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Abstract: Inhibitors of fibroblast growth factor receptor (FGFR) signaling have been investigated in
various human cancer diseases. Recently, the first compounds received FDA approval in biomarker-
selected patient populations. Different approaches and technologies have been applied in clinical
trials, ranging from protein (immunohistochemistry) to mRNA expression (e.g., RNA in situ hy-
bridization) and to detection of various DNA alterations (e.g., copy number variations, mutations,
gene fusions). We review, here, the advantages and limitations of the different technologies and
discuss the importance of tissue and disease context in identifying the best predictive biomarker for
FGFR targeting therapies.

Keywords: fibroblast growth factor receptor; amplification; mutation; fusion; FGFR inhibitor; predic-
tive biomarker; clinical trials

1. Introduction

Growth factor signaling has been identified as a major hallmark of cancer, leading to
dysregulation of survival, growth and metabolic pathways [1]. Aberrant growth factor sig-
naling via, e.g., mutations in tyrosine kinase domains, or overexpression or amplification of
cognate receptors has recently also been linked to modulation of tumor microenvironment
and, thus, plays a major role in controlling immune response against cancers [2,3].

Consequently, these pathways were identified early on as potential targets for cancer
therapy by either inhibiting downstream signaling (e.g., alpelisib or copanlisib target-
ing phosphoinositide-3-kinase (PI3K), temsirolimus and other rapalogs targeting mam-
malian/mechanistic target of rapamycin (mTOR) or trametinib targeting mitogen-activated
protein kinase kinase (MAPK/MEK)) or by directly interfering with upstream receptors.
Seminal insights into growth factor receptor blockade were obtained from cetuximab and
panitumumab targeting epithelial growth factor receptor (EGFR), trastuzumab targeting
human epidermal growth factor receptor 2 (Her2/neu, erb-B2) and bevacizumab targeting
vascular endothelial growth factor (VEGF). For the first two targets, a clear predictive
biomarker selection technique was developed, ranging from simple target expression to
downstream mutational profiles [4,5]. However, no such strategy is currently available for
anti-angiogenic agents [6].

Recently, also, the fibroblast growth factor receptor (FGFR) family has entered the focus
of drug development and the first compounds, erdafitinib (JNJ-42756493, Balversa™), pemi-
gatinib (INCB054828, Pemazyre™), infigratinib (BGJ398, Truseltiq™) and, most recently,
futibatinib (TAS-120, Lytgobi™), have received United States Food and Drug Adminis-
tration (US FDA) approval for treatment of urothelial (bladder) cancer and intrahepatic
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biliary tract cancer, respectively [7,8]. While these US FDA-approved compounds use
FGFR gene fusions and mutations as a companion diagnostic for patient selection, other
agents use FGFR gene amplifications or FGFR overexpression to select patients in their
respective clinical trials [9–11]. In this article, we will summarize and review the different
approaches used for identification of patients for small-molecule FGFR inhibitor clinical
trials in various cancer indications.

2. Brief Introduction to FGFR Biology and Signaling

Five fibroblast growth factor receptors (FGFRs) have been identified in humans, with
four of them belonging to the family of transmembrane receptor tyrosine kinases and
contain three immunoglobulin-like extracellular domains, mediating ligand specificity,
a transmembrane spanning domain and an intracellular tyrosine kinase domain [12–15].
Twenty-two ligands for FGFRs have so far been identified in humans. They are usually
subclustered into intracrine, endocrine and paracrine members. Except for intracrine
fibroblast growth factor ligands (FGFs; FGF11-FGF14) that signal via the canonical receptor
pathways, each FGF can bind to multiple FGFRs, leading to a complex interaction map
of ligands and receptors (for more detail, see our previous review [16]). Ligand binding
leads to receptor dimerization and subsequent phosphorylation of downstream signaling
molecules (mostly fibroblast growth factor receptors substrate 2α, FRS2α, and growth factor
receptor-bound protein 2, GRB2) into the PI3K-AKT or the RAS-RAF-MAPK pathway,
which regulate cellular survival and growth mechanisms [17–19]. Other downstream
targets include signal transducer and activator of transcription (STAT) molecules [20],
adhesion molecules, such as N-cadherin [21–23] or the WNT/β-catenin pathway, thus,
linking FGFR to invasion and metastasis formation [24–26] as well as chemoresistance via
epithelial-mesenchymal transition [27,28] (Figure 1). Unlike FGFR1-3, FGFR4 does not
have splice variants in IgIII, which generates the IIIb and IIIc transcript variants encoding
different receptor isoforms. The lack of alternative splicing of IgIII reduces the ability to
switch ligand binding specificity [29,30]. FGFR4 contains a unique amino acid (Cystein at
position 522, Cys522) in the kinase domain, which is not present in FGFR1–3. Cys552 is
conserved in just five other human protein kinases, including MK2, MK3, S6K2, STK40
and TTK. Thus, covalently targeting the Cys552 in FGFR4 is an appealing strategy for
achieving selective inhibition of FGFR4, both with respect to isoform and kinome selectivity.
This structural difference enables the design of FGFR4-specific inhibitors [31]. Selective
inhibitors of FGFR4 have demonstrated clinical benefit in HCC patients with high FGF19
expression [32].

Overall, genomic alterations in FGFRs have been identified in approximately 6–7%
of all human cancers [33–35]. The oncogenic potential of FGFRs has been linked to in-
creased expression due to gene amplification (up to 66%), gene fusion/translocation (up
to 8%) or gene mutations (up to 26%) in the signaling domains or abnormity of FGFR
ligands [36–38]. It is interesting that these alterations show a distinct prevalence pattern in
various human tumor types. While the frequency of FGFR2 mutations is highest in endome-
trial cancer (10–12%), it is below 5% in, e.g., non-small-cell lung cancer (NSCLC), gastric
and urothelial cancer. Yet, FGFR3 mutations reach a prevalence of 75% in non-muscle-
invasive bladder cancer, while it drops to 15% in the more aggressive muscle-invasive
subtype [34,39–41]. Similar findings were observed for amplifications, which are rare for
FGFR3 and FGFR4, while FGFR1 amplification was found in up to 19% of NSCLC and
hormone-receptor-positive breast cancer (dropping to 4% in triple-negative breast can-
cer) [42–45]. Amplification of FGFR2 was found in up to 10% of gastric cancers [46,47] and
FGFR2 gene fusions in up to 20% of intrahepatic cholangiocarcinomas and up to 6% of
urothelial carcinomas [35]. Most prominent FGFR gene fusions represent FGFR3-TACC3
(transforming acidic coiled-coil containing protein 3) in urothelial cancer and FGFR2-BICC1
(BicC family binding protein 1) or FGFR2-AHCYL1 (adenosylhomocysteinase like 1) in
intrahepatic cholangiocarcinomas [48–51]. These results indicate that expression of and
genetic alterations in the various FGFR isoforms are highly context dependent and that a
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thorough understanding of the (dys-)regulated FGFR pathway is important to understand
the optimal therapeutic setting for FGFR inhibitors. Recent data also suggest epigenetic
mechanisms, such as methylation or miRNA expression, to regulate FGFR expression per
se or in response to treatment, thus, representing a resistance mechanism [52–54].
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Figure 1. Schematic representation of FGFR signaling and impact of various alterations. (A) Physi-
ologic signaling upon ligand binding leads to various downstream signaling cascades affecting cel-
lular survival, growth, migration, metabolism and interaction with cellular microenvironment. (B) 
Point mutations (marked in red) lead to constitutive activation by either affecting the extracellular 
ligand-binding domain or the intracellular tyrosine kinase domains. Signaling becomes independ-
ent of FGF ligand binding. (C) Gene fusions, rearrangements or translocations on DNA level 
(marked in dark green) lead to ligand-independent constitutive activation of the kinase domains by 
adding alternative kinase elements. (D) Gene amplification by DNA copy number alterations leads 
to higher expression of the receptor, providing more opportunities for ligands to bind and to acti-
vate the signaling cascade. It is noteworthy that all shown alterations also lead to increased mRNA 
expression levels but not all alterations lead to receptor overexpression. AKT: synonymous Protein 
Kinase B; β-cat: β-catenin; FGFR: fibroblast growth factor receptor; JAK: janus kinase; MAPK: mito-
gen-activated protein kinase; mTOR: mammalian/mechanistic target of rapamycin; PI3K: phospho-
inositide-3-kiase; RAF: rapidly accelerated fibrosarcoma; RAS: rat sarcoma; STAT: signal transducer 
and activator of transcription; WNT: wingless and Int-1. 
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Figure 1. Schematic representation of FGFR signaling and impact of various alterations. (A) Physio-
logic signaling upon ligand binding leads to various downstream signaling cascades affecting cellular
survival, growth, migration, metabolism and interaction with cellular microenvironment. (B) Point
mutations (marked in red) lead to constitutive activation by either affecting the extracellular ligand-
binding domain or the intracellular tyrosine kinase domains. Signaling becomes independent of FGF
ligand binding. (C) Gene fusions, rearrangements or translocations on DNA level (marked in dark
green) lead to ligand-independent constitutive activation of the kinase domains by adding alternative
kinase elements. (D) Gene amplification by DNA copy number alterations leads to higher expression
of the receptor, providing more opportunities for ligands to bind and to activate the signaling cascade.
It is noteworthy that all shown alterations also lead to increased mRNA expression levels but not all
alterations lead to receptor overexpression. AKT: synonymous Protein Kinase B; β-cat: β-catenin;
FGFR: fibroblast growth factor receptor; JAK: janus kinase; MAPK: mitogen-activated protein kinase;
mTOR: mammalian/mechanistic target of rapamycin; PI3K: phosphoinositide-3-kiase; RAF: rapidly
accelerated fibrosarcoma; RAS: rat sarcoma; STAT: signal transducer and activator of transcription;
WNT: wingless and Int-1.

It was demonstrated that FGFR2 is able to induce expression of programmed cell death
1 ligand 1 (PD-L1) via the janus kinase (JAK)/STAT pathway in colorectal cancer [55] and a
non-T-cell-inflamed phenotype was observed in FGFR3-driven urothelial cancer [56,57],
although a recent study from Denmark could not confirm this finding [58]. Yet, preclinical
data clearly demonstrate that inhibition of FGFR enhances the infiltration of CD8+ T
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cells and inhibits tumor growth via modulation of the tumor microenvironment [59–61].
Wu et al. observed that the FGFR inhibitor-mediated blockade of the mitogen-activated
protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathway in cancer-
associated fibroblasts leads to diminished proliferation, migration and secretion of the
vascular adhesion molecule 1 (VCAM-1) in these cells, which promotes T cell infiltration
by breaking down the tumor/stroma barrier [62]. Furthermore, FGFR tyrosine kinase
inhibitors were able to upregulate major histocompatibility complex (MHC) class I and class
II expression via induction of the MHC Class II gene master regulator Class II transactivator
(CIITA) and subsequent inhibition of MAPK and to augment the antitumor effects of FGFR1-
reactive T cells [63]. Overall, the non-canonical effects of FGFR inhibitors in regulating the
immune phenotype of tumors is still poorly understood and needs more experimental and
clinical studies.

For more details on the metabolic pathways affected by FGFR signaling in the liver,
we refer to other recently published reviews [64,65].

3. FGFR Inhibitors in Clinical Trials

This article focuses on small-molecule inhibitors of FGFR signaling, although other
modalities, such as FGF ligand traps (e.g., GSK3052230), FGFR2-targeting antibody drug
conjugates (e.g., aprutumab ixadotin/BAY 1187982) or receptor-blocking antibodies (e.g.,
bemarituzumab), have also been explored in early clinical trials [41].

Most of the small-molecule FGFR inhibitors (Table 1) are ATP-competitive inhibitors
of several FGFR isoforms. Commonly, FGFR1–3 are inhibited at low nanomolar concen-
trations in a biochemical assay, while inhibition of FGFR4 is often less potent. Selective
inhibitors of FGFR4, such as fisogatinib, roblitinib or H3B-6527, are irreversible covalent
inhibitors, as is futibatinib that represents the only irreversible pan-FGFR inhibitor. Al-
losteric inhibitors, such as Alofanib (RPT835) or SSR128129E, have not yet reported human
clinical data [66,67]. For many of the compounds listed in Table 1, clinical trials are still
ongoing (please see [41], also for details on response rates and www.clinicaltrials.gov for
more information, last accessed on 3 October 2022). So far, only erdafitinib, infigratinib,
pemigatinib and futibatinib have received FDA approval for treatment of bladder cancer or
intrahepatic cholangiocarcinoma.

The majority of the FGFR inhibitors that were used in clinical trials represent pan-FGFR
inhibitors that usually target FGFR1, FGFR2 and FGFR3 at low-nanomolar IC50 values and
FGFR4 at slightly higher values. Most of the compounds used a non-biomarker-selected
all-comer population for dose escalation and switched to a distinct patient population for
dose expansion and later phases of development. The tumor-agnostic potential of FGFR
inhibitors, regardless of the underlying FGFR subtype altered, was recently demonstrated in
the RAGNAR clinical trial with erdafitinib [68], in NCI-MATCH trial EAY131 with AZD4547
and in a large phase 1 study with rogaratinib [9]. Taken together, responses were observed
in over 25 different malignancies. Interestingly, only the FGFR4-selective inhibitors explore
the ligand FGF19 as a potential patient selection biomarker, while all other compounds
focus on FGFR alterations, such as gene fusions, amplifications or mutations. As outlined
above, these alterations show differential patterns in various human tumor types. Thus,
assays for prospective patient selection either need a broad specificity or multiple assays
need to be applied.

In the following section, different assays used in clinical development or as a full
companion diagnostics tools for FGFR inhibitors will be discussed.

www.clinicaltrials.gov
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Table 1. Clinically tested FGFR inhibitors.

Name Selectivity Indications Phase Biomarker Reference

ASP5878 FGFR1-4 UC, HCC, sqLC 1 FGFR3 fusion or mutation by FISH or PCR (UC), FGF19
overexp (HCC) or FGFR1 overexp (sqLC) by IHC [69,70]

AZD4547 FGFR1-4 BC, GC, sqLC, agnostic 3 FGFR copy number in ctDNA (BC), FISH (GC, sqLC), any
FGFR alteration by NGS in the indication agnostic setting [11,71–74]

Debio 1347 FGFR1-3 Advanced solid tumors 1/2 FISH, NGS [75,76]

Derazantinib
(ARQ087) FGFR1-3 ihCC 1/2 FGFR2 fusion by FISH or NGS [77,78]

Dovitinib
(TKI-258) FGFR1 & 3 RCC and other solid tumors 3 No specific biomarker used [79,80]

E7090 FGFR1-3 GC, ihCC, advanced solid
tumors 1/2 FGFR2 amp (GC), FGFR2 fusion (ihCC), NGS [81–83]

Erdafitinib
(JNJ-42756493) FGFR1-4 UC approved FGFR2/3 alterations by qRT-PCR [84,85]

Fisogatinib
(BLU-554) FGFR4 HCC 1/2 FGF19 by IHC [32]

Futibatinib
(TAS-120) FGFR1-4 ihCC, GC, advanced

solid tumors approved FGFR2 amp (GC), various FGFR aberrations [86–89]

Infigratinib
(BGJ398) FGFR1-3 ihCC, gliomas approved Any alteration of FGFR1 or FGFR3 (gliomas) or

FGFR2 (ihCC) [90–92]

LY2874455 FGFR1-4 GC, NSCLC 1 FGFR1 amp (NSCLC), FGFR2 amp (GC) [93,94]

ODM-203 FGFR1-4 Advanced solid tumors 1 Any genetic FGFR aberration [95,96]

Pemigatinib
(INCB054828) FGFR1-3 ihCC approved NGS [97,98]

Ponatinib FGFR1-4 ihCC 3 FGFR2 fusion/rearrangement by FISH or NGS [99,100]

Roblitinib
(FGF401) FGFR4 HCC 1/2 FGFR4 expression by PCR [101]

Rogaratinib
(BAY 1163877) FGFR1-4 Advanced solid tumors 1/2 mRNA expression (RNA-ISH, Nanostring) [9,102,103]

Amp: amplification; BC: breast cancer; FISH: fluorescence in sitru hybridization; GC: gastric cancer; HCC: hepatocellular carcinoma; ihCC: intrahepatic cholangiocarcinoma; IHC:
immunohistochemistry; NGS: next generation sequencing; NSCLC: non-small cell lung cancer; PCR: polymerase chain reaction; RCC: renal cell cancer; sqLC: squamous lung cancer; UC:
urothelial carcinoma.
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4. Predictive Biomarkers for FGFR Inhibitors

Early clinical trials with small-molecule FGFR inhibitors focused solely on histological
tumor entities with a reasonable frequency of FGFR DNA alterations. FGFR1 amplification
is the most frequently observed DNA abnormality in the squamous subtype of NSCLC
(up to 20%). Meanwhile, it became obvious that not all NSCLC patients with an FGFR
copy number gain had higher FGFR expression levels [104]. In gastric cancer, it could
be shown that only homogenous FGFR2 gene amplification led to FGFR2 overexpression
and, thus, to a treatment benefit [105]. A weak overlap between FGFR1 amplification and
FGFR1 overexpression was also described in a large cohort of head and neck squamous cell
carcinoma (HNSCC) patients [106].

Given the mode of action of small-molecule FGFR kinase inhibitors, the enzymatic
activity can only be inhibited if a) there is a higher FGFR expression level within the tumor
or b) if the enzymatic activity is increased by an activating single-nucleotide variant within
the kinase domain. Very interestingly, in urothelial carcinoma, where FGFR3-activating
mutations are most frequent (see before), it could be shown that the presence of a point
mutation leads to strong overexpression of the mutant protein. Similar findings were
observed for FGFR3 translocations in urothelial carcinoma and for FGFR2 fusions in
cholangiocarcinoma, where the lack of the 3′ end of the FGFR transcript being fused to
another partner gene delays the micoRNA-mediated degradation of the fusion transcript
and, thus, increases FGFR fusion gene tumor expression levels accordingly. Thus, the
selection of patients eligible for FGFR inhibitor therapy can be referred back to the degree
of the FGFR overexpression within the tumor, surprisingly, even including overexpression
of FGFR due to activating point mutations. For urothelial cancer, it has been known
for decades that some tumors, especially in earlier stages of the disease, reveal FGFR
overexpression without an underlying FGFR DNA alteration [107–109], e.g., an activating
FGFR3 mutation or an FGFR3 gene fusion. It remained a matter of speculation if patients
without such a DNA alteration may also benefit from FGFR inhibitor therapy. Schuler et al.
demonstrated FGFR inhibitor sensitivity in FGFR-overexpressing urothelial carcinoma
patients in the absence of a detectable FGFR DNA alteration [9]. A recent Phase 2 study in
gastric cancer with the FGFR2-targeting monoclonal antibody bemaritizumab demonstrated
FGFR2 overexpression via immunohistochemistry in 30% of screened patients, while other
datasets suggest that the amplification of FGFR2 in tissue reaches 2.2–4% and 7.7% via
ctDNA analysis [110,111]. Patients with overexpression of FGFR2b, even without ctDNA
amplification, demonstrated a benefit from the addition of bemarituzumab to mFOLFOX6,
supporting further evaluation of bemarituzumab in tumors with FGFR2b overexpression,
regardless of an underlying FGFR2 gene amplification.

Recent data from the indication-agnostic NCI-MATCH Trial EAY131 (subprotocol W)
also confirmed that alterations in FGFR, as detected by next-generation sequencing (NGS),
in that tumor tissue is more common across a broad range of tumor diseases than previously
expected. Here, various alterations were found also in, e.g., salivary gland tumors, rectal
cancer, pancreatic cancer, prostate cancer and other tumors that were considered not to
harbor FGFR alterations [74]. These findings corroborate the results from Schuler et al.,
who could demonstrate a higher proportion of FGFR-overexpressing patients in their study
than expected from The Cancer Genome Atlas (TCGA) data [9], e.g., 57% vs. 13% for
HNSCC or 46% vs. 30% for squamous NSCLC, whereas data for gastric cancer (19% vs.
18%) or lung adenocarcinoma (11% vs. 12%) matched the database prediction. Interestingly
and unexpectedly, it could also be demonstrated in this study that unusual alterations
could be detected in the cohort of urothelial cancer patients. Here, 5.5% of enrolled
patients showed overexpression of FGFR1 and several cases showed double positivity for
FGFR1/2, FGFR1/3 or FGFR2/3 overexpression, which would not be detected by a FISH
approach [112]. Still, a direct comparison of the prevalence of FGFR pathway alterations
between different studies or databases needs to be conducted with some precautions, since
different cut-offs or methods were applied that may lead to different results.
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Taken together, these findings point to the direction that cancer patients with FGFR
tumor overexpression, even in the absence of an underlying FGFR DNA alteration, could
benefit from FGFR inhibitor therapy (Figure 2 & Table 2). As receptor tyrosine kinases,
including FGFRs, are challenging targets for immunohistochemistry (IHC)-suited antibody
generation, we discuss, in the following chapter, alternative ways to quantify FGFR ex-
pression using archival tumor biopsy specimens in order to identify patients most likely to
benefit from FGFR inhibitor therapy.
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Figure 2. Prevalence of FGFR alterations in selected tumor types. For each tumor type, the prevalence
of amplifications, mutations, fusions or translocations and overexpression is highlighted according
to [34–40,42–51,113–126]. Overexpression relates to protein overexpression as (usually) detected
via immunohistochemistry. FGFR1 data marked with * for cholangiocarcinoma represent mRNA
expression data. The most prevalent alteration is depicted in bold for each tumor type. FGFR:
fibroblast growth factor receptor; HNSCC: Head and Neck Squamous Cell Carcinoma; NSCLC:
Non-Small-Cell Lung Cancer.

4.1. Immunohistochemistry

FGFR inhibitors currently available for clinical use are usually small-molecule in-
hibitors of the tyrosine kinase function of FGFRs. Therefore, directly detecting the drug
target by immunohistochemistry was considered to be the best predictive and patient
selection biomarker for these compounds and the technology would be readily available
for decentralized testing in local pathology labs. Except for FGFR2-specific antibodies or
FGFR2-targeting antibody drug conjugates, none of the small-molecule inhibitors listed in
Table 1 currently use IHC as a predictive biomarker. The FGFR4-specific inhibitor Fisoga-
tinib uses IHC to detect the FGFR ligand FGF19 [32], although recently, mRNA analysis
was also used in this setting [127].
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Table 2. Methods used in clinical trials to identify patients for FGFR inhibitor treatment.

Technology Pros Cons Patient Population * Prevalence

FGFR protein expression

Immunohistochemistry
Broadly available, direct measure of

receptor expression, keeps spatial
resolution, short TAT

No single antibody, needs multiplexing for
pan-FGFR inhibitors, Requires pathologist

training or central testing
FGFR2b + gastric cancer 30%

FGFR mRNA expression

PCR Sensitive, cheap, short TAT
Easy to establish for each FGFR subtype No preservation of spatial resolution FGFR4 + HCC pts (Roblitinib) Unknown

Nanostring Sensitive, highly multiplex testing Expensive, tumor content needs to be
retrospectively calculated

FGFR1/2/3 + all comers (Rogaratinib)
FGFR2 + gastric cancer (AZD4547)

Up to 25%
Unknown

RNA-ISH Sensitive, keeps spatial resolution, IHC-like
workflow, short TAT, multiplex possible

Requires pathologist training or
central testing

FGFR1/2/3 + all comers (Rogaratinib)
FGFR1&3 + urothelial cancer

patients (Rogaratinib)
25%

RNAseq Sensitive,
highly multiplex testing

Expensive, long TAT (several weeks), no
preservation of spatial resolution,

Not applied in any FGFR inhibitor trial
to date Unknown

FGFR DNA alterations

FISH Keeps spatial resolution Requires fluorescence microscopy,
multiplex possible FGFR2 + gastric cancer (AZD4547) 4–7% [11]

PCR Short TAT (7 days) No preservation of spatial resolution

FGFR2&3 fusion and FGFR3 mutations in
urothelial carcinoma (QIAGEN’s FDA
approved CDx therascreen® FGFR kit

for Erdafitinib)

20% [7]

NGS Highly multiplex testing Expensive, long TAT, no preservation of
spatial resolution

FGFR2 fusion-positive iCCA (Foundation
One™ as FDA approved CDx for

Pemigatinib & Infigratinib)
10% [91,98]

FGF ligand

IHC
Broadly available, direct measure of

receptor expression, keeps spatial
resolution, short TAT

No single antibody, needs multiplexing for
pan-FGFR inhibitors, Requires pathologist

training or central testing
FGF-19 serum levels in HCC (Fisogatinib) 27% [32]

CDx: Companion diagnostics; FDA: Food and Drug Administration; FISH: fluorescence in situ hybridization; HCC: hepatocellular carcinoma; iCCA: intrahepatic cholangiocellular
carcinoma: IHC: immunohistochemistry; NGS: next generation sequencing; PCR: polymerase chain reaction; RNA-ISH: RNA in situ hybridization; RNA-seq: RNA sequencing; TAT:
turnaround time. * Only patient populations that have been enrolled into FGFR inhibitor trials.
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The use of immunohistochemistry for small-molecule FGFR inhibitors is further
limited by the fact that these drugs are usually pan-FGFR inhibitors and, currently, there
is no antibody available that detects all necessary isoforms simultaneously and with the
needed sensitivity and specificity. Therefore, multiplex approaches using several isoform-
specific antibodies would be needed, which are technically challenging to develop due
to limited separability of chromogenic substrates. Fluorescence labels might overcome
this technical limitation but would require specific technologies in the analysis labs, which
limits the market access for this approach.

Overall, immunohistochemistry is not recommended as a predictive or patient selec-
tion biomarker for FGFR inhibitors.

4.2. FISH/CISH to Detect Gene Copy Number Variations

Several FGFR inhibitors have used fluorescence in situ hybridization (FISH) or chro-
mogenic in situ hybridization (CISH) to detect gene copy number variations (CNV), since
retrospective data showed a good correlation between high protein expression, as detected
by immunohistochemistry, and CNV, e.g., for FGFR2 in gastric cancer [116], where a copy
number gain is also associated with lymphatic invasion and poor prognosis [128]. Interest-
ingly, the reverse correlation between CNV and protein expression could not be confirmed
for FGFR1 in NSCLC patients, although FGFR1 amplification was also associated with
poorer overall and disease-free survival here [129]. It is now confirmed that only high
CNVs actually translate into high protein expression, which decreases the prevalence of
FGFR-positive patients, usually to a low percentage of the overall population (e.g., 4% for
FGFR2-amplified gastric cancer [130,131]). This raises the question for the right cut-off
to achieve clinical efficacy, since only highly amplified cancers seem to be dependent on
FGFR signaling and show higher sensitivity towards small-molecule inhibitors, such as
AZD4547 [132]. Furthermore, there is great intratumor heterogeneity in FGFR CNVs and
amplifications are not evenly distributed, which leads to the development of complex
evaluation scores. In lung cancer, Schildhaus et al. proposed that high-level amplification
is defined as FGFR1/centromere 8 (CEN8) ratio ≥ 2.0, or average number of FGFR1 signals
per tumor cell nucleus ≥ 6 or the percentage of tumor cells containing ≥ 15 FGFR1 signals
or large clusters ≥ 10% [133]. Such scores require extensive training of the pathologist to
minimize interobserver variability, since selecting different scoring criteria may lead to
different results. Interestingly, although FGF19 CNV could be detected by FISH and has
been shown to correlate with response to the multi-kinase inhibitor sorafenib in HCC [134],
current FGFR inhibitor trials either employ mRNA expression or protein overexpression
via immunohistochemistry for FGF19 [32]. Similar to fluorescence-labeled immunohisto-
chemistry, FISH requires specialized technical equipment that limits the broad application
of this assay. CISH, which could overcome these limitations, is currently not used in any
clinical trial.

4.3. mRNA Expression Technologies

RNA in situ hybridization (RNA-ISH) was considered to be challenging in clinical
trial settings. However, the introduction of the RNAscope technology in 2012 allows for
sensitive and specific detection of individual mRNA molecules, also in paraffin-embedded
tissue specimens, due to a novel probe design. It preserves spatial resolution and tissue
architecture and can be used with chromogenic or fluorescent detection systems and is,
therefore, highly multiplexable and results are well quantifiable [135].

The Nanostring nCounter technology was first introduced in 2008. It is a highly multi-
plexable direct measurement of mRNA expression with high sensitivity and reproducibility
and low detection limit, also from paraffin-embedded tissues [136]. In contrast to mRNA
in situ hybridization, but similar to PCR or sequencing technologies, it does not maintain
the spatial resolution of signals, since a direct digital readout is performed. However, new
algorithms allow one to recalculate stroma/tumor content and, thus, provide additional
information on signal distribution.



Cells 2022, 11, 3180 10 of 22

Preclinical data indicated that, actually, mRNA expression is a better predictor for
FGFR sensitivity than CNV or other biomarkers [103,106]. Schuler et al. were the first
to adopt those technologies for prospective selection of patients in a Phase 1 study in an
indication-agnostic manner [9]. In addition to demonstrating the technical feasibility and
robustness in a global multi-center trial, they could demonstrate that mRNA technologies
identified a much broader patient population (including patients without apparent genetic
alteration) than anticipated, thus, broadening the potential to bring benefit to patients.
These data were recently confirmed for FGFR1–4 mRNA expression in breast cancer [137].
While Nanostring technology is highly sensitive and multiplexable, it is also considered
expensive and requires bioinformatics workup to calculate tumor content. RNAscope offers
the advantage of maintaining the spatial resolution, which may provide useful additional
information on distribution of signals. It is considered fast and provides an IHC-like
readout but does require intensive training of the pathologist or a central reading in clinical
studies to minimize interobserver variability

In addition, several PCR-based technologies (e.g., digital droplet PCR or quantitative
reverse transcriptase PCR) have been developed and used in clinical trials, usually only on
a retrospective basis and not for patient selection. This is also the case for RNA sequencing.

4.4. Next-Generation DNA Sequencing (NGS)

Massive parallel sequencing, now usually called next-generation sequencing (NGS),
was developed in the mid-1990s and allows for the rapid reading of DNA fragments up to
400 base pairs in length and a maximum readout of up to 1 terabase per run. This provides
information on multiple genes or genetic aberrations, including mutations, fusions and
copy number variations, which is of special interest for FGFR inhibitors. First kits, e.g.,
Foundation One, have received FDA approval as a CDx test for various drugs and indica-
tions. Currently, pemigatinib and infigratinib use Foundation One as an FDA-approved
companion diagnostics test (CDx) for FGFR2 fusions in intrahepatic cholangiocellular
carcinoma [138].

In general, NGS approaches are considered the gold standard for molecular testing in
cancer. Their availability and reimbursement are constantly growing, since they allow one
to obtain information on numerous druggable genetic alterations at once, thus, limiting the
need for tissue and specific sequencing requests [139]. NGS results are complex and contain
information in several genetic alterations, which requires expert discussion in molecular
tumor boards, since, currently, no hierarchy of results is established, which would guide
treatment decisions in the case of multiple druggable hits. The benefit of obtaining multiple
insights at once is, of course, that guidance on resistance mechanisms and on sequencing of
therapeutic approaches could be discussed up front.

A limitation of NGS is its rather long turnaround time of up to 4 weeks and the
comparably high costs of the approach. The latter one is a major hurdle when using NGS
to identify rare genetic alterations with low prevalence in a certain population, which often
makes the use of NGS prohibitive, even in clinical trials.

4.5. NGS of ctDNA (Liquid Biopsies)

To overcome limitations related to tissue-based testing, such as invasiveness, biopsy
sampling error, intra-tumor heterogeneity or scarcity of available tissues, liquid biopsies
have been included in various clinical trials. Here, circulating free tumor DNA (ctDNA) can
be analyzed by means of next-generation sequencing and alterations, meaning mutations
or fusions can easily be detected. Furthermore, the level of ctDNA itself has been shown to
be an early prognostic marker correlated to disease recurrence in, e.g., NSCLC or colorectal
cancer [140–142].

Jogo et al. demonstrated that ctDNA analysis detects FGFR2 amplification in gastric
cancer at a higher frequency than tissue analysis (7.7% vs. 2.6–4.4%). They could also
identify patients where FGFR2 amplification was detectable only in liquid biopsy but not
in a paired tissue sample and that these cases had an overall worse prognosis [110]. Further
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data are needed to validate if only high-level amplifications (CNV > 5) translate into ctDNA
positivity or if also lower-copy-number changes could be detected in liquid biopsies [132].

An important application of NGS analyses to ctDNA samples is the monitoring of
resistance development. It was demonstrated that FGFR inhibitor treatment can lead
to secondary mutations in FGFR2 cholangiocarcinomas with FGFR2 alterations, which
drives resistance. Here, ctDNA analyses were applied longitudinally and could over-
come the observed intratumor heterogeneity and polyclonality in assessing resistance
mutations [143,144]. This approach was also used to inform treatment decisions in patients
who developed resistance against infigratinib or Debio 1347 and who could still benefit
from subsequent treatment with the irreversible FGFR inhibitor futibatinib [145]. Inter-
estingly, resistance to the CDK4/6 inhibitor ribociclib, in combination with fulvestrant in
ER+ breast cancer, can be mediated by amplification of FGFR1. ctDNA analysis from the
registrational MONALEESA-2 trial confirmed that patients with FGFR1 amplification had
shorter progression-free survival than wild-type patients [146].

Overall, these data demonstrate the high diagnostic, prognostic and predictive value
of NGS-based detection of FGFR pathway alterations. Specifically, the sophisticated lon-
gitudinal monitoring of resistance development has great potential to improve treatment
strategies due to advanced and adaptive therapeutic schedules for patients.

5. Discussion

The low concordance between FGFR amplification and FGFR overexpression, as
described for large datasets from NSCLC [104] and HNSCC [106] patients, questions to
what extent the pre-selection of patients based on FGFR amplifications may have led to
the failure of early clinical trials with FGFR inhibitors [147]. In addition, even for the
very same FGFR alteration within the same tumor type, highly different prevalence data
are reported across published data: a recent meta-analysis on the frequency of FGFR1
gene amplification in NSCLC evaluating twenty-three studies (5252 patients) revealed
a 10-fold difference in the prevalence, ranging from only 4.9 to up to 49% [148]. This
high variability raises the question if an additional layer of complexity to define an FGFR-
positive patient is based on the method used to detect the FGFR alteration, which all have a
different sensitivity and/or specificity. In addition, the definition of FGFR positivity might
be improved by applying, in parallel, two different methods to detect FGFR alterations
or to perform even orthogonal assays, e.g., evaluating FGFR DNA alterations and FGFR
expression levels using the same tumor tissue biopsy specimen. To date, only limited
data on FGFR positivity, confirmed by two different readouts, are available for patients
treated with an FGFR inhibitor. However, recent data from the Phase 2/3 study FORT-1,
evaluating rogaratinib in first-line urothelial cancer, revealed a very high response rate of
52.4% in a small subgroup of patients pre-selected for FGFR1/3 mRNA overexpression and
retrospectively confirmed of having, in addition, either an underlying FGFR3-activating
mutation or an FGFR3 gene fusion compared to the ORR of 19.5% in patients being positive
for FGFR1/3 mRNA overexpression, regardless of whether an underlying FGFR DNA
alteration was detected [149]. This points to a higher benefit from FGFR inhibitor therapy
in patients with FGFR positivity, confirmed by two different readouts and, ultimately,
leads to the provocative question of whether the therapeutic impact of existing FGFR
inhibitors is rather limited by the difficulties to define an FGFR-positive tumor than by the
drugs themselves.

In addition to technical reasons for choosing a certain predictive biomarker assay,
also, clinical and molecular factors need to be taken into consideration to find the best
therapy for patients (Figure 3). Still, several key questions remain elusive when selecting a
predictive FGFR biomarker assay.
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Figure 3. Factors influencing the selection of a predictive biomarker assay for FGFR-inhibitor
therapies. Alterations in FGFR1-4 impact on the predictivity of a biomarker assay. In addition to
the molecular biology of the alterations (CNV, fusion, mutation, etc.), also, the underlying tumor
entity (histology), the clinical staging (e.g., muscle-invasive vs. non-muscle-invasive bladder cancer),
tissue availability and the assay technology with different target readouts (protein, mRNA, DNA)
determine which FGFR targeting therapy would bring benefit to a patient.

First, gene fusions are considered strong oncogenic drivers and recent clinical data
show strong efficacy of compounds targeting, e.g., neuregulin 1 (NRG1) [150–152], neu-
rotrophic tyrosine kinase receptor (NTRK) [152,153] or anaplastic lymphoma kinase
(ALK) [154,155] fusions in patients across various tumor types. Despite selecting patients
for FGFR gene fusions, clinical responses to FGFR inhibitors seem less deep and less
pronounced than compared to other fusion-specific agents, such as Larotrectinib. This
may be due to the complex crosstalk and redundancy within the FGFR signaling network,
which leads to a basic physiologic signaling to maintain metabolic and tissue homeosta-
sis functions [16,64]. For example, whilst the normal, non-fusion-bearing NTRK protein
does not play any role outside the central nervous system in adults and the physiological
roles of ALK1 proteins in adults are still a matter of debate, FGFR proteins exert many
physiological functions. Thus, the fact that non-malignantly transformed somatic cells
express baseline FGFRs (e.g., FGFR3 in normal urothelial cells) separates FGFR proteins
clearly from NTRK proteins, where adult somatic cells lack expression and, thus, down-
stream signaling. In addition, the continuous physiological FGFR background signaling
active in normal body cells [16,64] could also explain the early and rapid development
of resistance bypass pathways under FGFR inhibitor treatment, as demonstrated for, e.g.,
the upregulation of ErbB family members after infigratinib treatment or for upregulation
of the EGFR pathway [156,157]. A common downstream mediator of receptor tyrosine
kinases is the PI3K/AKT/MAPK pathway. Alterations in this pathway, downstream of
the receptor, have also been described to confer resistance to FGFR inhibitors [158,159] and
could, in turn, be overcome again by combination therapy with an MEK inhibitor [160].
Insights into the parallel occurrence of such resistance mutations could, therefore, improve
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the response rates of FGFR inhibitors and favor the use of NGS panel approaches to se-
lect patients for FGFRi treatment. Interestingly, also for the approved FGFR inhibitors,
differences in efficacy were observed based on the underlying FGFR DNA alteration. For
pemigatinib, all observed responses were limited to FGFR2 fusion-positive cholangiocel-
lular carcinoma and no confirmed responses were seen in other FGFR alterations [98]. In
urothelial cancer, in contrast, long-term follow-up of a phase 2 study of erdafitinib revealed
that duration of response and overall survival were generally similar between patients
with FGFR mutations and those with FGFR fusions [161], which renders clinical decision-
making challenging. In comparison to other growth factor receptor pathway inhibitors,
e.g., Osimertinib against EGFR, agents targeting FGFRs seem have a lower overall potency,
which indicates that tumor cells may be less addicted to complex FGFR signaling pathways
with their multiple redundancies.

Second, it is intriguing that the same FGFR DNA alteration (mutation, fusion, am-
plification) leads to different sensitivity to FGFR inhibitors, depending on the underlying
histologic subtype. Across several compounds, FGFR2 fusions were most sensitive in
intrahepatic cholangiocellular carcinoma (ihCC) and FGFR3 mutations showed the best
responses in urothelial cancers. FGFR2 amplification gave positive results in gastric can-
cer but disappointed in, e.g., breast cancer or NSCLC. It is unclear why different tumor
types show different dependencies on these FGFR pathway alterations, even when DNA-
independent biomarkers, such as mRNA overexpression, are applied. So far, only limited
data are available on potential co-mutations or further downstream alterations, but it is
obvious that tumor type and histology matter [74].

Third, the overall prognostic and predictive value of (different) FGFR alterations
remains unclear. It is also unclear what a biologically meaningful cut-off for the different
assay formats discussed above would be and a clear threshold for FGFR positivity is
currently not available. As an example, approved CDx tests for FGFR inhibitor treatment,
based on FGFR mutations or fusions, apply a cut-off for FGFR positivity as a mutant allele
fraction (MAF) of at least 5%, whereas an NGS-based mutation test may easily detect
an MAF of 0.1% or even less. However, in contrast to the established cut-off for the
MAF for EGFR-activating mutations shown to be clinically meaningful for EGFR inhibitor
treatment [162], no such correlation of MAF and clinical response has been shown for
any FGFR inhibitor to date. The same applies for the correlation between the degree of
FGFR protein or FGFR mRNA overexpression and clinical response when being used for
patient selection in clinical trials or for the cut-off definition of a clinically meaningful copy
number gain.

Only limited data are available that confirm a negative prognosis for urothelial cancer
patients with FGFR genomic alterations [163], while other data could not establish a corre-
lation to overall survival (OS) or progression-free survival (PFS) or response to systemic
therapy [164]. Several studies recently investigated the combination of FGFR inhibitors
with immune checkpoint inhibitors. While a recent study from Denmark could not identify
a statistically significant correlation between FGFR3 amplifications or mutations to PD-L1
expression in primary urothelial carcinomas [58], Sweis et al. showed that an activated
FGFR3 pathway is linked to non-T-cell-inflamed tumors, which are characterized by poorer
prognosis and resistance to immune checkpoint inhibitors [56]. This may be due to the
activation of neural-precursor-cell-expressed developmentally down-regulated protein
4 (NEDD4), an E3 ubiquitin ligase, by activated FGFR3 that could lead to proteasomal
degradation of PD-L1, indicating the potential of combination therapy in this setting [165].
FGFR3 mutations, therefore, seem to be a negative predictor to immunotherapy response in
urothelial cancer. However, promising data from erdafitinib and rogaratinib combination
trials with PD-1 antibodies indicate that parallel inhibition of overactive FGFR signaling in
urothelial cancer may be a pre-requisite to sensitize tumors to the benefit of subsequent
checkpoint inhibitor therapy [166,167].
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6. Conclusions

Drugs targeting the FGFR pathway have matured and received approval for various
cancer indications, which require prospective biomarker testing. Several technologies, rang-
ing from immunohistochemistry to PCR or sequencing technologies and to gene expression
approaches, have been investigated in clinical trials and provide different advantages and
limitations. Next-generation sequencing is approved as a companion diagnostic kit for
two compounds but further understanding of the role of distinct alterations (e.g., gene
fusions vs. mutations vs. overexpression) is urgently needed, as a one-fits-all approach
does not seem successful for FGFR inhibitors. The available clinical data indicate that the
nature of the alteration and the underlying cancer disease itself significantly impact the
predictivity of those biomarkers and more research is needed to obtain clarity for clinicians
and patients on what biomarker cut-off and what test achieve the best results in a certain
disease context.

Regarding the knowledge of advantages and limitations in FGRR tests, the following
recommendations can be given: In situ hybridization approaches allow one to determine
the gene copy number, which seems to be a less reliable predictor of treatment outcome.
Immunohistochemistry is currently not recommended as a screening method in view
of the possibility of NGS assays. Depending on the available patient sample (including
the possibility to achieve tumor content enrichment through tissue microdissection or
the alternative use of liquid biopsies), molecular pathological testing of potential FGFR
mutations or fusions should be performed using DNA/RNA-based NGS platforms.
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