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Bone fusion represents a challenge in the orthopedics practice, being especially indicated for spine disorders. Spinal fusion can
be defined as the bony union between two vertebral bodies obtained through the surgical introduction of an osteoconductive,
osteoinductive, and osteogenic compound. Autogenous bone graft provides all these three qualities and is considered the gold
standard. However, a high morbidity is associated with the harvest procedure. Intensive research efforts have been spent during
the last decades to develop new approaches and technologies for successful spine fusion. In recent years, cell and gene therapies
have attracted great interest from the scientific community. The improved knowledge of both mesenchymal stem cell biology and
osteogenic molecules allowed their use in regenerative medicine, representing attractive approaches to achieve bone regeneration
also in spinal surgery applications. In this review we aim to describe the developing gene- and cell-based bone regenerative
approaches as promising future trends in spine fusion.

1. Introduction

Spine fusion is a surgical technique used to join two or more
vertebrae and to stabilize the corresponding spine segment.
It is frequently used to treat traumatic and degenerative spine
disease, such as scoliosis, kyphosis, fractures, dislocations,
spondylolisthesis, and intervertebral disc diseases [1–3].

The fusion is achieved through stabilization systems
adding supplementary bone tissue and/or bone substitutes
between adjacent vertebrae, as to enhance bone healing and
to achieve faster stability. Three types of bone grafts can be
classified (Table 1): (i) autografts: the donor is the same as the
receiver; (ii) allografts: the donor is human but is different
from the receiver; (iii) xenografts: the donor is from different
animal species (heterologous graft).

The process of spinal fusion requires three essential
characteristics: osteoconductivity, osteoinductivity, and oste-
ogenicity. Autologous bone graft has all these properties,

provides an ideal material for spine fusion, and has long
been considered the gold standard for fusion procedures.
A significant morbidity is inherently associated with the
harvest procedure, as a bone defect is created, requiring also
prolonged surgical duration [4, 5]. Moreover, the limited
availability of autologous bone is a significant limitation.

Allograft bone is routinely used as an alternative to
autogenous bone to avoid complications related to donor
site morbidity and availability. Nonetheless, concerns about
immunogenicity and infectious disease transmission are
ascribed to its use [6, 7].

Xenografts represent an alternative strategy, employed
more frequently in dental surgery than in orthopedic surgery.
In theory, the principal disadvantage of heterologous graft
is the high level of antigenicity. Partially deproteinated and
partially defatted heterologous bone (Kiel bone or Oswestry
bone) exhibits a significantly reduced antigenicity and mini-
mal immune response, but the denaturation process destroys
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Table 1: Bone substitutes resuming.

Category Bone substitute Osteoinduction Osteoconduction Strength Resorbability
Biological Autografts + + + +
Biological Allografts +/− + + +
Biological Xenografts +/− + + +
Synthetic Calcium-based − + +/− +/−
Synthetic Polymer-based − +/− +/− +
+: the material has this property.
−: the material does not have this property.
+/−: the material has intermediate properties.

the matrix proteins, damaging the osteoinductive properties.
Also, the risk of zoonoses for diseases such as BSE (bovine
spongiform encephalopathy) or PERV (porcine endogenous
retroviruses) has been often discussed [8].

These and other difficulties with bone grafts have been
driving the intensive research efforts that have been spent
during the last decades to develop new approaches and tech-
nologies for successful spine fusion. On this regard, synthetic
bone substitutes have been proposed as valuable alternative
options (Table 1), based on osteoconductive/osteoinductive
biomaterials owing the ability (i) to generate a microenviron-
ment which induces the cellular growth; (ii) to recruit bone
precursor cells (osteoconductivity) in the area surrounding
the implant site,; (iii) to induce cell proliferation and differen-
tiation required for the osteogenic process (osteoinductivity)
[9]. New calcium and phosphate-based substitutes have been
developed, leading to the generation of biomaterials known
as “bioceramics.” Often amixture of hydroxyapatite (HA) and
its amorphous phase, the tricalciumphosphate (TCP), is used
to obtain bioactive ceramics, which form direct chemical
bonds with bone or even with soft tissues of a living organism
[10, 11].

In recent years, cell and gene therapies have attracted
great interest from the scientific community and have shown
to represent promising approaches to achieve bone regen-
eration also in spine surgery. The improved knowledge
on adult stem cell biology and of mesenchymal stem cell
features allowed their use in regenerative medicine, with
particular focus on bone regeneration. In particular, cell-
based approaches based on mesenchymal stem cells (MSC)
have been widely employed and considered themost effective
for bone formation and regeneration in vivo [12, 13]. In
addition, the overwhelming amount of studies that have been
investigating themolecular scenario orchestrating osteogene-
sis and bone healing, provided new osteoinductive molecules
to be tested as potential drugs in spine surgery. On the
other hand, cell-based gene therapy approaches based on
engineered-osteoinductive cells allowed achieving the most
convincing results in terms of bone healing and spine fusion
in animal models [14–19]. Actually, genetically engineered
cells are believed to maintain physiologic doses of a gene
product for a sustained period once inoculated into the
selected anatomical site, facilitating an efficient bone healing
[20].

Taken together, the developing molecular and cell-
based bone regenerative approaches may plausibly represent

promising future trends in spine fusion and will be reviewed
below in detail.

2. Cell-Therapies for Spinal Fusion

Mesenchymal stem cells (MSCs) have been widely used as
suitable somatic cells to induce bone formation and regen-
eration. MSCs are multipotent stem cells that are capable of
extensive self-renewal, plasticity, and multilineage potential
[21, 22]. These cells are located in the connective stroma of
mesenchymal-derived adult organs and tissues; hence they
are also named “stromal stem cells” [23]. Strictly defined
MSCs are those isolated from bone marrow aspirates (bone
marrow-mesenchymal stem cells, BM-MSCs); though, cells
displaying high similarities have been found practically in
quite any organ comprising a connective stroma including
adipose tissue, lung, skeletalmuscle, synovialmembrane, ten-
dons, and skin, along with antenatal tissues such as umbilical
cord, placenta, and amniotic fluid [22, 24–30]. MSCs are
easily isolated through adherence selection in vitro and can
be further cultured for several passages, without losing their
plasticity and self-renewal potential [31]. Upon appropriate
in vitro induction, MSCs can be differentiated along the
osteogenic lineage [32]. This property has been exploited for
cell-based therapy of congenital bone disorders [33, 34]. The
feasibility of anMSC-therapy for orthopedic disorders comes
also from their immunomodulatory properties, implying
their potential use in allogeneic transplantation, preventing
graft-versus-host disease [35].

A single clinical trial testing ex vivo expanded autologous
BM-MSC for spinal fusion in spine degenerative diseases
seems to be open, according to publicly available information
(Figure 1; http://www.clinicaltrials.gov/).

In the clinical practice, BM-MSCs are usually harvested
from the iliac crest (IC), through an invasive and painful
procedure. To limit such donor morbidity issues, vertebral
body (VB) bone marrow has been proposed as an alternative
source of BM-MSCs. Compared to IC, VB-MSCs are easily
isolated from the surgical site and show a higher amount
of osteoprogenitor cells [36, 37]. However, both sources are
subjected to a significant decline in stem cell number and
proliferative capacities in elderly, when main indications for
regenerative medicine approaches are encountered [38]. In
addition, the number of MSC in bone marrow is reported
to be 1 out of 5000 (0.0002%) total isolated cells [39].
Recently, adipose tissue has been highlighted as an excellent
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Figure 1: Spinal fusion clinical trials. Graphical view of the 304 clinical trials from http://www.clinicaltrials.gov/; 91 of these are open (a). In
particular, spinal fusion clinical trials based on stem cell-therapy are 15; 1 of these is open (b).

source of MSCs (namely adipose derived stem cells, ASCs)
[40]. In particular, the adipose stromal vascular fraction
(SVF) has emerged as a rich and promising source of
ASCs [40], displaying extensive plasticity and multilineage
differentiation potential [24, 41–44]. BM-MSCs and ASCs
share part of their immunophenotype and gene expression
profile, which is consistent with their stemness upholding
and uncommitted [45–47]. Potentially, great advantages of
ASCs over BM-MSCs are suggested by the high plasticity
and extended self-renewal capability of these cells and by
the abundance of adipose tissue, its surgical accessibility, and
its high cellular content. Additionally, adipose tissue is now
considered the largest human endocrine organ due to its role
in the regulation of cellular functions, through a complex
network of endocrine, paracrine, and autocrine signals [48].
There is actually an intense cross-talk between bone and
adipose tissue,mediated by proteins endowedwith endocrine
functions secreted by adipocytes (adipokines) and osteoblasts
(osteokines), which may suggest the feasibility of the use of
SVF in bone regeneration, also due to the high angiogenicity
endowed with the SVF [49, 50].

Distinct preclinical studies have tested the effectiveness
of the MSCs from different tissue sources, in animal models
of spinal fusion, combined with alternative scaffolds, with
alternative scaffold, with successful results (Table 2). Most
studies transplanted allogeneic cells into immunocompetent
recipient animals [51–57].

Several animal studies used either wild type or osteo-
genic-committed BM-MSCs as possible substitutes of autol-
ogous bone-graft, with a good rate of spinal fusion [51–53, 55,
57–63]. The higher rate of spinal fusion has been obtained
with culture-expanded BM-MSCs compared to freshly iso-
lated cells [64]. In addition, Nakajima and colleagues [65]
assessed that osteodifferentiatedMSCs were more efficient in
promoting spinal fusion than undifferentiated cells.

Interestingly, ASCs proved to allow bone regeneration
in vivo, without the need for ex vivo engineering and/or
induction [12]. Also, it has been clearly demonstrated that

allogeneic ASCs displays a nonimmunogenic profile in vitro
and does not evoke cell-based immunity when implanted in
a rat spinal fusion model [66]. Taken together, these data
could provide quite convincing proof-of-principle on the
potential safeness and efficacy of banked MSCs from healthy
donors. Though, the required standards for clinical-grade
cell manufacturing (i.e., the current good manufacturing
practices, cGMP, guidelines) would be quite hard to be met
by the current experimental protocols employed for ASC
isolation and culture [67]. However, these problems can be
overcome with the development of single-step procedures to
treat spinal disorders, by combining freshly harvested SVF
and scaffolds [68, 69].

Besides MSC, fibroblasts have been proposed as suitable
cell types for bone regenerative purposes. In particular,
dermal fibroblasts (DF) can be easily isolated from small skin
biopsies, with reduced local morbidity, and rapidly expanded
in culture. Dermal fibroblasts share significant similarities
with MSCs, being considered the skin-derived counterpart,
and can be induced rapidly towards the osteogenic lineage
[20, 70, 71]. Such features render DF a potentially promising
tool for bone formation and regeneration.

3. Gene Therapies for Spinal Fusion

Gene therapy approaches are based on the rationale of deliv-
ering osteoinductive genes locally to induce bone formation
and improve spinal fusion [15, 20, 72].

Different gene strategies have been proposed and tested
as innovative strategies in spinal surgery to increase the
osteogenic potential of osteoprogenitor cells and to obtain
a higher bone formation rate in vivo. Bone morpho-
genetic proteins (BMP) represent the best characterized
molecules implicated in the osteogenic cascade andhave been
widely employed to induce bone formation in spinal fusion
models [73].

The BMP family is composed of 20 distinct highly
conserved secreted proteins, further categorized intomultiple

http://www.clinicaltrials.gov/
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Table 2: Cell-based gene therapy in animal models of spine fusion.

Fusion site Specie Cell treatment Scaffold Reference
BM-MSC

PF Rat None Matrigel [58]
PLF Macaque None b-TCP [59]
PLF Goat None Ceramics [60]
PLF Rabbit None CRM [61]
PLF Mouse None Collagen [62]
PLF Rabbit None ProOsteon 500 R [51]
PLF Rat None Ceramic [63]
PLF Rabbit None HA/Collagen [52]
AIBF Pig None mPCL/TCP [53]
PLF Rat Oxysterols Collagen [74]
PLF Rabbit None TCP w/wo LIPUS [75]
PF Human None b-TCP [76]
PLF Rabbit Hyperbaric O2 Alginate [77]
PLF Rabbit AdBMP2 Collagen [78]
PLF Rabbit AdBMP2 None [79]
PF Rat AdBMP7 None [80]

PLF Rat LentiBMP2
AdBMP2 Collagen [81]

PLF Rat LentiBMP2 Collagen [54]
PLF Rabbit rhBMP2 Alginate [82]
PLF Rabbit AdSmad-1c Gelatin [83]

ASC
PLF Rat None TCP-Collagen [53]
PLF Rat None b-TCP-Collagen [66]
PF Goat None PLCL [55]
PLF Rabbit None nHAC-PLA [84]
ACIF Sheep None b-TCP [85]
MLF Pig None PEEK [86]
PLF Rat rhBMP2 Collagen [87]
PF Mice rhBMP6 None [88]
PLF Rat AdBMP2 Collagen [56]
VCF Rat rhBMP6 Fibrin [89]
PF: posterior fusion; PLF: posterolateral fusion; AIBF: anterior interbody fusion; AICF: anterior interbody cervical fusion; MLF: multi-level fusion; VCF:
vertebral cervical fusion; TCP: tricalcium phosphate; CRM: compression-resistant matrix; HA/Collagen: hydroxyapatite/type 1 collagen; mPCL: medical
grade poly (𝜀-caprolactone); LIPUS low-intensity pulsed ultrasound, 𝛽-TCP: beta-tricalcium phosphate; PLCL: poly (L-lactide-co-caprolactone); nHAC-PLA:
nanohydroxyapatite-collagen/polylactic acid; PEEK: polyetheretherketone.

subgroups according to functional and/or structural features
[90, 91]. BMP play a pivotal role in skeletogenesis during
limb development processes. In particular, they increase
osteoclastogenesis and induce the osteoblastic commitment
of MSC, inhibiting their differentiation along the myoblastic
and adipogenic lineages [91–94]. The osteogenic BMP, are
BMP2, BMP4 and BMP7 (also known as osteogenic protein-
1, OP-1). They can induce the differentiation of MSC into
both osteochondrogenic lineage cells and osteoblast precur-
sor cells, implicating their essential contribution to both
direct and indirect ossification mechanisms occurring in
vertebrates [95–97]. A wide number of preclinical studies

have demonstrated that these small molecules are capable
of inducing ectopic bone formation upon intramuscular
implantation and efficient bone healing/regeneration, when
delivered on the appropriate scaffold and in the appropriate
concentration into a bone defect site [12, 14, 98]. In addi-
tion, the use of recombinant human BMP2 (rhBMP2) and
BMP7 (rhBMP7) has been approved in both Europe and
the United States for selected clinical applications, including
lumbar interbody spinal fusion and tibial non-union defects.
Nowadays, various genetic engineering approaches are being
considered to produce second-generation BMPs, aimed at
improving binding affinity to target specific cells, reducing
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sensitivity to natural inhibitors, reducing immunogenicity,
and increasing solubility and stability [99].

The main limitation of using recombinant proteins for
inducing bone formation in clinical applications is the need
for delivery systems that provide a sustained and biologically
appropriate concentration of the osteogenic factor at the site
of the defect [12, 20]. The vectors used for gene therapy
approaches comprise naked DNA, liposomes, plasmids, and
viral vectors [100]. Nonviral vectors are generally safer due
to the absence of infectious-related issues. However, they
have a low transfection efficiency.The viral vector commonly
used in gene therapy approaches for spinal fusion belongs
to the adenovirus species. Defective human adenoviruses are
indeed suitable gene vectors due to their ability to mediate
high-level and short-term gene expression. Although their
use implies several disadvantages in view of a potential
clinical application [14], adenoviral vectors carrying osteoin-
ductive genes have been successfully used in preclinical spinal
fusion models (Table 2). Most studies employed defective
adenoviral vectors carrying the BMP2 gene (AdBMP2), either
for ex vivo cell transduction [54, 70, 78, 79, 87] or for direct
percutaneous injection [101]. The chance of spinal fusion
increases by using cells for achieving an appropriate local
gene delivery. In fact, genetically engineered cells canmediate
the local expression of osteoinductive genes in a time-
and site-effective manner, thus mimicking the physiologic
secretion in vivo. Engineered cell-based therapy approaches
resulted in being indeed more efficient than recombinant
osteoinductive proteins alone [102, 103]. However, despite
the significant evidence of their potential benefit to bone
repair, there is, to date, a dearth of convincing clinical trials
[104].

With regard to the cell type, Miyazaki and colleagues
recently demonstrated that the efficacy of AdBMP2-
transduced MSC treatment is not related to the tissue
source for cell isolation. ASCs and BM-MSCs proved to
exert comparable results in a rat spinal fusion model [105].
Adenoviral vectors carrying BMP4 [106], BMP6 [107], and
BMP9 [105] were also used for direct injection into the
paraspinal musculature, which proved to be effective. Also
BMP7 has been tested as a suitable molecule delivered
ex vivo in BM-MSC to induce spine fusion [80].

Nonetheless, several contraindications hinder the use of
adenoviral vectors in humans, including systemic toxicity,
immunization (over 95% adults have neutralizing antibodies
against adenovirus species 5), and low cell selectivity [14].

A lentivirus-based BMP2 vector (lenti-BMP2) has been
also tested as a feasible tool to induce stable osteogenic
commitment of BM-MSCs in a rat spinal fusion model [81].
Lenti-BMP2 is a specialized retrovirus capable of random
integration in the host cell genome. This strategy proved
to be more effective than AdBMP2-based cell transduction
[54]. However, the possible risks of insertional mutagenesis
should be carefully considered when using lentiviral vectors
[14].

Recently, a nonviral approach was attempted using nucle-
ofection (i.e., the intranuclear transfection by electropora-
tion) of rhBMP6 in ASCs [89]. The results obtained through

this virus-free technology sound encouraging, although
the plasmid DNA used in the procedure still retains some
inherent bacterial-related toxicity.

Besides BMP, other molecules have been tested for their
osteogenic potential in gene therapy approaches for spinal
fusion. These included the Nell-like molecule (Nell-1) [108,
109], the LIMmineralization protein (LMP) [20, 110], and the
mothers against decapentaplegic homolog 1 (Smad1) [83].

Nell-1 is a heterotrimeric secretory protein thought to
be involved in cell growth regulation and differentiation,
acting specifically in osteoblasts. Nell-1 is overexpressed in
synostotic calvaria of patients affected by sporadic plagio-
cephaly [111] and is able to induce bone regeneration in rat
calvarial defects [112]. Based on the evidence that this gene
is more osteoblast specific than BMP, the efficacy of AdNell-1
injection in a rat posterolateral spinal fusion model has been
tested with successful results [109].

LMP is an intracellular LIM-domain protein acting as
a potent positive regulator of the osteoblast differentiation
program, being able to induce the activation of BMPs and
downstream signaling pathway [113, 114]. In humans, three
different splice variants are transcribed from the LMP-
coding gene (PDZ and LIM domain-7, PDLIM7), named
LMP1, LMP2, and LMP3. Both LMP1 and LMP3 induce
osteogenic differentiation of mesenchymal progenitors and
pre osteoblasts in vitro and bone formation in diverse animal
models [12, 20, 80, 89, 104–107, 110, 114–119]. Similar to Nell-
1, LMPs in humans are overexpressed in calvarial tissues and
cells isolated from synostosis of patients affected by sporadic
synostosis, where it possibly plays a pathogenetic role [120].
LMP1 has been used successfully to induce spine fusion in
rats and rabbits, upon plasmid transfection and adenoviral
vector-mediated delivery, respectively [110, 113]. Adenoviral-
mediated ex vivo transduction was also used to overexpress
LMP3 in dermal fibroblast in a mouse model of paravertebral
ectopic bone formation, resulting in the formation of an
overwhelming new bony mass [20].

Finally, another gene therapy approach to spine fusion
has been recently performed in a rabbit model, using the
Hoxc-8-interacting domain of Smad1. In this case, ex vivo
transduction was performed using an adenoviral vector,
modified to target specifically BM-MSC in order to improve
the efficiency of gene transfer [83].

Overall the genetic engineering strategies proposed so
far in spinal orthopedics surgery proved to be extremely
effective. Much effort should be further spent in improving
the safety of the gene delivery strategies by limiting the
toxicity and the immunogenicity and avoiding modification
that could lead to genomic instability.

4. Conclusions

Despite the improvement of surgical procedures, the research
efforts achieved so far did not allow obtaining convincing
result to suggest alternative effective methods to replace or
at least flank bone grafting. Further studies and clinical
trials are foreseen to achieve the goal of improving spinal
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surgery avoiding donor morbidity and overcoming the need
for human donors.
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