively The

positive control was used for comparison of LAB strains treated groups. The mean differences among the different superscript letters (a, b, ab, c, bc) were significant

at 0.05 level. LABs stimulation decreased the level of TNF-α, IL-1β, while increased level of IL-10 in THP-1 cells, post-treated with PolyI:C.

the level of SIGIRR as compared to PolyI:C. In addition, there
was no significant alternation observed in the level of IRAKM.
In contrary, L. plantarum and W. cibaria reduced the level
of A20 on 12 h, whereas all LABs showed significantly (p <

0.05) increase in levels of Tollip and SIGIRR as compared to
PolyI:C (Figure 8). Furthermore, IRAKMmRNA expression was
significantly increased by L. plantarum and L. sakei

LABs Modulated the Phosphorylations of
IRF3 and IκB-α in HCT116 Cells
Activation of TLR3 by PolyI:C recruits several intracellular
signaling molecules (TRAF3, IRF3, and NF-κB) to induce
expressions of type 1 IFNs and inflammatory cytokines.
Therefore, we examined whether LABs were able to modulate
phosphorylation of IRF3 and IκB-α in HCT116 cells stimulated

with PolyI:C. The level of p-IRF3 was increased when
cells were treated with LABs in the presence of PolyI:C
for 2 or 48 h (Figure 9). As compared to PolyI:C, LABs
were able to increase the level of p-IRF3 in HCT116 cells
post-treated with PolyI:C for 2 h. In contrary, PolyI:C
alone significantly increased the phosphorylation of IκB-
α in HCT116 cells, but cells treated with LABs alone or
co-treated with LABs and PolyI:C for 48 h significantly
decreased the level of IκB-α (Figure 10). In addition,
stimulation of cells with LABs in the presence of PolyI:C
for 2 h or post-stimulation with PolyI:C for 2 h diminished
phosphorylation of IκB-α in HCT 116 cells as compared with
PolyI:C alone. These results suggest LABs exhibits innate
antiviral immune response by modulating the IRF3 and
NF-κB pathways.
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FIGURE 7 | Effect of LABs on up-regulation of antiviral IFNs in THP-1 cells cultured with HCT116 cells. The expression of IFN-α and IFN-β were analyzed by RT-PCR.

Cells treated with either PolyI:C or medium alone were used as positive and negative controls, respectively. The positive control was used for comparison of LAB

strains treated groups The mean differences among the different superscript letters (a, b, ab, c, bc) were significant at 0.05 level. LABs stimulation increased the level

of IL-1β and IFN-α in response to PolyI:C THP-1 cells.

FIGURE 8 | Analysis of TLRs negative regulators expression in HCT116 cells. After HCT116 cells treated LAB strains and PolyI:C for 3 and 12 h. The expression of

A20, Tollip, SIGIRR, and IRAK-M were evaluated by RT-PCR. Cells treated with either PolyI:C or medium alone were used as positive and negative controls,

respectively. The positive control was used for comparison of LAB strains treated groups The mean differences among the different superscript letters (a, b, ab) were

significant at 0.05 level. LABs were able to modulate expression of negative regulators of TLR signaling in HCT116 cells, stimulated with PolyI:C.

DISCUSSION

Intestinal epithelium contains IECs, which play important roles
in maintenance of the intestinal immune system. Upon meeting
pathogens, IECs capable to induce mucosal immune responses
by expressing soluble factors such as cytokines/chemokines to
recruit and activate immune cells including leukocytes and
neutrophil granulocytes to the infected area, and by producing
type I IFNs, antiviral proteins, and effector molecules to limit
pathogens replications (25, 26). The expressions of TLRs in

IECs play an important role on induction of mucosal immune
responses in the intestine by sensing antigens derived from
pathogens during their infection. Several studies have reported
TLRs expressions and their vital roles on induction of host
defense system against infectious diseases (4, 27). Activation
of TLR3 by dsRNA induces production of several antiviral
proteins such as IFN regulatory factors, type I IFNs, and
cytokines/chemokines to establish antiviral state against viruses
(28–30). Among the IFNs, IFN-β is a key cytokine that positively
contributes to host innate immunity and defense against several
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FIGURE 9 | The ability of LABs to increase PolyI;C induced regulatory factor in vitro. HCT116 cells were stimulated as follows: control, PolyI:C alone, LABs alone

(48 h), PolyI:C alone (2 h), LABs+PolyI:C (2 h, Poly:C combined treatment), LABs+PolyI:C (2 h, PolyI:C post-treatment separately), and or LABs+PolyI:C (48 h both

combined). The phosphorylation of interferon regulatory factor 3 (IRF3) was analyzed by western blot. The loading control beta-actin was reused for illustrative

purposes. The bar graphs are representative of three independent experiments. The mean differences among the different superscript letters (a, b, ab, bc) were

significant at 0.05 level. LABs alone or co-treated with PolyI:C increased the phosphorylation of IRF3 in HCT116 cells.

FIGURE 10 | LABs inhibited PolyI;C induced activation of the NF-κB pathway in vitro. HCT116 cells were stimulated as follows: control, PolyI:C alone, LABs alone

(48 h), PolyI:C alone (2 h), LABs+PolyI:C (2 h, Poly:C combined treatment), LABs+PolyI:C (2 h, PolyI:C post-treatment separately), and or LABs+PolyI:C (48 h both

combined). The phosphorylation of IκB-α was analyzed by western blot. The loading control beta-actin was reused for illustrative purposes. The bar graphs are

representative of three independent experiments. The mean differences among the different superscript letters (a, b, c, d) were significant at 0.05 level. LABs alone or

co-treated with PolyI:C decreased the phosphorylation of IκB-α in HCT116 cells.
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viruses including rotavirus (31). In addition, the up-regulation
of IFN-β induces transcription of other viral response genes
involved in viral protection. IFN-β deficient mice have been
shown to be more susceptible to influenza virus infection (32).
Broquet et al. (33) reported that IFN-β showed protection against
RVs by reducing their replication in IECs. Therefore, IFN-β
is considered a potent antiviral chemokine, and thus, is used
to screen or study the antiviral effects of immunobiotic strains
and their related compounds. In this regard, we have evaluated
whether LAB strains induce the expression of IFN-β in HCT116
cells.We found that LABs stimulation increased the expression of
IFN-β in response to PolyI:C. Our findings are in good agreement
with the results of others studies obtained for Bifidobacterium
infantis MCC12 and B. breve MCC1274 (3), Lactobacillus casei
MEP221106 (16), Lactobacillus delbrueckii TUA4408L (29), and
L. casei Zhang (34). Probiotic L. acidophilus NCFM was able
to increase the expression of IFN-β in bone marrow derived
dendritic cells in vitro (35). Treatment of porcine IECs with L.
rhamnosus CRL1505 induced expression of higher level of IFN-
β, in response to PolyI:C (17). Moreover, probiotic B. longum
SPM1206 and L. ruminis SPM0211 induced IFN-β expression in
mice and Caco2 cells infected with RV (36).

In addition to the production of anti-viral cytokines,
immunobiotics have been shown to improve protection against
inflammatory condition or viral infection by regulating the
expression of pro-inflammatory cytokines/chemokines (3, 16).
We also found that LABs were able to reduce expression of
pro-inflammatory cytokines (IL-6, IL-8, MCP-1, and IL-1β) in
HCCT116 cells stimulated with PolyI:C. Production of these
cytokines has also been reported to play crucial roles in host
innate response against virus infections. The expression of
pro-inflammatory cytokines (IL-6 and IL-8) was up-regulated
in epithelial cells infected with RVs (37, 38), and infection
of HT-29 cells with RVs increased the IL-8 level, which is
dependent on protein kinase activity and NF-κB activation
(37, 38). Clemente et al. (39) found that the infection of
epithelial cells with RVs induced production of IL-6 and IL-
8 via activation of the MAPK pathway. Porcine IECs cells
treated with L. acidophilus and L. rhamnosus GG reduced
the level of IL-6 and mucin, and increased TLR2 level in
response to RV (22).

During the host infected with virus, the activation of TLR
signaling increases expression of type I IFNs, which induces
transcription of several IFN-stimulated genes (ISGs) that encode
proteins with potent antiviral effector functions to block viral
replication (40). MxA and RNase-L proteins are promising
IFN-induced proteins with broad anti-viral activity against
several different DNA and RNA viruses (13, 41). Myxovirus
resistance protein (MxA) mainly targets viral nucleoproteins
for its attachment, and reduces replication and intracellular
proliferation of viruses. RNase L (2′-5′ oligoadenylate dependent
endoribonuclease) is believed to contribute role in the anti-viral
activity of IFNs and the stability of IFN-induced genes such
as ISG (13). 2-5A oligoadenylate synthetase (OSA), especially
OSA1, activates the latent form of RNase L, and thus, causes
the cleavage of viral RNA and inhibits viral replication and
proliferation. Furthermore, viral protein (VP3) derived from

RVs has been shown to inhibit RNase L activity by cleaving 2-
5A (42). Previous studies reported that immunobiotics have the
ability to improve expression of these IFN stimulated antiviral
proteins (MxA andOAS) along with higher level of IFN-β (3, 43).
We also found that cells stimulated with LABs increased MxA
and OAS1 levels in response to PolyI:C. Similarly, L. delbrueckii
TUA4408L and B. infantis MCC12 increased the expression of
these antiviral proteins in bovine and porcine IECs (29, 43).
Viruses have evolved mechanisms to eradicate host immune
system by interacting with PRR receptors that mediate signaling
cascades to develop antiviral immunity (41). RIG-1 and TLR3 are
RRR receptors that can initiate signaling cascades for IFN-β up-
regulation (44) The pre-exposure of cells to LABs increased the
expressions of RIG-1 and TLR3, which confirmed the antiviral
effects of LAB strains in vitro (3).

The intestinal barrier is a tight structure that provides
protection against harmful environments, but it has been
reported to be dysfunctional that associated with paracellular
permeability in several diseases. Tight-Junction (TJ) proteins
are the responsible components that connect IECs with
neighbor cells and control paracellular gut permeability (45).
Administration of PolyI:C has been shown to induce severe
mucosal damage in the mouse small intestine of mice, which is
probably due to the activation of TLR3 signaling by PolyI:C (46).
Our study showed that the presence of LAB strains increased
the level of TJ proteins (ZO-1 and occluding), indicating that
LABs have the ability tomaintain gut-barrier integrity and reduce
gut dysfunction. Intestinal epithelium acts as a mucosal barrier
that mediates signaling to underlying immune cells by sensing
antigens and intestinal changes (47). Cross-talk between these
two cells is an important feature that helps maintain the mucosal
barrier and provides protection against infectious diseases and
harmful environments. In a Transwell experiment, basolateral
treatment of RAW264.7 cells with lipopolysaccharide increased
the productions of TNF-α and IL-8 in Caco2 cells that were taken
in apical side (48). Another in vitro study, it was reported that in
response to commensals, IECs were able to stimulate underlying
dendritic cells (DCs) by secreting several inflammatory proteins
(49). TNF-α is a pleiotropic pro-inflammatory cytokine, which
has been shown to play critical roles in the pathogeneses
of several diseases, including viral infections. In response to
PolyI:C, bone marrow derived macrophages, Raw264.7, and
THP-1 cells increased TNF-α production in vitro (50, 51). IL-
10 is a prime anti-inflammatory cytokine that plays key roles
in the maintenance of gut hemostasis and innate immunity and
in the pathogenesis of IBD (52). Through co-culture study, we
found that LAB strains improved the cross-talk between IECs
and THP-1 cells, which resulted in decreased levels of pro-
inflammatory cytokines (TNF-α, IL-1β) and increased levels of
anti-inflammatory cytokine (IL-10) and INFs. These results were
consistent with those of other study (53), in which HT-29 cells
stimulated with three probiotics strains (L. helveticus R0052, B.
longum subsp. infantis R0033, B. bifidum R0071) decreased the
level of TNF-α and IL-8 in response to PolyI:C.

TLR activation is an important process that could be involved
in the development of infectious diseases. Once it activated,
several intracellular proteins actively participate in control
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FIGURE 11 | Schematic model for the mechanisms involved in the antiviral activity of L. plantarum, W. cibaria, and L. sakei in vitro.

of hyper-activation of TLR signaling pathways by negatively
regulating the transcription of TLR genes. Tollip, SIGIRR, A20,
and IRAK-M are the potent negative regulators that have been
shown to attenuate over activation of TLR signaling in IECs
(54). High levels of Tollip may prevent inflammatory cytokine
production by commensal bacteria in the gut (55), and the
knockdown of Tollip increased the expression of inflammatory
cytokines and activation of NF-κB in Caco-2 cells (56). SIGIRR
is a transmembrane receptor that may be expressed by IECs
and immature DCs derived from gut. Polentarutti et al. (57)
reported that SIGIRR overexpression could inhibit IL-1 and IL-
18 mediated NF-κB activation in DCs, and thus, it playing a
role in the regulation of intestinal inflammatory response. In
another study, the expression of SIGIRR in IECs attenuated
exaggerated inflammatory response and promoted commensal
bacteria colonization against intestinal pathogens, indicating a
close relationship exists between commensal bacteria, and IECs
(4). A20 is a zinc-finger protein and its knockdown in mouse
macrophage increased the inflammatory cytokine expressions in
response to TLR2 and TLR3 ligands (4). In addition, the presence
of A20 has been reported to suppress TLR3-mediated activation
of IRF3 in transfected cells (58). In view of these observations, we
evaluated the expressions of TLR negative regulators in HCT116
cells stimulated with PolyI:C. Exposure of cells to LABs were able
to modulate expression of negative regulators of TLR signaling
in HCT116 cells, which indicate LAB mediated attenuation of
inflammatory response in vitro. Similar results were observed in
other studies for B. infantis MCC12 and B. breve MCC1274 (3),

L. delbrueckii OLL1073R-1 (18), and L. delbrueckii TUA4408L
(29). During viral infections, PRRs of host cells activate IFN
regulatory factors (IRFs) that regulate the production of IFN-
β (44). In particular, NSP-1 (a non-structural protein of RVs)
has been reported to have high affinity for IRF3, which results
in proteasome-dependent degradation of transcription factors
(59). In the present study, as we expected, challenging of
HCT116 cells with LABs increased the phosphorylation of IRF3
in response to TLR3 agonist. Furthermore, NF-κB pathway is an
important TLR signaling pathway and its activation increases the
production of inflammatory cytokines in vitro and in vivo (60).
Therefore, we also analyzed activation of the NF-κB pathway
in HCT116 cells. We found that LAB strains down-regulated
p-IκB-α, indicating that LABs were able to attenuate PolyI:C
induced viral and inflammatory response by modulating IRF3
and NF-κB pathways (Figure 11). Similar results were obtained
by Kim et al. (30), who reported that lipoteichoic acid of L.
plantarum attenuated PolyI:C mediated NF-κB activation in
porcine IPEC-J2 cells.

In conclusion, our study demonstrated that in vitro exposure
of different LAB strains beneficially modulates innate antiviral
immune responses induced by PolyI:C in HCT116 cells. LABs
significantly up-regulated the mRNA level of IFN-β and down-
regulated IL-6, IL-8, MCP-1, and IL-1β levels by modulating the
expressions of negative regulators of TLRs and the activations of
IFR3 and NF-κB pathways. Our results also show that cells co-
treated with LABs and PolyI:C improved the gut barrier integrity
by maintaining of TJ proteins in vitro, suggesting LABs might
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protect IECs from harmful environments in vivo. Furthermore,
our co-culture study showed that LABs indirectly modulated
TLR3 triggered innate antiviral response in monocyte-derived
macrophages. Overall, LABs protected cells from PolyI:C in vitro,
and an additional study will be performed to determine whether
these findings are duplicated in vivo.
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