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Abstract

Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human
malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance
is primarily due to the high numbers of parasites in the infected person’s bloodstream during the asexual blood stage of
infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial
resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that
can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations
that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine
and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds,
antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial
resistance informs strategies to design the next generation of antimalarial therapies.
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Article
Malaria, a protozoan infection caused by Plasmodium parasites,
remains a major cause of morbidity and mortality worldwide
primarily among children less than 5 years old. It caused an
estimated 219 million cases and 435 000 deaths in 2017, with
92% of cases and 93% of deaths in Africa (2017 #885; 2018 #1580).
Plasmodium falciparum and Plasmodium vivax, the two species that
cause the majority of cases of human malaria, have demon-
strated resistance to nearly all known antimalarials, with the
highest levels of resistance found in P. falciparum in Southeast
Asia. When parasite resistance to chloroquine (CQ) and antifo-

late medications, former first line medications, emerged, there
were enormous increases in morbidity and mortality [1]. More
recently, delayed parasite clearance times following artemisinin
combination therapy (ACT), the current first line treatment for
uncomplicated P. falciparum infections, have been reported in the
Greater Mekong sub-region and represent a major threat to the
ability to control and treat malaria [2, 3].

The ability of malaria parasites to develop resistance is pri-
marily due to the high burden of parasites in an infected person’s
bloodstream during the asexual blood stage of infection in con-
junction with the mutability of the parasites’ genomes [4]. Identi-
fying the genetic mutations that mediate antimalarial resistance
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is key to understanding how the parasites evade our treatments.
Tracking these molecular markers in clinical samples can help
evaluate the emergence of resistance in a particular region
and inform recommendations for first line therapy. This is
especially useful since empirical testing for drug resistance,
either in patients or after taking parasites into short-term cul-
ture, can be very expensive and requires resources that are not
available in many malaria-endemic regions. Our understanding
of the mechanisms of antimalarial resistance is primarily
focused on P. falciparum, for which there is a robust in vitro
culture system. Major mechanisms of resistance include point
mutations in or amplification of genes encoding transporters
that mediate transport of a drug to or from the parasite’s
digestive vacuole (DV) and point mutations in the target of the
antimalarial that disrupt binding. Whole genome scans of P.
falciparum and P. vivax using technologies such as microarrays
and whole genome sequencing (WGS) have revealed insights
into mechanisms of resistance in both in vitro and clinical
studies. Genome-wide association studies (GWASs) have
helped identify genes associated with resistance. In this
review, we examine the genetic mechanisms that underlie
resistance to the major classes of antimalarial medications
and discuss how this knowledge has contributed to our
understanding of developing more effective, ‘irresistible’ malaria
treatments.

The emergence and spread of antimalarial
resistance
Resistance is defined as the ability of a parasite to survive or mul-
tiply despite properly administered and dosed medication [5].
Currently, antimalarials are administered as combination ther-
apy with two drugs to prevent the rapid emergence of resistance.
As levels of resistance increase, there is an increased number of
patients presenting with late recrudescence, or persistent para-
sitemia [4]. In addition, patients present with recrudescence ear-
lier following treatment. High-grade resistance is evident when

there is failure to clear parasitemia or there is an increase in par-
asitemia despite appropriate therapy. An important marker of
resistance is delayed parasite clearance times. A major challenge
with assessing antimalarial efficacy in the era of combination
therapy is that failure may not be observed even when the
parasites are resistant to one of the partner drugs.

The first step in the development of resistance is the initial
genetic event, which is thought to be spontaneous and rare
[4]. Since an average human infection can comprise 109–1013

parasites in the blood stream during the asexual blood stage
(Figure 1) with an estimated 1.0–9.7 × 10−9 mutations per base
pair per generation [6], there is a high likelihood that a random
mutation can occur that leads to antimalarial resistance within a
few cycles of replication. Subsequent selection for that mutation
occurs due to a survival advantage in the presence of drug
pressure. Factors that favor selection of resistant parasites are
higher levels of parasitemia, decreased blood levels of antimalar-
ials and decreased patient immunity [4, 7]. Drugs with a longer
drug half-life such as mefloquine (MFQ), piperaquine (PPQ) and
CQ may be more likely to select for resistance [8]. The level of
malaria transmission also can affect the development of resis-
tance since persons in low transmission settings are more likely
to be symptomatic and receive treatment compared to those in
high transmission settings [4]. Individuals in lower transmission
areas also have lower acquired immunity, which can result in
increased transmission of resistant parasites. In high transmis-
sion settings, there are more likely to be multiple genotypes
present in a single infection and thus resistant parasites have
to compete with wild-type parasites. In areas with seasonal
malaria transmission, however, persons with asymptomatic par-
asitemia can serve as a reservoir for sensitive parasites [9]. The
transmissibility of the allele is also an important consideration
and may determine whether resistance can spread from patient
to patient. For example, some alleles that confer resistance to
atovaquone cause parasites to die in the mosquitos so that
they should, in principle, not spread from one person to the
next [10].

Figure 1. The P. falciparum life cycle highlighting the asexual blood stage of infection where antimalarial resistance mutations arise. Infection begins with inoculation

of sporozoites by an infected mosquito. Sporozoites infect liver cells, and merozoites are released into the bloodstream, which invade red blood cells (RBCs). During

the asexual blood stage of infection, which is responsible for the clinical manifestations of disease, the parasites undergo maturation and replication with an average

of 109–1012 parasites per replication cycle. The infected RBCs rupture, releasing new merozoites into the bloodstream to begin another cycle of replication. A subset of

parasites becomes gametocytes which can be ingested by another mosquito to continue malaria transmission.
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Table 1. Commonly used antimalarials and their known genetic mediators of resistance in P. falciparum and P. vivax. SNVs known to be essential
to resistance are highlighted with an asterisk

Antimalarial drug class Mechanism of
action

Specific drugs Genetic mediator(s) of resistance
P. falciparum P. vivax

4-aminoquinolines
Interfere with heme
detoxification

chloroquine (CQ) SNVs in pfcrt (K76 T∗); SNVs in
pfmdr1 (N86Y∗)

Not well understood;
pvcrt-o amplification

amodiaquine(AQ)

piperaquine
(PPQ)

SNVs in pfcrt (C101F, H97Y,
F145I, M343 L, G353 V);
Plasmepsin 2 and 3
amplifications; pfmdr1 single
copy

4-aminoquinolines Unknown
Primaquine

Unknown Unknown
Tafenaquine

Antifolate drugs
Inhibition of folate
synthesis

DHFR inhibitors
(proguanil,
pyrimethamine)

SNVs in pfdhfr (S108 N, N51I,
C59R, I164L); amplification of
gtp cyclohydrolase 1

SNVs in pvdhfr

Sulfa drugs
(sulfamethoxazole,
sulfadoxine)

SNVs in SNVs in pfdhps
Inherently resistant
due to SNV in pvdhps
(V585)

Aryl amino-alcohols
Unclear; thought to
interfere with heme
detoxification

lumefantrine (LMF)
Amplification of pfmdr1

Amplification of
pvmdr1

mefloquine (MFQ)

Quinine Not clear, involves mediators
of LMF and MQ resistance;
ms4760 microsatellites in
pfnhe-1

Not reported

Antibiotics
Inhibition of protein
synthesis

Doxycycline Unknown
Not reportedClindamycin SNV in 23S rRNA (A1875C)

Napthoquinones Inhibits cytochrome
bc1 complex

Atovaquone
SNV in cyt-b (Y268S/C/N) Not reported

Artemisinin compounds Causes oxidative
stress

Artemisinin, artemether,
DHA

SNVs in kelch13 (C580Y) Not reported

Known genetic mediators of resistance
4-Aminoquinolines

The 4-aminoquinolines include CQ, amodiaquine (AQ) and
PPQ (Table 1). CQ was previously the first-line treatment for
uncomplicated P. falciparum infections, while AQ and PPQ are
currently used as partner drugs for artemisinin derivatives.
Hemoglobin catabolism in the DV of the parasite is important as
a source of amino acids (Figure 2). The breakdown of hemoglobin
releases Fe2+ iron-containing reactive heme moieties that
undergo oxidation in the DV into ferriprotoporphyrin IX
(FPIX) [11]. This process causes oxidative stress, and thus
FPIX undergoes detoxification by becoming incorporated into
hemozoin [12]. Medications from this class bind to the reactive
heme and interfere with its detoxification. CQ is a weak
base at a neutral pH that can diffuse across membranes into
the erythrocyte and DV in its uncharged form. Once it is in
the acidic DV, becomes protonated and accumulates in the
DV [13, 14].

CQ was the most widely used antimalarial in this class prior
to the development of widespread resistance in P. falciparum and
P. vivax in certain areas. It was introduced in the 1950s and 1960s
and was used as the basis of the World Health Organization
(WHO) Global Malaria Eradication Program. P. falciparum resis-
tance subsequently appeared in Southeast Asia in the late 1950s,

then emerged in other countries in Asia, South America and
finally Africa over the course of 30 years [15, 16]. Resistance is
primarily determined by mutations in pfcrt, a gene that encodes
the CQ resistance transporter (PfCRT), a 424 amino acid protein
that localizes to the DV membrane [17–19]. This is a highly
polymorphic protein with over 20 different point mutations
described [20, 21]. However, the K76T mutation was found to be
essential for in vitro CQ resistance [17, 19, 22] (Table 1). Reversal
of the K76T mutation resulted in wild-type CQ susceptibility and
led to increased binding of CQ to FPIX [23]. Parasites harboring
the K76T mutation demonstrate an increased leak of H+ from
the DV in the presence of CQ compared to sensitive parasites [24].
The loss of the positively charged lysine 76 leads to increased
efflux of protonated CQ from the DV [24, 25]. One study which
expressed wild-type and mutant PfCRT on Xenopus laevis oocytes
elegantly demonstrated that CQ resistance is due to direct trans-
port of a protonated form of CQ through the K76T pfcrt mutant
[19]. In CQR-resistant parasites that have arisen independently
around the world, there are at least 4 and up to 10 additional
mutations in pfcrt that are seen [26]. A follow-up study using
the Xenopus system to express over 100 variants of PfCRT found
that although there were many mutational routes that could
confer CQ transport, the overall process was rigid, requiring that
mutations were in a specific order [27]. Clinical studies have
demonstrated that there was a selective sweep at the pfcrt locus
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Figure 2. The parasite DV and the role of the P. falciparum CQ resistance trans-

porter (PfCRT) and the P. falciparum multidrug resistance protein 1 (PfMDR1). The

parasite (gray oval) is shown within an RBC. The DV (white oval) is a compartment

within the parasite where the catabolism of hemoglobin (Hgb) from the host

RBC occurs. The breakdown of Hgb results in reactive heme which undergoes

detoxification to hemozoin. Medications from the 4-aminoquinoline class bind

heme and interfere with detoxification. PfCRT and PfMDR1 are DV membrane

proteins. It is thought that PfCRT transports drugs out of the DV while PfMDR1

transports them into the DV [19, 36]. The T mutation in pfcrt is essential to

CQ resistance, while the N86Y mutations in pfmdr1 augment CQ resistance.

Mutations in these transporters have also been found to mediate resistance to

the aryl-amino alcohols and artemisinin.

worldwide due to CQ pressure [28–33]. The K76T mutation was
also found to be associated with clinical failures [34].

The pfmdr1 gene encodes the p-glycoprotein transmembrane
pump multidrug resistance protein 1, which localizes to the
DV membrane [35]. This pump functions as a transporter of
antimalarial drugs, with studies demonstrating that it imports
solutes into the DV [36, 37]. An N86Y mutation has been asso-
ciated with decreased CQ susceptibility in vitro [38, 39]; how-
ever mutations in pfmdr1 alone are not adequate to cause CQ
resistance [28, 40]. Introduction of the pfmdr1 N86Y mutation
into parasites with a CQ-resistant genetic background leads
to increased resistance to CQ and monodesethylamodiaquine
(md-ADQ; the primary metabolite of AQ) [41].

Interestingly, after CQ was no longer used as therapy for
P. falciparum due to widespread resistance, the K76T mutation
reverted to the wild-type pfcrt allele in parts of Africa [42–45],
suggesting that the mutation confers a loss of fitness. However,
in Southeast Asia and South America this has not been the
case, with the mutation persisting [46–48]. One likely reason
for this is the continued use of CQ for treatment of P. vivax
in these regions. Another potential reason is that resistance-
conferring mutations are fixed in certain populations and thus
there are no sensitive parasites to emerge following withdrawal
of drug pressure. However, widespread CQ pressure has led to
many variants of PfCRT throughout the world. In one study,
researchers genetically engineered several sets of pfcrt muta-
tions found at different sites around the world into P. falci-
parum parasites. They found that each PfCRT variant conferred
varying degrees of CQ resistance and affected growth in vitro.

One highly mutated pfcrt variant of Cambodian origin actually
demonstrated enhanced growth compared to wild-type para-
sites [49]. Interestingly, a GWAS with CQ sensitive and resistant
isolates in French Guiana found that a C350R PfCRT variant was
associated with the restoration of CQ susceptibility [50]. This
C350R variant was also associated with PPQ resistance in vitro,
which likely explains the failure of PPQ in the region.

In contrast to P. falciparum, CQ resistance in P. vivax was
not reported until 1989 in Papua New Guinea [51] and is now
found throughout Southeast Asia and some countries in South
America [52]. CQ resistance is more challenging to detect with
this species since parasitemia is generally lower relative to P. fal-
ciparum. Additionally, it is difficult to distinguish recrudescence
(parasites returning after incomplete or ineffective treatment)
from relapses due to reactivation of dormant liver parasites
in endemic settings. There is also no robust in vitro culture
system as there is with P. falciparum, so confirmation with in vitro
susceptibility testing is even more challenging than with P. falci-
parum. There are no clear molecular markers of CQ resistance in
P. vivax. Although pvcrt-o is orthologous to pfcrt, there is no clear
direct association between CQ resistance and mutations in pvcrt-
o [53–55]. There is also no clear association between pvmdr1, the
homologue of pfmdr1 and CQ resistance. Although some studies
have detected point mutations in pvmdr1 in resistant parasite
populations, such as a Y976F substitution in Indonesia and an
F1076L mutation in Southeast Asia [54], the polymorphisms are
not consistent across different parasite populations. In addition,
there are CQ-resistant parasites that have the wild-type pvmdr1
gene [56]. One recent study of patients with recurrent P. vivax
infections in the Brazilian Amazon found that CQ resistance was
associated with increased copies of pvcrt-o [57].

There is currently evidence of PPQ resistance in Western
Cambodia, where dihydroartemisinin–piperaquine has been the
frontline treatment for uncomplicated P. falciparum malaria [58].
A GWAS study of 297 P. falciparum clinical isolates from Cambodia
found that a nonsynonymous SNP on chromosome 13, a single
copy of pfmdr1 and amplifications of plasmepsin 2 and 3 were
associated with increased in vitro PPQ resistance and decreased
clinical efficacy [59]. Another study of culture-adapted parasites
from clinical isolates from Cambodia found that ex vivo PPQ
survival assay profiles correlated with plasmepsin 2 copy number
[60]. In addition, multicopy plasmepsin 2 was significantly asso-
ciated with DHA-PPQ treatment failure. The plasmepsin genes
encode aspartic proteases that function as hemoglobinases in
the DV. The mechanism of resistance is not clearly identified;
however one hypothesis is that increased hemoglobin digestion
due to the amplification decreases concentrations of the reactive
heme species that PPQ binds, thereby overcoming the inhibition
of heme detoxification by PPQ [60].

There is also growing evidence that mutations in pfcrt can
mediate resistance to PPQ independent from amplifications of
plasmepsin genes. PPQ-resistant strains evolved in vitro were
analyzed with microarrays and were found to have a C101F
mutation in pfcrt in addition to an amplification of pfmdr1 [61].
Subsequently, the introduction of the C101F pfcrt mutation with
zinc finger nuclease-based gene editing into CQ-resistant par-
asites resulted in significantly higher PPQ resistance and also
reversed CQ resistance [62]. Three independent pfcrt mutations
were associated with ex vivo PPQ resistance in culture-adapted
parasites from Cambodia [63]. A GWAS study of samples primar-
ily from Cambodia identified a point mutation in pfcrt (F145I),
which was associated with DHA-PPQ treatment failure even after
adjustment for amplification in plasmepsin 2 and 3 [64]. A subse-
quent analysis of pfcrt allelic diversity from clinical isolates from
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Southeast Asia found a rapid rise in novel mutations following
the introduction of DHA-PPQ treatment [65]. Introduction of the
H97Y, F145I, M343L and G353V mutations into PPQ sensitive
parasites resulted in PPQ resistance.

8-Aminoquinolines

The 8-aminoquinolines have a similar structure to the 4-
aminoquinolines, with the exception of the amino group at the
8-position of the quinoline. Their mechanism of action is not
well understood. Primaquine and tafenoquine are two agents
that are used for malaria treatment and prophylaxis. Primaquine
is given along with CQ to treat the liver-stage parasites in P.
vivax and P. ovale infections to prevent relapses [66]. It also has
potent activity against stage V gametocytes of P. falciparum and
is used to reduce malaria transmission [67]. Tafenoquine was
recently FDA-approved for the prevention of P. vivax relapses
administered as a single dose. Interestingly, primaquine appears
to increase the activity of CQ against CQ-resistant P. falciparum
[68]. Primaquine resistance in P. vivax is difficult to determine as
it is confounded by reinfections in malaria-endemic regions [69].
A study that performed WGS of P. vivax from known relapses that
occurred despite primaquine treatment found polymorphisms
in several putative resistance genes [70]. However, there are
currently no known genetic markers of primaquine resistance.

Antifolate drugs

Antifolate drugs disrupt parasite folate synthesis (Figure 3) and
include dihydrofolate reductase (DHFR) inhibitors (proguanil,
pyrimethamine, trimethoprim) and sulfa drugs (sulfamethoxa-
zole, sulfadoxine; Table 1). Sulfadoxine–pyrimethamine (Fansi-
dar; SP) was deployed in the 1960s in areas where P. falciparum
CQ resistance had developed, with the emergence of resistant
parasites in the 1970s and 1980s [71]. Antifolates are now used
most commonly as combination therapy such as atovaquone-
proguanil, which is used for prophylaxis, and SP which is used
in combination with artemisinin for treatment of P. falciparum or
as part of intermittent preventive treatment in pregnant women
and children.

In contrast with CQ resistance, which took many years to
develop, resistance to antifolates developed much faster. The
genetic mechanism of resistance to antifolates is more straight-
forward in comparison to CQ resistance, with single point muta-
tions in the genes encoding either DHFR or dihydropteroate syn-
thase (DHPS) in response to sulfa drugs (Table 1; Figure 3). These
mutations cause resistance by altering binding of the drug to
the enzyme’s active site [72, 73]. Three studies of microsatellites
flanking the pfdhfr gene in P. falciparum clinical isolates from
Thailand, South America and Southeast Africa found that in
each of the locations there was a common origin of emergence
[74–77]. The pfdhfr mutations appear in a particular order in the
setting of drug pressure: S108 N, followed by N51I, C59R and
finally I164L, with increasing resistance seen when going from
two to three mutations in both in vitro and field isolates [78–82].
S108N appears to be a necessary first mutation in DHFR [78]. A
C50R mutation was identified in samples from Latin America
[72], with genetic transformation studies demonstrating that it
likely has an analogous role to the C59R mutation in African
isolates [83].

Mutations in dhfr decrease the overall enzyme efficacy and
result in a fitness cost for the parasite [84, 85]. After changes
in first line malaria treatment from sulfa drugs to ACTs, a

Figure 3. The P. falciparum folate biosynthesis pathway. Enzymes inhibited by

the antifolate drugs are shown. Point mutations in the dhps and dhfr mediate

resistance to sulfa drugs and DHFR inhibitors, respectively. Increased copy

number of the gch1 gene has been detected in clinical isolates from Southeast

Asia and likely represents an adaptive evolutionary response to antifolate pres-

sure [95]. Other abbreviations: pyruvoyltetrahydropterin synthase (ptps), hydrox-

ymethyldihydropterin pyrophospholkinase (pppk) and dihydrofolate synthase

(dhfs). Adapted from [94].

decline in triple and quadruple dhfr mutants has been seen in
certain areas [86, 87]. However, in countries where SP is part
of the ACT or is used as intermittent preventive therapy, these
mutants remain prevalent [88–91]. In addition, the persistence of
parasites carrying dhfr mutations may be attributed to the use of
trimethroprim-sulfamethoxazole for prophylaxis or treatment
for opportunistic infections in HIV-positive persons [92].

Interestingly, P. falciparum parasites in Southeast Asia are
able to develop a compensatory mutation for the fitness cost
incurred by the mutant dhfr. A genome scanning study of 14 field
and laboratory-adapted P. falciparum strains first identified an
amplification surrounding GTP-cyclohydrolase 1 (gch1), which
encodes an enzyme in the folate biosynthesis pathway that
is upstream from DHFR and DHPS [93, 94] (Figure 3). A later
population genetic study with a focus on the role of copy num-
ber variations (CNVs) in P. falciparum compared parasites from
Thailand, where antifolate medications were commonly used,
to those from Laos, where antifolates were rarely used [95]. They
found extensive CNV surrounding gch1 in the Thai isolates with
the amplicon structure demonstrating multiple sites of origin in
addition to a strong association between copy number and the
dhfr I164L mutation, supporting how the amplification is likely
an adaptive evolutionary response to antifolate therapy. The
amplification reduces the cost of acquiring the drug-resistance
mutations further downstream in the folate synthesis pathway
[96]. A WGS study of parasites in Malawi, which experienced
prolonged use of SP, found a gene duplication in a gch1 promotor,
which was also detected in parasites from West Africa and the
Democratic Republic of Congo [97]. This duplication was not
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found as frequently in other African populations, where antifo-
late medications were not as extensively used and is different
from the whole gene amplification found in Southeast Asia.

In P. vivax, the enzymes in the folate synthesis pathway are
the same, and thus similar mutations in the P. vivax dhfr and
dhps have been suggested to mediate resistance to the antifolate
medications [98–100]. However, sulfa drugs were found to be
inherently less effective against P. vivax parasites [101, 102]. A
study that cloned and sequenced the pvdhps gene in multiple P.
vivax and P. falciparum isolates from around the world and mod-
eled and compared the 3-D structure of the P. vivax DHPS to that
of P. falciparum. The predicted sulfadoxine-binding sites differed
by one residue between the species: a valine at position 585 in
P. vivax (probable wild type, seen in all 14 isolates examined),
which is equivalent to an alanine at position 613 in P. falciparum.
The larger valine residue of P. vivax at this site was predicted to
reduce binding of sulfadoxine compared to the smaller alanine
residue in P. falciparum, thus demonstrating a possible mech-
anism for increased inherent resistance [103]. Epidemiological
studies have identified several point mutations in dhfr and dhps
associated with resistance in Southeast Asia [104, 105]. A study
in which recombinant, variant PvDHPS proteins were expressed
showed that the mutated enzymes had reduced sulfadoxine
sensitivity which correlated with higher resistance [106].

Aryl amino-alcohols

The aryl amino-alcohols include lumefantrine (LMF) and MFQ,
which are aryl amino alcohol derivatives of quinine (Table 1).
Their mechanism of action is not well understood; however,
they likely interfere with the detoxification of the toxic byprod-
ucts of heme degradation [107]. Quinine is a natural compound
found in bark from the Cinchona tree that has been used for the
treatment of malaria for centuries [108]. It is currently used for
treatment of severe malaria and for uncomplicated malaria in
the first trimester of pregnancy. LMF and MFQ were introduced
shortly after the antifolate medications in the mid-1970s. How-
ever, resistance to MFQ emerged rapidly and was first reported
in 1982 [109]. LMF resistance has been reported in a clinical study
[110]; however this has not been confirmed [111]. LMF and MFQ
are now used as partner drugs for artemisinin derivatives, and
MFQ is used alone as a prophylaxis.

Resistance to MFQ was found to be primarily mediated by
increased pfmdr1 copy number [112, 113], rather than via point
mutations as described for CQ and antifolate medications.
Amplification of the pfmdr1 gene has also been associated
with increased risk for treatment failure with artemether-LMF
[114]. The pfmdr1 CNV is a large tandem amplification of up
to 100 kb which includes several genes [115, 116]. Of note, in P.
falciparum amplicon break points in CNVs are primarily found
in monomeric tracts of A or T in intergenic regions [117]. Since
the P. falciparum genome is highly AT-rich and has common
AT monomeric tracts [118], CNVs are an important mechanism
of evolutionary adaptation [117, 119, 120]. It has been found
in clinical isolates throughout the world, with evidence of
nonidentical chromosomal breakpoint sequences from different
regions, providing evidence of independent origins [116]. This
does not apply to Africa, where this amplification is rare
[121]. A study of 618 samples of patients from the Thai border
found that an increased copy number of pfmdr1 was the major
determinant of both in vitro and in vivo MFQ resistance [122]. The
number of copies of the gene has been shown to increase the
degree of resistance [123]. A study of microsatellite markers
flanking pfmdr1 and mapping of breakpoint sequences and

amplicon size in clinical isolates from the Thai border found an
estimated 5–15 independent origins of the amplification [117].
In contrast to the point mutations that caused CQ and antifolate
resistance, which had a common origin within a population, the
findings demonstrate how pfmdr1 amplification occurs much
more frequently and thus multiple independent origins can
be found within a single population. The mechanism of MFQ
resistance appears to be similar in P. vivax, with studies of clinical
isolates demonstrating a correlation with in vivo and in vitro MFQ
resistance and increased pvmdr1 copy number [124, 125].

The mechanism of resistance to quinine appears to be more
complex. Although there are reports of decreased sensitivity in
Asia [126–128] and South America [129], high-grade resistance
in the treatment of severe malaria appears to be rare [130]. In
vitro cross resistance between quinine, the other aryl amino-
alcohols and the 4-aminoquinolines is observed [123, 131–133],
suggesting that there may be a common genetic mechanism of
resistance. Mutations in pfmdr1 and pfcrt have been found to
confer decreased parasite susceptibility to quinine [18, 22, 113,
134–136]. However, they are not sufficient to cause resistance,
implying that there are additional genes involved. Researchers
used quantitative trait loci analysis to detect genes associated
with quinine resistance in 71 P. falciparum isolates from diverse
locations and identified pfmdr1, pfcrt and pfnhe-1, which encodes
P. falciparum Na+/H+ exchanger 1 and is on chromosome 13 [137].
One of the microsatellite markers detected in pfnhe-1 (ms4760)
was significantly associated with in vitro response to quinine.
More than two DNNND repeat motifs in block 2 of ms4760 were
associated with decreased quinine response. Subsequent studies
showed that an increased number of DNNND repeats were asso-
ciated with in vitro quinine resistance [138–140]. A comprehen-
sive analysis of pfnhe-1 ms4760 alleles from P. falciparum isolates
from diverse geographic locations found significant polymor-
phisms in these alleles, with a higher number of DNNND repeats
found in Southeast Asian parasites [141].

Artemisinin compounds

After CQ and antifolates were lost to resistance, artemisinin
compounds became vital for effective malaria treatment.
Artemisinin compounds are sesquiterpene lactone compounds
that were discovered in China as the active ingredient in
traditional medicine (extracts of the sweet wormwood plant,
Artemisia annua) with fever-reducing properties that had been
known for millennia. Related derivatives include artesunate,
artemether and dihydroartemisinin (DHA) as well as the
synthetic artemisinin compounds, such as OZ439. They are
highly effective at rapidly clearing parasites from a person’s
bloodstream. Since some have a short half-life, they typically
have been combined with long-lasting drugs. These medications
are currently first-line therapy as a component of ACTs.
Intravenous artemisinin is used to treat severe malaria.
Although their mechanism is not completely defined, within
parasites these compounds undergo activation via disruption
of their endoperoxide bridge, leading to oxidative stress [142]
(Table 1). The precise target of artemisinin compounds is not
completely defined, although current studies suggest that
they cause significant stress which overpowers the parasite’s
protein repair system and inactivates important housekeeping
functions [142]. The phosphatidylinositol-3-kinase (PfPI3K)
has been proposed as a potential target of the artemisinin
compounds [143]; however the overall mechanism appears to be
more complex, involving the general stress response. Treatment
of P. falciparum with artemisinin compounds results in slowed
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parasite growth, decreased uptake of hemoglobin and increased
oxidative damage [144]. Increased protein ubiquitination is seen
in parasite following treatment with artemisinin compounds,
which is likely due to substantive cellular damage [145]. One
study examining the proteins covalently modified by an alkyne-
tagged biotinylated artemisinin analogue identified 124 binding
targets and demonstrated that heme is primarily responsible
for its activation [146]. The 124 targets identified are involved
in a wide variety of cellular processes and may indicate the
breakdown of the general stress response rather than a specific
target.

Decreased sensitivity to artemisinin compounds, as demon-
strated by delayed parasite clearance (observed during clinical
trials), was first reported in Cambodia in 2008 and has since
emerged in other countries in the Greater Mekong region [147,
148]. One study of 91 parasites from Cambodia, Thailand and
Laos used 6969 polymorphic SNPs to identify genomic regions
under selection. Within these regions, analysis of SNPs and
microsatellites identified a selective sweep on chromosome 13
that was associated with delayed parasite clearance follow-
ing treatment with artemisinin compounds [149]. A subsequent
study identified four SNPs on chromosomes 10, 13 and 14 that
were associated with delayed parasite clearance time [150]. The
two SNPs detected on chromosome 13 were under strong selec-
tion in the parasite population. A major breakthrough in identi-
fying a molecular marker of artemisinin resistance was obtained
in a WGS study of clinical P. falciparum isolates from Cambo-
dia and a parasite line originally from Africa and selected for
artemisinin resistance in vitro. This led to the identification of
mutations in the propeller domain of the kelch 13 gene as a medi-
ator of artemisinin resistance [151]. The association between
kelch 13 mutations and delayed parasite clearance was subse-
quently confirmed with a large clinical trial [152] as well as gene
editing [153, 154].

The Kelch 13 protein is thought to be involved in the
cellular response to oxidative stress [142]. It is not entirely
clear what specific functional changes the mutations in Kelch
13 impart; however artemisinin-resistant parasites have an
enhanced stress response during the early ring stage where
artemisinin is especially active [145]. Studies implicate that
protein degradation or ubiquitination pathways are likely
involved in this enhanced response. Transcriptional profiling
of resistant parasites from patients found that proteins
involved in the unfolded protein response were associated
with delayed parasite clearance time [155]. The Kelch 13
C580Y variant was found to decrease interactions between
the P. falciparum PfPI3K and artemisinin, leading to a decrease
in polyubiquitination by PfPI3K and subsequent decrease in
PI3P, which participates in phospholipid signaling [143]. In
addition, proteasome inhibitors, which inhibit a complex that
degrades unfolded proteins, were found to increase activity of
artemisinin against sensitive and resistant P. falciparum strains
[145, 156].

Epidemiologic studies demonstrate that Kelch 13 mutations
have arisen independently in multiple locations in Southeast
Asia, with initial soft sweeps leading to a hard sweep at this
locus in parasites in Southeast Asia [157–160]. Although at least
20 mutations in K13 were identified, most parasites in the region
were found to harbor a C580Y variation [151, 157]. Introduction
of several kelch 13 mutations found in field strains into isogenic
parasite lines in vitro demonstrated different degrees of resis-
tance, with R539T and I543T variants resulting in higher levels of
resistance compared to the C580Y variant [154]. There are thus
likely other factors that contribute to the widespread prevalence

of a particular mutation. A GWAS study of Southeast Asian
parasites showed that mutations in pffd (ferredoxin), pfarps10
(apicoplast ribosomal protein S10), pfmdr2 (multidrug resistance
protein 2) and pfcrt were strongly associated with artemisinin
resistance [159]. These mutations are thought to represent a
background upon which the kelch 13 mutations are especially
likely to occur.

It is unclear what the significance of kelch 13 mutations is
in Africa where polymorphisms have been detected [161–163],
but there is no clear association with artemisinin resistance.
A comparison of kelch 13 mutations between Southeast Asian
and African parasites found that there was a low frequency
of resistance-conferring mutations in the African parasites
[164]. In addition, Asian parasites harbored an excessive
number of non-synonymous mutations, while African parasites
demonstrated a normal variation pattern. This suggests
that these resistance-conferring mutations are not currently
undergoing selection in Africa. There was one report of a
returned traveler from Guinea with delayed parasite clearance
with WGS showing that the strain was indigenous to Guinea
and harbored a previously unreported M579I variation in Kelch
13 [165].

Antibiotics

Antibiotics that have been used for treatment or prevention of
malaria include clindamycin [166, 167] and doxycycline [168],
whose mechanism of action is the interruption of protein
synthesis in the parasite (Table 1). Mutations in apicoplast
ribosomal RNA mediate P. falciparum resistance. For clindamycin,
an A1875C mutation in the gene encoding the apicoplast 23S
rRNA has been found in resistant field isolates that were taken
into culture [169]. When tested, these parasites show resistance
to clindamycin with a classic ‘delayed death’ phenotype [169].
There are no clear markers of doxycycline resistance that have
been identified thus far.

Napthoquinones

Atovaquone was developed in the 1990s and is currently used
in combination with proguanil as malaria prophylaxis under
the brand name malarone. Its mechanism of action is through
inhibition of the electron transport chain at the cytochrome
bc1 complex (Table 1). This system provides electrons for dihy-
droorotate dehydrogenase (DHODH), an enzyme that is respon-
sible for de novo pyrimidine synthesis, which is very important
for asexual blood stage parasites [170]. During clinical trials,
high rates of recrudescence were seen in patients treated with
atovaquone alone for P. falciparum malaria [171]. Resistance to
atovaquone monotherapy develops rapidly and is associated
with single point mutations in the gene encoding cytochrome-
b [172]. Y268S/C/N mutations are found in resistant field iso-
lates [173]. These mutations result in a significant fitness cost,
since parasites harboring cytb mutations are unable to produce
sporozoites in mosquitos rendering them untransmissible [10].
A recent study found that P. falciparum lines which harbor cryp-
tic Y268S alleles in the ∼22 copy mitochondrial genome can
more readily evolve resistance to atovaquone in vitro [174]. In
addition, the resistant lines demonstrated >3-fold copy number
amplification of the mitochondrial genome. This suggests that
the mechanism of atovaquone resistance is related to mito-
chondrial diversity rather than de novo selection of resistance
mutations.
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Multidrug resistance mediators to inform ACT
partner drug selection
As resistance to artemisinin emerges in Southeast Asia, there
is also an increasing risk of resistance developing to the
artemisinin partner drugs as parasites are effectively exposed
to monotherapy. There are five partner drugs recommended by
the WHO: LMF, AQ, MFQ, SP and PPQ. There are now reports of
PPQ resistance emerging rapidly in Cambodia, where DHA-PPQ
is a first line treatment for P. falciparum [58, 160, 175]. Mutations
in pfcrt and pfmdr1 influence P. falciparum sensitivity to a wide
variety of antimalarial drugs, which includes quinine, MFQ, md-
ADQ and artemisinin [18, 22, 23, 113, 134–136]. Clinical studies
have demonstrated linkage disequilibrium between these two
genes [176, 177]. The interrelatedness of mutations in these
two DV membrane transporters likely reflects compensatory
mutations for fitness losses or may be a mechanism to maximize
drug resistance. For example, a study in which the pfmdr1
N86Y mutation was introduced via genetic engineering into CQ-
resistant and CQ-sensitive genetic backgrounds demonstrated
that the mutation increased susceptibility to LMF, MFQ and
DHA [41]. However, the mutation decreased susceptibility to
CQ and m-ADQ in both CQ-resistant and CQ-sensitive parasites,
although the decrease was more pronounced in the CQ-resistant
strains. Another study that genetically edited a C101F pfcrt
mutation into CQ-resistant P. falciparum found that it reversed
CQ resistance and increased susceptibility to AQ, quinine and
artemisinin [62]. As previously discussed, mutations in pfcrt are
also associated with PPQ resistance. Knowledge of the mutations
already present in pfmdr1 or pfcrt in particular regions can inform
optimal partner drug use in the setting of increasing artemisinin
resistance.

A systematic analysis of the genetic changes that arose
in response to 37 compounds with potent antimalarial activ-
ity detected mutations in pfmdr1 and pfcrt in response to
structurally diverse compounds as would be expected for
pleiotropic drug transporters [178]. In addition, pfabcI3 and
pfaat1, genes that encode an ABC transporter and an amino
acid transporter, respectively, were mutated in response to a
variety of diverse compounds and likely represent multidrug
resistance mediators. Interestingly, CNVs were found to con-
tribute to one-third of the resistance acquisition events in this
study.

Parasite genetics that determine the
geographic origins of resistance
The emergence of antimalarial resistance has most frequently
been detected in the Greater Mekong region of Southeast Asia,
as evidenced by CQ, MFQ and artemisinin resistance [4, 179,
180]. It was originally thought that parasites from this region
might have a hypermutable phenotype [181], with a parasite
strain from Southeast Asia demonstrating a mutation rate in
vitro that was over 100 times greater than other clones. However,
subsequent in vitro studies have not found a higher mutation
rate in parasites derived from Southeast Asian strains [6, 182,
183]. In Southeast Asia, malaria transmission is intermittent and
seasonal, which results in decreased host immunity. This may
contribute to an increased propensity for drug resistance to arise.
There is also a significant amount of substandard medication
and poor patient compliance found in areas such as the Thai–
Cambodia border that are notorious for the emergence of drug
resistance [180].

Designing new therapies

With resistance to all known antimalarial medications now
apparent, the need for new medications and new approaches
to treatment has become extremely urgent. In reviewing the
history of antimalarial resistance and studies examining the
evolution of resistance in vitro, there are clear lessons that
can inform the design of future therapies. Resistance develops
rapidly when monotherapy is employed, and thus combina-
tion therapy with at least two medications with different
mechanisms of action helps mitigate this. Other important
considerations to make when determining which partner drugs
to use include the following: matching half-lives so that a drug
with a long half-life does not persist as monotherapy, pairing
drugs with synergistic mechanisms of action and avoiding a
combination with antagonistic pharmacokinetics [184, 185].
Clinical trials of triple drug regimens with additional partner
drugs added to established ACTs are currently underway in
Southeast Asia [186, 187]. Fast acting compounds such as
artemisinin are also less likely to generate resistance rapidly
compared to slower-acting compounds like clindamycin or
MFQ, as demonstrated by in vitro experiments [188, 189] and
experience in the field. Drugs that have multiple cellular
targets, such as artemisinin, have a higher barrier to resistance
compared to drugs with a single target such as pyrimethamine.

In recent years, there has been a rapid increase in new anti-
malarial compounds advancing in development. Organizations
such as the Medicines for Malaria Venture have partnered with
academic and industrial laboratories to efficiently identify new
promising antimalarial compounds for further development.
There are several criteria for these compounds to fulfill, includ-
ing high potency against clinical isolates from regions known
for antimalarial resistance and no cross-resistance against
laboratory-adapted strains that are resistant to antimalarials
currently in use [190]. Another important step is determining
how rapidly in vitro resistance occurs and what fitness cost
the resistance mutations confer. Several promising compounds
with new antimalarial targets have been identified, with many
advancing to clinical trials [191].

The method of in vitro resistance evolution followed by whole
genome analysis (sequencing or microarray) can identify the
molecular basis of antimalarial resistance and can generate
hypotheses about a new antimalarial compound’s target
through comparison of SNPs acquired by the resistant clones
compared to the compound sensitive parent [192]. Using this
method, it was shown that resistance to Cipargamin (NITD609,
KAE609), a spiroindolone drug that is the furthest along in
development, is conferred by mutations in the gene encoding the
plasma membrane P-type cation translocating ATPase (PfATP4)
[193, 194] and this is also the likely target of the compound.
Other promising compounds whose resistance mechanisms
have been studied using genomic methods include the following:
KAF156, an imidazolopiperazine that is active against all
three parasite stages [195, 196]; DDD107498, which targets the
eukaryotic elongation factor 2 [197]; bicyclic azetidines, which
target phenylalanyl-tRNA synthetase [198]; imidazopyrazines,
which target phosphatidylinositol 4-kinase [199], in addition to
many others. Genomic analyses are also important in assessing
the emergence of resistance during clinical trials for new
antimalarials. DSM265 is a DHODH inhibitor that was designed
using target-based drug discovery [200, 201]. During a phase 2a
clinical trial, parasites from two of four recurrent P. falciparum
infections demonstrated a resistance-associated mutation in
dhodh [202].
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Conclusions
To review the history of antimalarial therapy is to also examine
the myriad ways that the malaria parasite can develop resistance
via genetic mutations. The ability to readily culture P. falciparum
along with advances in sequencing and gene editing technolo-
gies in P. falciparum has greatly increased our ability to under-
stand the effect of these mutations and confirm the changes that
these mutations impart. These findings have had a direct impact
on evaluating and tracking antimalarial resistance in the field, as
seen most recently with the discovery of kelch 13 mutations as a
marker of artemisinin resistance. This knowledge also enables
a detailed investigation into why particular treatments fail and
the design of more effective antimalarial therapies.

Summary Key Points:
• Malaria parasites have developed resistance to all major

classes of antimalarial drugs.
• Resistance to the 4-aminoquinolines and aryl-amino

alcohols is primarily mediated by mutations in genes
encoding transporters at the parasite’s DV membrane.

• Resistance to the antifolate drugs and atovaquone is
primarily due to point mutations in the genes encoding
target enzymes causing decreased binding of the drug.

• New antimalarial medications with novel drug targets
are urgently needed to combat antimalarial resistance.
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