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Abstract: Exposure to aflatoxin is considered to be one of the causes of hepatocellular carcinoma
(HCC). With the development of bioinformation, we sought to reveal the occurrence and development
of aflatoxin-induced HCC through data research. We identified differentially expressed genes
(DEGs) of datasets GSE127791 (Aflatoxin-treated pluripotent stem cell derived human hepatocytes vs.
controls) and GSE64041 (liver carcinoma with unknown cause vs. non-cancerous tissue) by GEO2R
to find the common DEGs. Gene ontology (GO) and KEGG path enrichment analysis were used to
annotate the function of DEGs. Hub genes were screened from identified DEGs by protein-protein
interaction (PPI) network analysis. The prognostic value of hub genes in cancer databases were
evaluated. We obtained 132 common DEGs and 11 hub genes. According to cluster analysis and
protein co-expression networks, we screened out the key genes, histidine-rich glycoprotein (HRG)
and phosphoenolpyruvate carboxykinase 2 (PCK2). Oncomine database and survival curve analysis
showed that the decline in HRG and PCK2 expression in the development of HCC indicated poor
prognosis. We speculated that the decreased expression of HRG and PCK2 after aflatoxin exposure to
hepatocyte may be related to aflatoxin induced hepatocyte injury and carcinogenesis. In addition,
the decreased expression of HRG and PCK2 in the occurrence and development of HCC suggests a
poor prognosis of HCC.

Keywords: aflatoxin; hepatocellular carcinoma (HCC); bioinformatics analysis; HRG; PCK2

Key Contribution: The mechanism of aflatoxin-induced hepatocellular carcinoma was analyzed from
the perspective of bioinformatics. HRG and PCK2 may be involved in aflatoxin-induced hepatocyte
injury or hepatocarcinogenesis and transformation.

1. Introduction

HCC (hepatocellular carcinoma) is one of the four major cancers found in the world with more
than 700,000 new cases confirmed, which also accounts for more than 600,000 global deaths annually [1].
HCC is the main form of liver cancer which is the second most common cancer-related cause of death
worldwide [2]. HCC accounts for 9.2% of all new diagnosed cancers, and nearly 90% of all primary
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HCCs, which is also recognized as one of the deadliest cancers [3]. In 2018, the number of new cases of
HCC in the United States was estimated at 42,220 (30,610 males and 11,610 females) [4]. The death rate
is estimated to be 30,200 (20,540 males and 9660 females) [5]. This number is somewhat depressing
and has caused quite serious social and economic losses. Further research is needed to identify new
therapeutic targets to fight HCC.

About 60% of the world’s grains are contaminated with mycotoxins [6]. Toxin exposure, such as
aflatoxin, as well as hepatic viral infections and the state of chronic hepatitis are linked to the
development of HCC [7]. Aflatoxin, as a metabolite of mildew in the environment, is found to widely
exist in nature. Its potential for provoking harm is self-evident [8]. There are approximately 18
identified aflatoxins; however, those of major concerns include AFB 1, AFB 2, AFG 1, AFG 2, AFM 1
and AFM 2 [9]. It is well known that aflatoxin exposure to hepatocyte can form DNA adducts and
induce the mutation site of the tumor suppressor gene p53, which supports current thinking that
aflatoxin is one of the possible factors of HCC [10]. AFB1 is the most toxic carcinogen, and as early
as 1993 the International Agency for Research on Cancer (IARC) classified AFB1 as a class I human
carcinogen [11].

Aflatoxin is mainly metabolized in the liver [12,13]. Studies demonstrate that AFB1 metabolites
bind DNA via alkylation of bases that cause cell cycle alterations and the mutation of the tumor
suppressor gene p53 [14]. However, the mechanism responsible for carcinogenesis is very complex.
Although researchers have explained that a p53 mutation is a possible mechanism accounting for
aflatoxin-induced HCC, there is no direct experimental evidence demonstrating that the p53 mutation
induces HCC. What we have learned so far is that the occurrence of HCC is related to many factors,
such as hepatitis B, hepatitis C, alcoholic and non-alcoholic fatty liver, mycotoxins, etc. [15]. Since the
incidence of HCC continues to rise, this indicates a role of environment which again means that HCC
has not been effectively controlled. In order to control aflatoxin-induced HCC, we need to further
study the carcinogenic mechanism of aflatoxin.

In the era of high-tech development, experimental analysis with the assistance of big data analysis
represent a new and practical means for the interrogative and systematic analysis of very large sets of
targeted data. Over the past decade, a large number of molecular biological information-rich databases
and meta-databases have been published. Genomic sequencing, protein arrays, and microarray
analyses all represent effective means for high-throughput sequencing and are collectively uploaded to
public databases, which include the Gene Expression Omnibus (GEO) and Oncomine databases that
are employed to understand molecular changes in pathological tissues [16].

At present, some researchers have explored the mechanism of cancer through bioinformatics
analysis [17,18]. To the best of our knowledge, there is no bioinformatics analysis that has associated
HCC development with aflatoxin. To better understand the mechanism of aflatoxin-induced HCC,
combined with some open-sourced databases, public microarray data regarding aflatoxin-treated
hepatocytes vs. controls, and liver carcinoma vs. non-cancerous tissue were downloaded and analyzed
using bioinformatics methods. We explored and analyzed differentially expressed genes (DEGs) by
systematic bioinformatics analysis.

Our overarching aim was to explore the induction mechanism of aflatoxin-mediated HCC using
large dataset analyses and to provide the discovery of potential biomarkers that might have utility in
the diagnosis and development of novel therapeutic drugs.

2. Results

2.1. Screening and Identification of Differentially Expressed Genes (DEGs)

After standardization of the microarray results of the datasets, 132 DEGs were obtained by
drawing the Venn diagrams with online tools (Figure 1A). The list of DEGs were shown in Table S1
in supplementary materials. By assessing potential protein interactions, possible mechanisms for
disease progression can be identified. The analysis of the protein-protein interaction (PPI) network
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using String tools was used, in which we hid disconnected nodes in the network since our aim is
to understand the relationship between gene interactions (Figure 1B). By differential analysis, 15
upregulated genes and 60 downregulated genes were screened out. The analysis of PPI was shown
in Table S2 in supplementary materials. Next, the first 30 DEGs, which was shown in Table S3 in
supplementary materials, were sorted by the R statistical language tool to list histograms of key genes
(Figure 1C). The most significant module was obtained from the PPI network with 16 nodes and 42
edges (Figure 1D).
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mainly summarized as amino acid metabolism and carbohydrate metabolism, and as antibiotic and 
amino acid synthesis. 

GO term analysis showed that the fructose metabolic process was the most significant 
enrichment in the biological processes, followed by the glyoxylate metabolic process, followed by the 
fructose 1,6-bisphosphate metabolic process (Figure 2B). The most significantly enriched gene sets in 
the cellular components were mainly aligned to the extracellular exosome and mitochondrial matrix 

Figure 1. Screening of differentially expressed genes (DEGs) and analysis of the protein-protein
interaction (PPI) network. (A) The common DEGs were screened by the intersection of GSE127791
and GSE64041. (B) Demonstration of PPI in DEGs by Cytoscape. (C) Analysis of DEGs based on PPI
analysis results.(D) The most important module was obtained from a PPI network with 16 nodes and
42 edges. Upregulated genes are marked in red; downregulated genes are marked in light purple.

2.2. Enrichment Analysis of GO and KEGG of Differentially Expressed Genes (DEGs)

According to DAVID’s functional and pathway enrichment analysis, we selected P-value ≤ 0.01
as the screening cut-off criterion (Figure 2). The detailed information of the enrichment analysis was
shown in Table S4 in supplementary materials. The results of the KEGG enrichment analysis showed
that DEGs were mainly enriched in the processes of biosynthesis and metabolism (Figure 2A). It is
mainly summarized as amino acid metabolism and carbohydrate metabolism, and as antibiotic and
amino acid synthesis.
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Figure 2. Pathway enrichment analysis. (A) Enrichment analysis of KEGG pathway. The Y-axis 
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enrichment analysis of GO pathway. The Y-axis represents the category of biological process, and the 
X-axis represents -log10 (P-value). (C) Cellular components in enrichment analysis of GO pathway. 
The Y-axis represents the category of cellular components, and the X-axis represents -log10 (P value). 
(D) Molecular functions in enrichment analysis of GO pathway. The Y-axis represents the category of 
molecular functions, and the X-axis represents -log10 (P value). 
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normal tissues in the symple type module, we can observe the expression of hub genes in tumor 
tissues and normal tissues in the middle module, in which red represents upregulated, green 
represents downregulated, and black represents no changes. In the symple ID module, different 
colors represent different samples，which means that the gene expression in the middle module 
comes from different samples. As shown as Figure 3, SLC51A was not recorded in the UCSC 
database; thus, we ceased further analysis of this gene because it was not an important gene in the 
context of HCC. In addition, due to the fact that the extent of upregulation in the genes for CTH and 
ASS1 was almost the same as those that were downregulated, the remainder of the genes were 
essentially downregulated in HCC. This approach can be used to differentiate HCC from normal 
tissues.  

Figure 2. Pathway enrichment analysis. (A) Enrichment analysis of KEGG pathway. The Y-axis
represents the category of KEGG, and the X-axis represents -log10 (P-value). (B) Biological process in
enrichment analysis of GO pathway. The Y-axis represents the category of biological process, and the
X-axis represents -log10 (P-value). (C) Cellular components in enrichment analysis of GO pathway.
The Y-axis represents the category of cellular components, and the X-axis represents -log10 (P value).
(D) Molecular functions in enrichment analysis of GO pathway. The Y-axis represents the category of
molecular functions, and the X-axis represents -log10 (P value).

GO term analysis showed that the fructose metabolic process was the most significant enrichment
in the biological processes, followed by the glyoxylate metabolic process, followed by the fructose
1,6-bisphosphate metabolic process (Figure 2B). The most significantly enriched gene sets in the cellular
components were mainly aligned to the extracellular exosome and mitochondrial matrix (Figure 2C).
Changes in molecular function were mainly enriched in the activities of acyl-CoA ligase, alcohol
dehydrogenase (NAD), and other catalytic activities (Figure 2D).

2.3. Hierarchical Clustering of Hub Genes

We selected a degree ≥ 9 as the hub genes. Hierarchical clustering of hub genes was performed
using the UCSC Cancer Genomics online tool. In the heatplot, according to the tumor tissues and
normal tissues in the symple type module, we can observe the expression of hub genes in tumor tissues
and normal tissues in the middle module, in which red represents upregulated, green represents
downregulated, and black represents no changes. In the symple ID module, different colors represent
different samples, which means that the gene expression in the middle module comes from different
samples. As shown as Figure 3, SLC51A was not recorded in the UCSC database; thus, we ceased
further analysis of this gene because it was not an important gene in the context of HCC. In addition,
due to the fact that the extent of upregulation in the genes for CTH and ASS1 was almost the same as
those that were downregulated, the remainder of the genes were essentially downregulated in HCC.
This approach can be used to differentiate HCC from normal tissues.
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2.4. HRG and PCK2 Were Key Genes in the Hub Gene Dataset

The hub genes and their co-expressed genes were analyzed by employing the cBioPortal online
database. As shown as Figure 4, the nodes of the blackbody contour represent the hub genes. In other
words, cBioportal analysis showed that both phosphoenolpyruvate carboxykinase 2 (PCK2) and
histidine-rich glycoprotein (HRG) were key genes in the hub gene dataset.
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2.5. Decreased Expression of HRG and PCK2 in HCC

In order to validate the clustering analysis results, we used the oncomine online database to search
and analyze. The filtering conditions were gene: HRG, type: cancer vs. normal analysis, cancer type:
HCC. The expression of HRG in HCC was significantly lower than that in the normal control group
(P < 0.01) (Figure 5A). The expression level of PCK2 in HCC tissue was also significantly lower than
that in the normal control group (p < 0.01) (Figure 5B).
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2.6. Survival Rate Analysis of HRG and PCK2 Expression of HCC Patients

To further study the prognostic significance of HRG and PCK2 expression in patients with HCC,
the combined Kaplan–Meier curve analysis revealed that the overall survival rate of patients with HCC
was poor and exhibited decreased mRNA expression of both HRG and PCK2 in HCC (Figure 6A,B).
These results suggest that decreased HRG and PCK2 expression in HCC might predict poor prognosis.
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3. Discussion

As the analysis of biological systems and datasets becomes increasingly complex, biomedical
research is also increasingly dependent on knowledge stored in computable form. Microarray analysis
or high-throughput sequencing can quickly identify DEGs in cancer specimens. These technologies have
broad application and prospects in clinical research, including molecular classification, targeted drug
discovery and survival prediction [19,20]. The occurrence of HCC involves a variety of inducements;
the cases found in the human body are also more complicated due to the differences of various
environmental and dietary factors. In these cases, it is not clear which factor causes the occurrence of
HCC, which is often difficult to be determined clinically. Aflatoxins are clearly defined as the first class
of carcinogens, especially HCC. However, due to human ethics and other factors, we cannot conduct
toxicology experiments in the human body at will, which also limits the study of toxicology in humans.
In the GSE64041 dataset, it is not clear what causes patients to have a HCC, but our purpose is to explore
the mechanism of HCC induced by aflatoxin through the connection between these unknown causes
of HCC and aflatoxin. Through bioinformatics analysis, aflatoxin exposure to human hepatocytes
is related to human HCC. Taking normal hepatocytes as the bridge of connection can prompt us to
understand the changes of key genes of aflatoxin-induced hepatocarcinogenesis in a new way. This
new way of analysis is also the innovation of our article. Many studies have explored the carcinogenic
mechanism of aflatoxin, but many of them lack clinical evidence. At present, the carcinogenic toxicity
of aflatoxin has not been studied in the direction of large data mining approaches. From the perspective
of bioinformatics, we look forward to providing meaningful research directions for aflatoxin research.

In our work, we have focused on the analysis of 132 DEGs that were screened from two datasets
(Figure 1). We found that the common ground between gene expression in aflatoxin-induced toxicity
and cancer cells was mainly concentrated in cellular biosynthesis and metabolism, which can be
obtained from KEGG analysis. Of course, the combined observation of GO term’s results can markedly
affect the function of glucose metabolism. When we distinguished the first eleven important genes by
adopting a limitation of the degree, we found that SLC51A did not significantly benefit from the next
level of analysis provided by clustering analysis; thus, we excluded SLC51A. The remaining ten genes
were analyzed by mapping the gene co-expression network by cBioportal, and we condensed the key
genes once again, leaving only PCK2 and HRG.

Histidine-rich glycoprotein (HRG) is a plasma protein synthesized by the liver, which can
regulate many important biological processes such as angiogenesis, pathogen clearance, cell adhesion,
coagulation and so on. Among the most closely related to the occurrence of cancer is the regulatory
effect of HRG on angiogenesis (Figure 7A). HRG can inhibit the expression of angiogenic placental
growth factor (PlGF). According to relevant research, PlGF is overexpressed in many types of
tumors and promotes angiogenesis by binding VEGFR-1 [21–23]. In other words, HRG can inhibit
tumor angiogenesis. HRG has been shown to inhibit tumor growth and metastasis and does so by
downregulating PlGF to induce macrophage polarization and normalization of blood vessels [24].
HRG promotes the polarization of hepatic macrophages to the M1 phenotype, which aggravates
chronic liver injury and fibrosis [25] and restricts the growth of blood vessels [26]. In some studies,
HRG deficient mice are protected from liver injury and liver fibrosis, which are two prerequisites
for the occurrence of HCC in human liver diseases [27]. By contrast, HRG-deficient mice exhibit
increased hemorrhagic duct formation without liver injury or inflammation, which may be a major
pre-requisite in promoting the development of HCC [28]. In this current study, the survival analysis
of HRG in HCC also showed that the decreased mRNA expression of HRG led to a poor prognosis
in HCC, indicating the importance of HRG in HCC onset. Glycosylation is one of the most common
post-translational modifications of proteins. In the study of HCC, it was found that the glycosylation
site mutation of HRG affected the interaction between HRG and heparin sulfate (HS), which may be
the key reason for the decrease of HRG in HCC [29]. Phosphoenolpyruvate carboxykinase 2 (PCK2), a
mitochondrial subtype of phosphoenolpyruvate carboxy kinase (PEPCK), catalyzes the conversion of
oxalic acid to phosphoenolpyruvate in the presence of guanosine triphosphate (Figure 7B). PEPCK can
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convert other precursors of lactate and citric acid cycle into glucose, which is a rate-limiting step in
the metabolic pathway [30,31]. As we have learned, the metabolic regulation mechanism of cancer
cells is complex and diverse in order to support their survival and growth under limited nutritional
conditions [32]. Many cancer cells, such as thyroid cancer, bladder cancer, breast cancer and small
cell lung cancer, can promote energy metabolism by upregulating PK2. [31,33,34]. However, PCK2
is a double-edged sword in terms of the occurrence and development of tumors. PCK2 plays an
anti-cancer role in HCC and melanoma [35,36], while PCK2 also plays a carcinogenic role in both
lung and breast cancer. In the study of HCC, increasing the expression of PCK can lead to energy
crisis, truncated gluconeogenesis, TCA cycle rupture and a high ROS level, which can trigger the
glucose-deprivation in HCC cells [36]. In the study of aflatoxin on mitochondria, it was found that
aflatoxin could increase the concentration of the DNA adduct in mitochondria of mice liver, which was
three to four times higher than that of nuclear DNA adduct and remained unchanged 24 hours later [37].
In the study of aflatoxin on chicken hepatocytes, it was found that aflatoxin can induce ROS production
and lead to mitochondrial function damage [38]. We speculated that the damage of aflatoxin to
mitochondria reduced the expression of PCK and accelerated the transformation of hepatocytes into
a hepatoma. We speculated that the damage of aflatoxin to mitochondria reduced the expression
of PCK, led to the disorder of gluconeogenesis, and accelerated the transformation of hepatocytes
into liver cancer. However, the downregulation mechanism of PCK2 in HCC has not been reported
yet, but researchers speculated that the downregulation of gluconeogenesis enzymes seems to be
beneficial to the development of tumors in gluconeogenic tissues, which constitutes a part of metabolic
recombination necessary to support tumor growth and proliferation [39]. The downregulation
mechanism of PCK2 expression is also a potential direction in the study of HCC. The sequencing results
of the GSE127791 dataset showed the negative regulation of aflatoxin on the expression of HRG and
PCK2. However, further studies are needed to verify the role of HRG and PCK2 in the carcinogenesis
of aflatoxin.Toxins 2020, 12, x FOR PEER REVIEW 9 of 13 
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Figure 7. Physiological functions of HRG and PCK2 in normal cells. (A) HRG inhibits vascularization
and tumor establishment. HRG, histidine-rich glycoprotein; PIGF, placental growth factor; VEGFR-1,
Vascular endothelial growth factor receptor 1; bFGF, basic fibroblast growth factor; (B) PCK involved
in gluconeogenesis. PCK, phosphoenolpyruvate carboxykinase; G6P, glucose 6-phosphate; PEP,
phosphoenolpyruvate; OAA, oxaloacetate; α-KG, α-ketoglutarate.
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In the analysis of this study, we also found that downregulated PCK2 expression in the context of
the onset of HCC can ultimately lead to a poor prognosis from this disease. We speculate that PCK2
might play an important role in aflatoxin-induced hepatocyte injury or transformation as well as the
occurrence and development of HCC, which might also formally represent one of the key factors that
influences the prognosis of HCC. However, further confirmatory studies are needed.

Until now, there are no additional detailed studies of the gene expression of HRG and PCK2 after
hepatocytes exposure to aflatoxin. We believe that the decline in HRG and PCK2 that is induced by
aflatoxin is closely related to the occurrence and development of HCC, as revealed by joint analysis of
the available datasets.

The aim of this study was to identify the key genes that might be related to the occurrence or
progression of aflatoxin-induced HCC. Through our data mining approaches, we focused on two
genes, HRG and PCK2. These findings suggested that HRG and PCK2 may be potential targets
for aflatoxin-HCC diagnosis and treatment. In the meantime, we cannot ignore the fact that the
regulation of messenger RNA cannot be directly related to the expression of protein levels or its role in
pathogenesis, so we should pay more attention to the gene level as the target of HCC treatment or
prognosis judgment. However, the lack of experimental evidence through bioinformatics research
shows that future validation experiments are necessary to test these findings in a more formal and
systematic analysis.

4. Conclusions

The mechanism of aflatoxin inducing HCC is not clear. Through the joint analysis of GSE127791
and GSE64041, we screened out the hub genes. With the further analysis of the hub genes, we speculated
that the expression of HRG and PCK2 might be involved in aflatoxin-induced hepatocyte injury or
transformation, and that the occurrence and development of HCC might be defined by the appearance
of one of those key factors that would ultimately affect HCC prognosis.

5. Materials and Methods

5.1. Screening of Datasets

The GEO database is an open high-throughput sequencing gene expression database [40].
Database screening criteria included the following: 1. Must be aligned to the human species rather
than other mammalian or animal species, and 2. Discard duplicate samples that are below 3 times.

We used "Aflatoxin Liver" as the keyword to screen the dataset GSE127791 of aflatoxin-treated
primary human hepatocytes. Using "hepatocellular carcinoma" as the keyword, the sequencing datasets
of normal human tissues and HCC tissues were screened. Due to the large sample size of GSE64041,
it was selected as the analyzed data source. Dataset information is described in Table 1.

Table 1. The information of datasets.

Series Control
Group (n)

Pathological
Group (n)

Samples
(Human) Platform Author Ref

GSE127791 6 6 iPSC-derived Hepatocytes GPL20844 Tryndyak V, et al [41]
GSE64041 60 60 HCC with unknown cause GPL6244 Makowska Z, et al [42]

The experimental processing of GSE127791 datasets: induced pluripotent stem cell (iPSC)-derived
human hepatocytes (on the 4th day after seeding) were treated with 0.2µM AFB1 or AFB2, control group
was treated with DMSO or deionized water the same volume for 7 consecutive days. AFB1 and AFB2
(purity ≥ 98.0%) were obtained from Sigma-Aldrich, USA. The experimental tissues of GSE64041
datasets: 60 biopsy pairs from hepatocellular carcinoma patients with unknown cause, 5 normal
liver biopsies.
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5.2. Screening of DEGs

The dataset was analyzed by GEO 2R program in limma package in R language. Fold change (FC)
and P-value are calculated by GEOR2. Benjamin & Hochberg (Error Detection Rate) was used to adjust
the FC and P-value in the selection of GEO2R.

First, we use “p < 0.01, |log2FC| ≥1” as the condition to analyze the effective DEGs in the dataset
of GSE64041 by GEO2R, which were the DEGs between liver carcinoma and non-cancerous tissue.
The same method was used to screen out the effective DEGs of GSE127791, which were the DEGs
between aflatoxin-treated hepatocytes and controls. Secondly, we further identified common DEGs of
two datasets which were sorted out and the common DEGs of the two datasets were analyzed by the
Venn diagram web (http://bioinformatics.psb.ugent.be/webtools/Venn/). Venn diagram was used to
produce overlapping results of DEGs as a graphical output.

5.3. Protein-Protein Interaction (PPI) Analysis

String 11.0 database is a database for calculating physical interactions and predicting protein
(gene) relationships by collecting gene regulatory relationships, protein interaction relationships,
protein co-expression, etc. It can build a gene (protein) interaction network by scoring the relationships
between different genes (proteins) [43]. We used String to analyze protein interaction between DEGs,
and used Cytoscape 3.6.1 software to visualize the protein interaction network [44,45]. Subsequently,
the most significant modules in PPI network were screened by Cytosscape application MCODE.
The screening criteria were: Degree cutoff = 2, node score cutoff = 0.2, K-core = 2, Max. Depth = 100.

5.4. KEGG Pathway and GO Term Enrichment Analysis

Gene Ontology (GO) is a comprehensive resource of computable knowledge about the functions
of genes and their gene products [26]. GO describes three functions: molecular function, cellular
components, and biological processes [46]. KEGG (Kyoto Encyclopedia of Genes and Genomes)
is an encyclopedia of genes and genomes for biological interpretation of genomic sequences and
other high-throughput data [47]. DAVID is an online functional annotation and enrichment tool
(https://david.ncifcrf.gov/) [48]. To analyze the function of DEGS, we used DAVID for biological
analyses. GO terms and KEGG pathways with a P-value <0.01 were considered statistically significant.

5.5. Screening and Analysis of Hub Genes

According to our analysis, we chose a degree ≥ 9 as the hub genes. The University of California
Santa Cruz (UCSC) Genome Bioinformatics website was used to construct hierarchical clustering of hub
genes (https://xena.ucsc.edu) [49]. In addition, the cBioPortal Cancer Genomics provides a Web resource
for visualizing, exploring and analyzing multi-dimensional cancer genome data. The cBioPortal
Cancer Genomics resource was also used to map the network of hub genes (http:/cBioPortal) [50].
The Kaplan-Meier Plotter was used to analyze the survival of hub genes (www.kmplot.com), which was
a public database of mRNA expression profiles for five types of cancer (breast, ovarian, lung, gastric,
and liver), from which information on gene expression and disease prognosis can be obtained. The KM
Plot sources for the databases include GEO, EGA, and TCGA [51,52]. The survival curve is determined
as the database evaluates the most accurate diagnosis, the most safe and effective treatment and the
prognosis of the disease by combining the clinical practice and experience of the clinician with the
objective scientific research evidence. The Oncomine online database was used to analyze hub gene
expression in tumors and normal tissues (https://www.oncomine.org).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/3/203/s1,
Table S1: List of DEGs of two databases. Table S2: Analysis of Protein-protein interaction. Table S3: The first 30
common DEGs Table. S4: Enrichment Analysis.
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