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a b s t r a c t

Cancer is a heterogeneous disease mainly driven by abnormal gene perturbations in regulatory networks.
Therefore, it is appealing to identify the common and specific perturbed genes from multiple cancer net-
works. We developed an integrative network medicine approach to identify novel biomarkers and inves-
tigate drug repurposing across cancer types. We used a network-based method to prioritize genes in
cancer-specific networks reconstructed using human transcriptome and interactome data. The prioritized
genes show extensive perturbation and strong regulatory interaction with other highly perturbed genes,
suggesting their vital contribution to tumorigenesis and tumor progression, and are therefore regarded as
cancer genes. The cancer genes detected show remarkable performances in discriminating tumors from
normal tissues and predicting survival times of cancer patients. Finally, we developed a network proxim-
ity approach to systematically screen drugs and identified dozens of candidates with repurposable poten-
tial in several cancer types. Taken together, we demonstrated the power of the network medicine
approach to identify novel biomarkers and repurposable drugs in multiple cancer types. We have also
made the data and code freely accessible to ensure reproducibility and reusability of the developed com-
putational workflow.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tumorigenesis and tumor progression are linked to abnormal
expression of genes [1]. These genes’ expression is too low or too
high and therefore not regulated properly in cancer cells. Identifi-
cation of such dysregulated cancer genes in cancer networks is
important to characterize their regulatory role and help establish
novel therapies. The easy access to annotated human genomics
and interactome data allows for reconstruction of cancer-specific
networks, making network-based characterization of cancer genes
possible. Public repositories widely used by the community
include The Cancer Genome Atlas (TCGA) [2] and Genomics Evi-
dence Neoplasia Information Exchange (GENIE) [3] for genomics
data and Reactome [4] and OmniPath [5] for interatcome data.
However, there has been a lack of systematic approaches to inves-
tigate cancer genes across multiple cancer types and evaluate their
clinical utility.

Network medicine approaches have been widely used to iden-
tify biomarkers for cancer subtype classification [6] and prognostic
assessment [7] and to shortlist drug-repurposing candidates for
cancer [8]. Owing to the natural ability of network-based
approaches to integrate and interpret human genomics and inter-
actome data, they are much more powerful than approaches that
examine and analyze only genes with aberrant expression to iden-
tify tumor-specific molecular mechanisms, candidate targets and
repositioned drugs for personalized treatment [9]. For instance,
by integrating protein interactome with cancer genomics data,
Zhang et al. identified dozens of subnetworks linked with progno-
sis across four cancer types. The authors used the subnetworks to
develop prognostic models that can predict the survival of individ-
ual cancer patients [10]. Woo et al. developed a regulatory
network-based approach that uses dysregulated gene expression
profiles and molecular interactions following compounds pertur-
bation to identify both direct targets and downstream proteins of
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drugs [11]. On the other hand, network-based gene prioritization
has been remarkably useful to identify genes that are involved in
cancer progression and correlated with clinical traits [12]. State-
of-the-art gene prioritization algorithms include those based on
network propagation that imitates transmission of information in
networks [6,13], network embedding that converts nodes to vec-
tors and preserves the structure of the network [14,15], and seed
association that links seed genes (i.e. oncogenes) with candidate
genes using defined rules [13]. For example, Leiserson et al. devel-
oped a pan-cancer network approach which combines a diffusion-
based method and TCGA data to identify subnetworks and protein
complexes perturbed by genes with somatic mutations [16]. The
approach showed advances in detecting genes with rare mutations
in cancer. Another important application for network medicine
approaches is drug repurposing [17,18]. In this case, drugs
designed and approved for other diseases like infections show abil-
ities to treat given (sub)-types of cancer. As a result, one can
shorten the path towards clinical approval and accelerate applica-
tion in targeted cancer therapy. Furthermore, in personalized treat-
ment, drug repurposing is especially valuable for patients showing
resistance to available therapies. Hence, one can integrate individ-
ual patients’ genomics data with network analysis to identify
repurposable drugs for precision medicine [19]. Altogether, all
these evidence demonstrate the ability of network-based methods
to maximize the use of complex biomedical data for the identifica-
tion of genes with potential clinical utility.

We presented an integrative network medicine approach to
identify biomarkers and explore drug repurposing across cancer
types (Fig. 1). We used a network-based method to prioritize genes
in cancer-specific networks reconstructed using human interac-
tome and transcriptome data. The top-ranking genes regarded as
cancer genes because they show high expression fold-changes
and have strong interactions with other highly perturbed genes.
We further performed systematic analyses to evaluate the clinical
utility of the cancer genes in cancer diagnosis and prognosis. Com-
pared to the genes with the most dysregulated expression levels,
the cancer genes identified by our method show improved perfor-
mance in classifying tumor samples from normal tissues and pre-
dicting patients’ survival. Finally, we used a network proximity
approach to perform drug repurposing. We shortlisted dozens of
drug-repurposing candidates in several cancer types and elabo-
rated on the molecular mechanisms through which they regulate
the cancer genes. Our study demonstrates a network medicine
approach that is useful for refining our biological understanding
of cancer diagnosis and prognosis and potentially improving clini-
cal outcomes.
2. Methods and Materials

2.1. The network medicine approach

We developed a network medicine approach that integrates
data analysis and network biology methods to conduct systematic,
quantitative, and reproducible research. The approach contains
several modules that are described in detail in the rest of this sec-
tion. Figure S1 shows a flowchart of the computational methods
used for analysis.
2.2. Gene expression data and differential gene expression analysis

We downloaded and used expression data from the Xena plat-
form [20]. The platform contains tumor samples and their corre-
sponding normal tissue samples for 33 cancer types. The raw
data include 10,530 tumor and normal samples from TCGA [2]
and 7,845 normal tissue samples from the Genotype-Tissue
35
Expression (GTEx) project [21]. The raw FASTQ files were pro-
cessed using a common RNA sequencing pipeline to eliminate
batch effects from different computational processing. The pipeline
re-aligned the fragments to the human reference genome (hg38)
and quantified gene expression using the Kallisto [22] and RSEM
tools [23]. We converted the Ensembl identifiers of genes into
HGNC gene symbols and obtained a matrix of gene expression data
with 18,375 samples for 33 cancer types. For the sake of data con-
sistency and minimizing the effect of unbalance sample sizes [24],
we removed 15 cancer types that do not have normal tissue sam-
ples from either TCGA or GTEX or have less than 20 normal tissue
samples in total. This resulted in 18 cancer types with for the
follow-up differential gene expression analysis. To increase confi-
dence that the selected genes for differential expression analysis
are expressed in both tumor and normal samples, we kept genes
whose expression greater than zero in at least 20 tumor samples
and 20 normal samples. Subsequently, we used the gene expres-
sion data of the 18 cancer types to identify differentially expressed
genes (Table 1). We performed the analysis using the DESeq2 pack-
age in R [25]. Genes with an adjusted p-value smaller than 0.05
(computed using the Benjamini-Hochberg method) were regarded
as significantly differentially expressed genes. To ensure that the
selected significantly differentially expressed genes have biologi-
cally meaningful effect size [26], we used genes with an absolute
log2 fold-change of at least 2 for subsequent analysis (Table S1).

2.3. Gene set enrichment analysis

Gene set enrichment analysis helped us interpret the biological
function of differentially expressed genes by comparing the distri-
bution of expression statistics of genes of a biological pathway or
term to randomly selected gene sets with the same size and
derived from the same gene expression dataset [27]. We used
MsigDB hallmark gene sets [28] and tested their expression statis-
tic (i.e., log2 fold-change of gene expression divided by standard
deviation) on the whole expression profile of a cancer type
(Table S2). Terms with an adjusted p-value smaller than 0.05 (com-
puted using the Benjamini-Hochberg method) were considered
statistically significant, and each has an enrichment score that
quantifies the degree of dysregulated expression in the associated
genes. In other words, a high positive or negative score means the
genes of a term are more likely to lie at the extremes of the gene
expression statistic ordered from the highest to the lowest. We
performed the analyses using the R package clusterProfiler [29].

2.4. Reconstruction of cancer-specific networks

We downloaded 135,435 molecular interactions from the
OmniPath database that aggregates data from over 100 sources
[5]. The database contains protein–protein and gene regulatory
interactions, enzyme-substrate relationships, protein complexes,
and intercellular communication. We kept only experimentally
validated interactions for network reconstruction. In addition, we
transformed microRNA names in the database to corresponding
gene symbols from the HGNC database [30]. As a result, we
obtained a directional generic network with 11,831 genes and
75,303 interactions. The interaction types include stimulation
and inhibition. For undirected interactions without specification
of interaction types, we assumed the interactions are bi-
directional and thus added an entry to complement the missing
interaction.

We reconstructed cancer-specific networks using the signifi-
cantly differentially expressed genes identified for each cancer
type to extract interaction information from the generic network
(Table S3). Specifically, we took only interactions in which both
interacting molecules are significantly differentially expressed



Fig. 1. Workflow of the study. The network medicine approach integrates human transcriptome and interactome data to reconstruct cancer-specific networks. A network
topology-oriented scoring model is employed to prioritize genes in the networks. The potential clinical utility of identified genes is evaluated through tumor stratification,
survival analysis, and drug repurposing. The detailed computational workflow is shown in Figure S1.

Table 1
Statistics of employed cancer data and networks. The table shows 18 cancer types and their corresponding tumor and normal samples from TCGA and GTEx. The last four
columns show the number of genes used for differential expression analysis after filtering genes with low expression, the number of identified significantly differentially
expressed genes, the number of nodes and edges of the corresponding cancer networks.

Cancer type Tumor Normal # of genes # of
DEGs

# of
nodes

# of
edges

Bladder Urothelial Carcinoma (BLCA) 407 28 23,174 2,132 456 907
Breast Invasive Carcinoma (BRCA) 1,099 291 37,459 4,205 560 1,052
Colon Adenocarcinoma (COAD) 288 348 34,942 5,599 818 1,737
Esophageal Carcinoma (ESCA) 182 286 35,643 4,386 424 629
Kidney Chromophobe (KICH) 66 53 27,329 3,835 513 879
Kidney Renal Clear Cell Carcinoma (KIRC) 530 100 32,172 3,091 361 515
Kidney Renal Papillary Cell Carcinoma (KIRP) 288 60 29,511 2,756 344 550
Liver Hepatocellular Carcinoma (LIHC) 369 160 30,888 2,801 299 545
Lung Adenocarcinoma (LUAD) 513 347 37,018 4,642 610 1,082
Lung Squamous Cell Carcinoma (LUSC) 498 338 36,847 6,729 985 2,128
Pancreatic Adenocarcinoma (PAAD) 179 171 31,694 4,916 857 1,855
Prostate Adenocarcinoma (PRAD) 495 151 34,594 2,616 126 127
Rectum Adenocarcinoma (READ) 92 317 30,498 5,684 876 1,882
Skin Cutaneous Melanoma (SKCM) 468 557 36,487 9,223 1,270 2,781
Stomach Adenocarcinoma (STAD) 413 211 35,056 3,613 428 740
Thyroid Carcinoma (THCA) 512 338 36,496 3,958 274 401
Thymoma (THYM) 119 339 30,167 10,197 2,294 7,830
Uterine Corpus Endometrial Carcinoma (UCEC) 180 101 31,163 6,687 1,153 2,707
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genes. In addition, we computed Pearson correlation coefficients
for each interaction based on the expression levels of the interact-
ing genes and kept only those consistent with the interaction
types. That means that a stimulatory interaction has a positive
Pearson correlation coefficient and an inhibitory interaction a neg-
ative one. For undirected interactions, we assigned Pearson corre-
lation coefficients as their edge weights.
2.5. Gene prioritization

We made use of the guilt-by-association principle to prioritize
genes in cancer-specific networks. We assumed that important
genes in tumor have high expression perturbation (indicated by
log2 fold-change) and many interactions (indicated by node
degree). The importance of genes were characterized by their node
weights (absolute log2 fold-change multiplied by node degree).
Furthermore, if such a highly perturbed and densely connected
gene has short distances to other genes with high weights, its
36
importance increases. The distance between genes was character-
ized by Pearson correlation coefficients with the formula -log10(|p|
+ c) and used as edge weights. The constant c = 1e-6 in the equation
avoids the appearance of infinite values and is negligible compared
to impactful correlations. A high correlation between two genes
indicates a strong interaction between them and is transformed
into a short distance in the network. We normalized node and edge
weights using their maximum values, constraining them to the
range [0, 1]. Then, we used the weights to calculate gene scores
(Si) using the following equation [31]

SiðdÞ ¼ 2

np
�
X

j

ðpj � p
�ÞIðDg i; jð Þ � dÞ

where n is the total number of nodes in the network, pj is the weight

of node j and p
�
is the average weight of all nodes in the network g.

IðDg i; jð Þ � dÞ is an identity function, equaling 1 if node i and node j
are within distance d and 0 otherwise. The distance d increases from
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zero to the maximum distance between node i and other nodes in
the network. This results in a curve that starts from the weight of
node i when d equals 0 and ends at 0 when d reaches its maximum
value, and the area under the curve is used to score the node in the
network. A high score translates into a high ranking of a gene
(Table S4). The analysis was performed using the R package SANTA
[31].

2.6. Random forest classification of tumor and normal samples

We used a wrapper method to choose top-ranking genes based
on their scores [32] and trained the random forest classifiers to dis-
tinguish between tumor and normal samples. We used random
forest as it has demonstrated to be the top-performing algorithm
in solving classification problems [33]. Besides, combining feature
selection with random forest showed superior performance than
other classifiers using different real-life datasets [34]. The number
of chosen genes was constrained in the range [3,9]. This strategy
ensures as few as possible genes are selected to avoid model over-
fitting [35] and to facilitate clinical applications that favor
biomarkers with less genes [36,37]. The classifier with the best
performance determined the optimal number of genes for each
cancer type. For comparison, we trained a random forest classifier
for each cancer type using the same number of significantly differ-
entially expressed genes ranked by expression fold-change, and
the selected genes are not restricted to be included in the
cancer-specific interaction networks. We evaluated model perfor-
mances using F1 score, Matthews correlation coefficient (MCC),
and the receiver operating characteristic (ROC) curve. Specifically,
the metrics were computed using confusion matrixes that contain
four entries – true positive (TP), true negative (TN), false-positive
(FP), and false-negative (FN). Sensitivity ( TP

TPþFN) measures the pro-
portion of tumor samples correctly determined as positive samples
and specificity ( TN

FPþTN) measures the proportion of normal samples

correctly determined as negative samples. F1 score (2�precision�recallprecisionþrecall )

combines both recall (i.e., sensitivity) and precision ( TP
TPþFP) to mea-

sure a classifier’s accuracy. Precision represents the ratio of correct
predictions of tumor samples to the total predicted tumor samples.
MCC ( TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p ) is a balanced metric and takes TP,

FP, TN, and FN into account. MCC is recommended when the num-
ber of positive and negative samples is imbalanced [38,39]. For
instance, BLCA contains 407 tumor samples and 28 normal sam-
ples. The value of MCC is in the range [-1, 1], where 1 indicates a
perfect classifier that can correctly distinguish tumor and normal
samples, 0 indicates that the performance of a classifier is equal
to random guessing, and �1 indicates that the model prediction
is completely inconsistent with the observation. A ROC curve
shows the performance of a classifier at all classification thresholds
and has two parameters true positive rate (i.e., sensitivity) and true
false positive rate (i.e., 1 - specificity). The area under ROC (AUC)
can systematically evaluate the performance of a classifier for dif-
ferent combinations of the two parameters [40], and its value
ranges from 0 to 1, with a value closer to 1 indicating that a clas-
sifier can better classify tumor and normal samples. For each can-
cer type, we developed two classifiers using the 10-fold cross-
validation approach and compared the classifiers using the values
of AUC, MCC, and F1 score. We performed the analysis using the R
package randomForest [41].

2.7. Survival analysis

We downloaded the clinical information of cancer patients from
the Xena platform. The data includes patients’ survival statuses
and survival times after being diagnosed with cancer. For individ-
37
ual genes, we divided cancer patients into high-expression and
low-expression groups using the median expression of genes. We
performed two-sided log-rank tests to compare the survival curves
(i.e., Kaplan-Meier curves) between the two groups [42]. We fur-
ther examined the densities of the log-rank tests’ p-values com-
puted for different numbers of top-ranked genes (n = 10, 20, 50,
and 100) selected by the network method or expression fold-
change and performed the Fisher-Pitman permutation test to show
whether or not the difference between the two methods is signif-
icant (p-value � 0.05).

Furthermore, we performed multivariate Cox regression with
the ridge penalty [43] to calculate the risk scores for patients using
top-ranking genes identified by the network method or expression
fold-change. We chose the penalty parameter (k) at its optimal
value to obtain the coefficients (b) of the Cox model and used the
model to compute patients’ risk scores. We performed the analyses
using raw gene expression, z-score of gene expression, and mini-
mum–maximum normalization of gene expression. Based on the
median of the risk scores, we divided the tumor patients into
high-risk and low-risk groups and performed two-sided log-rank
tests to compare the survival curves between the two groups.
The three methods showed similar performances in predicting
patients’ survival rates. We developed and analyzed the Cox model
using the R package glmnet [44] and drew Kaplan-Meier plots using
the R package survival [45].

Moreover, we used a time-dependent ROC curve to estimate the
changing of the time period in determining the ability of the
selected gene sets in predicting patients’ survival status (alive or
dead) [46]. For performing such analysis, we used the risk score
of patients computed by the Cox model. Then, we adjusted the
threshold for the risk score and the time point to calculate sensitiv-
ity and specificity for drawing the ROC curve. We used the R pack-
age timeROC [47] to draw the time-dependent ROC curves at 3, 5,
and 10 years. The time-dependent AUC was used to compare the
prognostic performance of the gene sets obtained using the net-
work method or expression fold-change.

2.8. Network-based drug repurposing

We used a list that collected high-quality physical drug-target
interactions on FDA-approved or clinically investigational drugs.
The list was created using three drug-target databases (i.e., Drug-
Bank, the Therapeutic Target Database, and the PharmGKB data-
base) and refined by four metrics accounting for binding
affinities between drugs and proteins (i.e., inhibition constant, dis-
sociation constant, median effective concentration, or median inhi-
bitory concentration) [48]. The list contained 4,428 FDA-approved
or clinically investigational drugs and 2,256 unique human protein
targets. We further annotated the list with the information that
specifies FDA-approved drugs for specific cancers. The information
was gathered from the NCI website (Table S7).

We used a network proximity method to identify repurposable
drugs for cancer genes in each cancer type. Specifically, the method
calculated the distance between drug targets (i.e., genes from the
annotated drug-target interaction list; Table S7) and cancer genes
(i.e., gene sets selected by the network method and used for sam-
ple classification in different cancer types; Table S4). Compared to
random gene sets with the same size as the cancer gene set, a sig-
nificantly shorter distance between drug targets and the cancer
gene set implied the repurposing potential of drug candidates.
We developed a method by considering the regulatory direction
and strength between drug targets and cancer genes. Such modifi-
cation allowed us to identify repurposable candidates that exert
effects on cancer genes based on weighted distances. Only the
drugs whose targets are upstream of the cancer gene set were con-
sidered effective. Specifically, the method requires three inputs -
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the largest fully connected subnetwork of a cancer-specific net-
work, a set of drug targets included in the subnetwork, and a set
of cancer genes included in the subnetwork. We computed the dis-
tance between the two gene sets in a network using the following
equation

dCT ¼ 1
nT � nC

X

t�T

X

c�C

wdðt; cÞ

where C and T denote the cancer gene set and the drug target set,
respectively; n<T,C> denotes the size of the respective gene sets;
and wd(t, c) denotes the weighted shortest distance between a drug
target t and a cancer gene c. While computing distances between
genes, we set the distance of gene pairs not connected by a directed
path to twice the network diameter. Next, from the subnetwork we
generated a set of random genes C’ with the same size as the cancer
gene set and computed dC0T . We repeated this step 1000 times and
obtained the mean and standard deviation of dC0T . Then, we calcu-

lated the z-score (i.e., dCT�dC0T
�

rðdC0T Þ
) for all drug candidates and derived

corresponding p-values using the permutation test results. Drugs
with z-score � �1.5 and p-values � 0.05 were considered repurpos-
able due to significantly proximal drug-gene associations in the
cancer-specific networks. To evaluate the toxicity of the identified
repurposable drugs on non-cancer tissues, we defined a normal
gene set that contains the same number of genes as the cancer gene
set for each cancer type. The normal genes are ranked by a score
that is the multiplication of the average expression of the gene in
the normal tissue with the gene’s node degree in the network. Then,
we used the same equation to compute the distance between the
drug targets and the normal genes (dNT) and compared it with the
corresponding dCT .
3. Results

3.1. Transcriptome analysis reveals distinct gene expression profiles of
18 cancer types

We used transcriptome data of 33 cancer types from the Xena
platform including normal samples from TCGA and GTEx and re-
processed them using our computational pipeline to remove batch
effects (see Materials and Methods). The inclusion of data from
GTEx alleviated the imbalanced number of tumor and normal sam-
ples in TCGA. We kept 18 of 33 cancer types that contain adequate
sample sizes for both tumor and normal tissues to carry out follow-
up analyses (see Materials and Methods; Table 1). First, we per-
formed differential gene expression analysis to identify genes with
aberrant expression in the 18 cancer types. The data showed that
the significantly differentially expressed genes with absolute log2
fold-change of at least 2 could partially distinguish tumor samples
from normal samples (Figures S2 and S3).

Then, we performed gene set enrichment analysis using a hall-
mark collection to interpret the biological function of the identified
differentially expressed genes in the 18 cancer types (see Materials
and Methods). The collection contains 50 gene sets that are good
representations of cancer hallmarks [49,49,50] and have been
designed to reduce redundancy and produce more robust enrich-
ment analysis results. The identified differentially expressed genes
of most cancer types were enriched in terms associated with cell
proliferation (e.g., mitotic spindle assembly and G2/M checkpoint
in cell cycle progression), DNA repair, PI3K signaling, and glycolysis
(Fig. 2). Some cancer hallmarks were only associated with specific
cancers. For example, TGF beta signaling and Notch signaling were
associated with four and three out of 18 cancer types, respectively.
Of note, cancers originating from similar organs or tissues were
more likely to be clustered together (i.e., COAD and READ from
38
the colon, LUSC and LUAD from the lung, and KIRC and KIRP from
the kidney) in terms of the hallmarks for which their genes are
enriched. Above all, the results implied that the identified differen-
tially expressed genes are cancer specific, and therefore it will be
interesting to investigate their role in cancer regulatory networks.

3.2. Gene prioritization in cancer-specific networks

The naturally ubiquitous, pleiotropic, and concerted gene regu-
lation makes it challenging to quantify the importance of individ-
ual genes in tumors. We applied a network-based method that
integrates gene expression profiles and gene interaction informa-
tion to rank genes in cancer-specific networks. First, we recon-
structed a generic network from experimentally validated
molecular interactions (see Materials and Methods). The network
was directional and composed of 11,831 genes with 75,303 inter-
actions. Second, we integrated the network with the identified dif-
ferentially expressed genes for each cancer type to create cancer-
specific gene regulatory networks. The size of the cancer-specific
networks varied from hundreds to thousands of genes and molec-
ular interactions (Table 1 and Figure S4). The node degrees of the
networks followed a power-law distribution (Figure S5), meaning
the majority of genes have only a few connections to other genes,
whereas some genes are connected to many other genes in the net-
work. This scale-free property is widely found in biological net-
works [51], and most of biological networks have weakly scale
free structures [52]. We then used a network method that consid-
ers gene expression and topological information to score genes
(see Materials and Methods), and the scores were used to rank
genes in the cancer networks according to their importance. This
method allowed us to prioritize genes that are significantly differ-
entially expressed and have high connectivity as well as strong
regulatory effects on other dysregulated and densely connected
genes in the cancer networks. Previously, we have used the method
to identify microRNAs for improving the effectiveness of cancer
immunotherapy [53]. Biologically, the identified genes in cancer
networks could be functionally important and potentially linked
to tumorigenesis and metastasis [49,54,55], therefore having
potential as prognostic markers and therapeutic targets for cancer.

3.3. Prioritized genes show potential as diagnostic and prognostic
biomarkers

We further investigated the usefulness of genes prioritized by
the network method in discriminating between tumor and normal
samples and compared their performance with top-ranking genes
based on expression fold-change of the whole transcriptome. For
each cancer type, we trained a random forest classifier using differ-
ent numbers of network genes, chose the one with the best perfor-
mance, and compared it with a classifier trained with the same
number of expression-based genes (see Materials and Methods).
The classifiers’ performances were evaluated by AUC, MCC, and
F1 score using a 10-fold cross-validation approach. The results
showed that small sets of fewer than 10 genes hold considerable
discriminative power for each cancer type (Table 2). In terms of
AUC values, the top-scoring genes ranked by the network method
showed better performances than genes with the highest fold-
change in 12 cancer types, in which BLCA, BRCA, LIHC, LUAD, and
PRAD show the largest increase in AUC values ranging from
0.052 to 0.189. For the other six cancer types, the performance is
slightly worse but the maximum reduction of AUC values is less
than 0.03. Similar results were seen in other metrics such as
MCC and F1 score. Likewise, the gene sets prioritized by the net-
work method showed better discrimination in the hierarchical
clustering of the samples in most cancer types (Figure S6). In com-
parison to pan-cancer marker genes that were identified to classify



Fig. 2. Gene set enrichment analysis on differentially expressed genes in different cancer types. The heat map shows the enrichment of differentially expressed genes
from 18 cancer types (in rows) in 50 hallmark gene sets of cancer (in columns). On the heat map, grids with color and number are normalized enrichment scores (red: positive
score; blue: negative score) for significantly enriched cancer hallmarks, while white grids with zeros represent absence of significance. The bar plot on the left shows the total
number of identified genes in different cancer types. In the bar plot, the minimum value of the x-axis is 23,174 that is the number of genes identified in BLCA. The cancer types
are annotated by colors based on tissue of origin, and they are clustered by a dendrogram computed using Euclidean distance with the average linkage algorithm. The bar plot
on the top shows the total number of genes in the cancer hallmarks. The cancer hallmarks are annotated by colors based on their functional categories.

Table 2
Performance of distinguishing between normal and tumor samples. The columns from left to right are cancer type, the number of genes used for training the random forest
classifiers, and the performance metrics AUC, MMC, and F1 score. For each metric, the scores of a classifier trained using top-scoring network-derived genes (network) or genes
with the highest fold-change in expression (log2fc) and their differences are shown. Asterisks indicate increases of at least 0.05 in AUC values.

Cancer type # of
gene

AUC MCC F1 score

network log2fc diff. network log2fc diff. network log2fc diff.

BLCA 3 0.841 0.652 0.189* 0.725 0.371 0.354 0.984 0.969 0.015
BRCA 9 0.954 0.902 0.052* 0.914 0.816 0.098 0.982 0.962 0.020
COAD 6 0.995 0.998 �0.003 0.990 0.997 �0.007 0.994 0.998 �0.004
ESCA 8 0.959 0.981 �0.022 0.918 0.961 �0.043 0.949 0.976 �0.027
KICH 8 0.976 0.966 0.010 0.958 0.937 0.021 0.980 0.970 0.010
KIRC 9 0.959 0.967 �0.008 0.943 0.946 �0.003 0.991 0.991 0.000
KIRP 9 0.953 0.982 �0.029 0.923 0.972 �0.049 0.987 0.995 �0.008
LIHC 9 0.909 0.754 0.155* 0.819 0.564 0.255 0.944 0.880 0.064
LUAD 6 0.979 0.846 0.133* 0.961 0.685 0.276 0.984 0.862 0.122
LUSC 9 0.990 0.968 0.022 0.978 0.935 0.043 0.991 0.973 0.018
PAAD 5 0.977 0.964 0.013 0.956 0.929 0.027 0.978 0.964 0.014
PRAD 8 0.914 0.823 0.091* 0.862 0.728 0.134 0.969 0.942 0.027
READ 4 0.984 0.988 �0.004 0.974 0.971 0.003 0.979 0.977 0.002
SKCM 9 0.997 0.969 0.028 0.995 0.938 0.057 0.997 0.966 0.031
STAD 8 0.970 0.968 0.002 0.936 0.936 0.000 0.978 0.978 0.000
THCA 9 0.977 0.939 0.038 0.957 0.878 0.079 0.983 0.951 0.032
THYM 5 0.996 0.997 �0.001 0.988 0.989 �0.001 0.991 0.992 �0.001
UCEC 9 0.979 0.972 0.007 0.964 0.951 0.013 0.987 0.982 0.005
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different cancer types of TCGA from normal tissues, the genes iden-
tified by the network method showed comparable performances
(Table S5). Furthermore, network topology analysis showed that
these genes play a crucial role through direct interacting with
many other genes and regulating the information flow in the
cancer-specific networks (Figure S7).

Next, we investigated the performance of genes prioritized by
the network method in a retroactive prognostic prediction of can-
cer patients. For each cancer type, we performed survival analyses
using the top genes ranked by network scores or expression fold-
change. These genes were used in the top-performing classifiers.
Specifically, we divided the tumor patients into two halves using
individual genes, calculated p-values of the survival curves for each
gene, and drew the density plot of the p-values (see Materials and
39
Methods). Then, we compared the density plots to see which gene
set is better at predicting the survival of tumor patients. The results
showed that when the number of selected genes is 10, the perfor-
mances of both gene sets are not significantly different except
LUAD (Fig. 3A). Because the p-value distribution of the top-
scoring genes of LUAD is more right-tailed (Figure S8), the
network-derived genes have more power to discriminate the sur-
vival of the tumor patients than the top aberrantly expressed
genes. With increasing number of genes (i.e., 20, 50, and 100),
the network-derived genes outperformed the others in six cancer
types but showed weaker performance in PAAD and UCEC
(Fig. 3A and Figure S8).

In the next step, we used multiple instead of individual genes to
retroactively predict patient survival. We used the top genes



Fig. 3. Survival analysis. (A) The heat map shows comparisons of survival analysis using individual genes. For each cancer type, we compared the density plot of p-values of
survival analyses using top k (i.e., 10, 20, 50, and 100) genes ranked by the network method (network) or fold-changes in expression (log2fc). The grid colors show which gene
selection method led to better performance in predicting the survival time of tumor patients. The gray grids mean there was no significant difference. The p-value density
plots can be found in Figure S8. (B) We compared prognostic abilities of combined genes that are derived from the network method (network) or fold-changes in expression
(log2fc). The log-rank test p-values for differentiating high-risk and low-risk patients are shown. The grey dashed line indicates the value of 0.05, and p-values smaller than
0.05 is regarded as statistically significant. The corresponding survival curves can be found in Figure S9. The detailed information of the Cox models can be found in Table S6.
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ranked by the network method or by expression fold-change, with
the number of genes equal to the optimal number found in the ran-
dom forest models for each cancer type. The selected genes were
used to develop the Cox models that compute an individual gene’s
contribution to patient risk by fitting to observed survival times
(see Materials and Methods). The models’ coefficients were used
to compute patients’ risk scores and the scores were used to strat-
ify the patients into high-risk and low-risk groups. Subsequently,
we compared the survival of patients in the two groups.

The genes identified by the network method showed better per-
formances in predicting patients’ survival than the expression-
based genes. Specifically, the network-derived genes showed sig-
nificant survival differences of high-risk and low-risk groups in
eight cancer types while the other genes did in six (Figure S9).
The network-derived genes showed better performances (i.e.,
smaller p-values) in 8 of 11 cancer types in which the high-risk
group has a significantly poorer overall survival than the low-risk
40
group (Fig. 3B). In addition, the time-dependent ROC analysis
showed that the network-derived genes increase AUC in 12, 13,
and 12 cancer types for predicting 3-, 5-, and 10-year overall sur-
vival of patients, respectively (Table 3).

Taken together, the genes prioritized by the network method
show promising performance in classification of tumor and normal
samples and predicting patients’ survival times, suggesting their
potential as diagnostic and prognostic biomarkers in cancer.

3.4. Network-based drug repurposing

Using a network-based ranking, we prioritized genes that have
high expression perturbation and strong regulatory effects on
other dysregulated genes. The prioritized genes can be regarded
as cancer genes, as genes with aberrant expression and strong reg-
ulatory impacts play vital roles in cancer pathogenesis [56], pro-
gression [57,58], and resistance to anticancer therapies [59].



Table 3
Performance of predicting patients’ survival times. The columns from left to right are cancer type, the number of genes used for training the model, and AUC values for 3-, 5-,
and 10-year overall survival of patients. For each AUC, it shows the score of the model trained using top-scoring gene sets (network) or the gene set with the highest fold-change
in expression (log2fc), and differences in their scores.

Cancer
type

# of
gene

3 year
AUC

5 year
AUC

10 year
AUC

network log2fc diff. network log2fc diff. network log2fc diff.

BLCA 3 0.539 0.583 �0.044 0.568 0.570 �0.002 0.571 0.382 0.189
BRCA 9 0.604 0.646 �0.042 0.560 0.628 �0.069 0.471 0.596 �0.125
COAD 6 0.522 0.540 �0.018 0.529 0.539 �0.010 0.614 0.484 0.130
ESCA 8 0.721 0.554 0.167 0.805 0.768 0.038 0.531 0.870 �0.339
KICH 8 0.630 0.548 0.082 0.683 0.560 0.123 0.824 0.693 0.131
KIRC 9 0.541 0.567 �0.026 0.574 0.608 �0.034 0.643 0.618 0.026
KIRP 9 0.735 0.601 0.134 0.683 0.586 0.097 0.732 0.356 0.376
LIHC 9 0.705 0.540 0.165 0.722 0.534 0.188 0.146 0.048 0.098
LUAD 6 0.585 0.517 0.069 0.640 0.558 0.081 0.668 0.547 0.121
LUSC 9 0.605 0.526 0.079 0.573 0.540 0.033 0.454 0.410 0.044
PAAD 5 0.788 0.732 0.056 0.888 0.678 0.210 NA NA NA
PRAD 8 0.697 0.512 0.185 0.583 0.547 0.036 0.338 0.630 �0.291
READ 4 0.681 0.525 0.155 0.672 0.603 0.069 0.662 0.601 0.061
SKCM 9 0.627 0.589 0.039 0.654 0.608 0.047 0.631 0.585 0.046
STAD 8 0.543 0.553 �0.010 0.509 0.570 �0.061 0.322 0.787 �0.465
THCA 9 0.675 0.634 0.041 0.794 0.752 0.042 0.904 0.775 0.129
THYM 5 0.918 0.601 0.316 0.964 0.730 0.234 0.711 0.756 �0.045
UCEC 9 0.670 0.697 �0.027 0.760 0.654 0.106 0.951 0.587 0.364
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Therefore, it is interesting to identify drugs that directly or indi-
rectly regulate cancer genes. Toward this goal, we developed a net-
work proximity approach to systematically screen FDA-approved
or clinically investigational drugs. The approach computed the dis-
tances between drug targets and the identified cancer genes in the
corresponding directional cancer-specific networks, and the drug
candidates with significantly short distances to the cancer genes
were regarded as effective (see Materials and Methods). Such kind
of approaches has also been applied to repurpose drugs for
COVID19 [60] and Alzheimer’s disease [61]. As a result, we identi-
fied 19 drugs that potentially affect cancer genes in seven cancer
types (Fig. 4A). Eight of the 19 drugs are FDA-approved cancer
medications, and the others are non-cancer drugs. Furthermore,
we evaluated the perturbing effects of the identified drugs on the
cancer genes and its normal counterpart (see Materials and Meth-
ods). The data showed that, in the cancer networks, the distance
from the drug targets to cancer genes is shorter than to normal
genes, suggesting the perturbation effect of the drugs is less toxic
to non-cancer tissues (Figure S10). Of note, in contrast to other
drug repurposing methods that predict direct drug-molecule inter-
actions, our model focuses on identifying efficacious drug candi-
dates located at the upstream of the identified cancer genes in
networks and therefore cannot provide analytic validation [62],
such as sensitivity, specificity, and AUC, for the predictions. Hence,
in the following, we show the predictive indications of the known
eight cancer drugs and the mechanisms through which they can
regulate the identified cancer genes in the same or different cancer
types.

Lenalidomide and thalidomide are medications used in multiple
myeloma, and our results showed that both drugs potentially affect
Fig. 4. Drug repurposing analysis. (A) The Sankey diagram shows the connections betw
identified in gene set enrichment analysis and their containing genes (Fig. 2). The two mi
and their expression change (red: upregulation; blue: downregulation) in corresponding
repurposed in the connected cancer types. The colors in this column indicate different d
color in the third column), FDA-approved for other cancer types (black), and non-cancer
approved drugs for LUAD. Vandetanib is orange because it is an approved drug for THCA
results for drug repurposing can be found in Table S8. (B) The networks show the short
(right). The paths were derived from the cancer-specific networks. Drugs and genes are s
change of gene expression (red: upregulation; blue: downregulation). The label colors
(orange), and other genes (grey) on the shortest path between drug targets and cancer ge
green: inhibition), and drug-gene interactions are shown in black. DB00480: lenalidomi
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BIN1 in bladder urothelial carcinoma (BLCA). The expression of
BIN1 is attenuated in many human malignancies, and its loss can
promote immune escape by tumor cells [63,64]. Mechanistically,
we predicted that both compounds regulate BIN1 by targeting
PTGS2 that can affect the expression of the cancer gene through
interactions with MAPT (Fig. 4B left). Crizotinib is a receptor tyro-
sine kinase inhibitor used to treat metastatic non-small cell lung
cancer. In lung squamous cell carcinoma (LUSC), we predicted that
crizotinib affects nine cancer genes through targeting MAP3K12
and its downstream pathway (Fig. 4B right). Three (i.e., ITGB4,
EPHB3, and KIF23) of the cancer genes play a role in regulating hall-
marks of cancer. Specifically, ITGB4 can promote cell invasion and
epithelial-mesenchymal transition in hepatocellular carcinoma
[65]. EPHB3 is overexpressed in non-small-cell lung cancer and
promotes tumor metastasis by enhancing cell survival and migra-
tion [66]. The overexpression of KIF23 is found in several cancers
and can promote tumor growth in primary lung cancer patients
[67]. In kidney renal papillary cell carcinoma (KIRP), we predicted
that crizotinib, dasatinib, and bosutinib are effective and can regu-
late genes such as NOS1, PDGERB, and WNT5A. The expression of
NOS1 correlates with the pathological grading and the malignant
potential of renal tumors [68]. PDGERB regulates angiogenesis in
clear cell renal cell carcinoma and reduces renal tumor cell growth
and progression [69]. WNT5A is a non-canonical Wnt-ligand gene
involved in kidney development and is associated with kidney
tumor development [70]. The three compounds target genes
located upstream of the cancer genes in the KIRP network (Fig-
ure S11A). For lung adenocarcinoma (LUAD), we identified five
repurposable cancer drugs (i.e., crizotinib, bosutinib, gefitinib, nilo-
tinib, and vandetanib) for cancer genes with known roles,
een drugs and their potential targets. The left-most column are hallmarks of cancer
ddle columns show significantly differentially expressed genes (the second column)
cancer types (the third column). The last column lists identified drugs that can be

rug categories: FDA-approved for one of the 18 cancer types (color matching cancer
medicine (grey). For instance, crizotinib and gefitinib are yellow because they are
, for which we have not identified any repurposable drug candidates. The complete
est paths between the repurposed drugs and cancer genes in BLCA (left) and LUSC
hown in diamonds and circles, respectively. The node colors visualize the log2 fold-
represent different categories of genes: drug target genes (purple), cancer genes
nes. The edge colors indicate the regulatory type between genes (pink: stimulation;
de; DB01041: thalidomide; DB08865: crizotinib.

"
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including MET, CDH1, and CDC45. MET has established oncogenic
properties and is involved in cell proliferation, survival, and migra-
tion [71]. CDH1 plays a discrepant role in cancer, and it acts as a
tumor suppressor in some tumors but promotes tumor progression
and metastasis in others [72]. CDC45 is an oncogene in non-small
42
cell lung cancer, and its knockdown can inhibit tumor cell prolifer-
ation both in vitro and in vivo [73]. From a mechanistic point of
view, these compounds can potentially interact with the upstream
genes of the cancer genes in the LUAD network and therefore
achieve the repurposable effects (Figure S11B).
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Furthermore, we used the genomics of drug sensitivity in cancer
(GDSC) database to analyze cancer cell lines’ sensitivity to the
identified repurposable cancer drugs. The database is the largest
public resource that stores responses to almost 300 anticancer
drugs across more than 1,000 cancer cell lines [74]. The data
showed that for BLCA (Figure S12), all 18 corresponding cell lines
are not sensitive to lenalidomide as they require a half maximal
inhibitory concentration (IC50) value greater than the maximum
drug screening concentration; For LUSC (Figure S12), 5 in 13 cell
lines are sensitive to crizotinib as their IC50 values are smaller than
the maximum drug screening concentration; For KIRP, the data-
base does not contain the corresponding data; For LUAD (Fig-
ure S12), the ranking of the drugs based on the number of
sensitive cell lines is crizotinib (23 in 62), gefitinib (15 in 62), bosu-
tinib (3 in 61), and nilotinib (2 in 62). These results demonstrated
the potential of the identified repurposable drugs to be effective in
target cancers.

Taken together, we demonstrated the power of the network-
based method for identifying repurposable drug candidates and
depicting the corresponding molecular mechanisms through
which the drugs can take effects. The identified candidates contain
cancer and non-cancer drugs. We have focused on discussing the
former because of their high clinical relevance, and the latter imply
the novelty of our results. In addition, proving that the predictions
are clinically justifiable requires biological validation, and such
experiments could be designed and performed through collabora-
tion with experimentalists and clinicians in the future.
4. Discussion and conclusions

We present a network medicine approach to search for diagnos-
tic and prognostic biomarkers and predict new indications for
existing drugs in cancer. The approach integrates human transcrip-
tome and interactome data through network modeling that identi-
fies cancer genes with aberrant expression and strong regulatory
impacts in cancer-specific networks. The automated workflow also
helps us reveal pertinent biomedical context for evaluating the
clinical utility of the identified cancer genes. Moreover, we identi-
fied drug-repurposing candidates that potentially regulate the can-
cer genes. Although we developed this network medicine approach
for cancer, its framework is equally applicable to other human dis-
eases and any biological study that aims to understand gene net-
works with a systematic approach and analyze their emergent
properties.

The rapid production of and easy access to transcriptome and
interactome data have created an unprecedented opportunity to
study cancer. However, complex multidimensional biomedical
data pose many challenges in data analysis. Therefore, we inte-
grated transcriptome and interactome data to reconstruct specific
cancer networks and analyzed differentially expressed genes at
the network level. The reconstructed networks contain annotated
molecular interactions that are experimentally validated, hence
reducing false positives and facilitating the mining and interpreta-
tion of data for specific cancer types. In addition, reconstructing
such networks in an automated manner is much faster than using
networks that are manually constructed and curated from litera-
ture [75] and not available for most cancer types considered in this
study. Ultimately, automatic and manual curation of networks can
be combined.

Furthermore, we performed network modeling on our cancer
networks to prioritize genes and identify biomarkers for clinical
applications. Network-based methods are widely used by the com-
munity to improve our understanding of tumorigenesis and tumor
progression [76,77] and also to elucidate compound mechanism of
action [78]. Prominent studies include integrating tumor genome
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data with protein interaction networks to identify AKT2 and TFDP2
as driver genes in lung adenocarcinomas [79] and a combination of
a disease network with deep learning to identify prognostic
biomarkers for melanoma [7]. Besides, many gene prioritization
algorithms have been developed to identify crucial genes using dif-
ferent types of biological networks, such as protein interaction net-
works and gene-disease association networks [80]. For instance,
the NetICS algorithm is a graph diffusion-based method for priori-
tizing cancer genes by integrating multi-omics data on a directed
protein interaction network [81]. The network embedding algo-
rithm Node2Vec considers features of genes and preserves their
neighbor genes to perform gene prioritization [82]. A recent study
showed that the performance of gene prioritization algorithms is
disease-dependent and is affected by network topologies shaped
by the interactome annotated in databases [83]. For algorithms
based on the guilt-by-association principle, it is most likely that
the identified genes with priority are associated with important
genes found in the literature [83]. The algorithm we used utilizes
the guilt-by-association principle and prioritizes genes with highly
perturbed expression and strong regulatory impacts on other
genes in cancer. The top-ranking genes showed superior perfor-
mances in diagnosis and prognosis of cancer compared to genes
with the most dysregulated expression, indicating their potential
clinical utility.

Over the last 15 years, researchers have made great efforts to
develop drug repurposing methods, from early statistics-based
chemoinformatics approaches [84] to recent ones using artificial
intelligence [85,86,87] and network-based methods [88,89]. These
computational methods have been demonstrated to be effective
but some limitations remain. First, it is difficult to compare their
predictive powers because different datasets were used to develop
those algorithms and there is a lack of standard benchmark data-
sets. Second, supervised methods are trained on datasets that do
not contain high-quality negative sample data for drug-target
interactions. Third, there is no systematic validation of the predic-
tions by experiments. Also, a recent study has shown that no single
drug repurposing algorithm offers consistently reliable outcomes
across datasets [90]. A possible solution is to develop an ensemble
model that aggregates predictions from all algorithms to increase
overall accuracy. Here, we performed network-based drug repur-
posing on the identified cancer genes that have high expression
perturbation and are in close vicinity to other highly perturbed
genes. The developed algorithm makes use of edge weights to
quantify regulatory strength between genes and ranks drugs based
on network proximity in cancer networks. It results in repurpos-
able drug candidates that may, via interacting with upstream
genes, regulate the identified cancer genes that are biologically
important due to the high degree of interactions with other genes
and strong influence on the information flow in the cancer-specific
networks. It is also worth mentioning that our results are restricted
to the drug-target interaction list for identifying target genes and
the database for reconstructing the cancer-specific networks. Dif-
ferent criteria for filtering the drug-target interactions and interac-
tome data from other resources could affect our drug repurposing
results.

In conclusion, we describe a network medicine approach as a
reusable, robust framework for automated and integrated analysis
of transcriptome and interactome data to identify biomarkers and
cancer genes. The approach also incorporates all the prerequisites
for reproducible research. Specifically, data, code, and results of
the study are archived together following the FAIR principle [91].
Hence, it directly addresses some of the major challenges in the
rigorous and data-driven selection of clinically actionable cancer
genes. We expect that other biomedical researchers will be encour-
aged to use this approach for their future work.
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