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Abstract 
Gene regulatory mechanisms that modulate RNA Polymerase II activity are difficult to access in 

mammalian tissues composed of multiple cell lineages. Here, we develop a nascent RNA assay 

(PReCIS-seq) that measures lineage-specific transcriptionally-engaged Pol II on genes and DNA 

enhancer elements in intact mouse tissue. By employing keratinocytes as a prototype lineage, we 

unearth Pol II promoter-recruitment versus pause-release mechanisms operating in adult skin 

homeostasis. Moreover, we relate active enhancer proximity and transcription factor binding 

motifs on promoters to Pol II activity and promoter-proximal pausing level. Finally, we find Pol 

II firing rapidly into elongation on lineage identity genes and highly paused on cellular 

safeguarding genes in a context-dependent manner. Our work provides a basic platform to 

investigate mechanistic principles of gene regulation in individual lineages of complex mammalian 

tissues. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.15.618417doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618417
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction  

 Mammalian tissue development and homeostasis implicate cell state transitions that are 

difficult to recapitulate ex vivo, outside the intact tissue milieu (1). Such transitions employ gene 

regulatory mechanisms controlling transcriptional activity at two major rate-limiting steps: i) 

initiation, with RNA Polymerase II (Pol II) recruitment to promoters, followed by rapid transition 

to promoter-proximal pausing (2) and ii) release of paused Pol II into productive elongation (3, 4). 

Pol II recruitment is modulated by pioneer transcription factors (5), whereas promoter-proximal 

Pol II pausing requires binding of the negative elongation factor (NELF) and DRB sensitivity-

inducing factor (DSIF) (3). Pol II pause-release is driven by the positive transcription elongation 

factor-b (P-TEFb) complex, which phosphorylates Ser2 of Pol II c-terminal domain, as well as 

NELF and DSIF. This leads to dissociation of NELF from paused Pol II and conversion of DSIF 

to a positive elongation factor (3). Various mechanisms including sequence-specific transcription 

factors, co-regulators, chromatin structure, specific histone modifications, and other DNA 

elements such as enhancers and insulators act on specific gene promoters to regulate the level of 

Pol II pausing and pause-release (6-9). Importantly, various genetic, biochemical, and genomic 

approaches suggest that pause-release regulates cell signaling, cell cycle, and cell differentiation 

(10-12). Moreover, pausing and pause-release mechanisms may enhance gene induction speed, 

establish permissive chromatin, augment the synchronicity of gene induction in fields of cells 

during development, integrate regulatory signals, and act as a checkpoint for coupling RNA 

elongation and processing (11, 12).  

Current methodologies for genome-wide Pol II activity mapping provide comprehensive 

insights into Pol II promoter-proximal dynamics and nascent transcription (11, 13, 14). However, 

employing these methodologies for specific cell lineages necessitates tissue dissociation and cell 

isolation (15, 16), which perturbs the natural cell-state and the tissue microenvironment essential 

for the biological transition in question (17). Previous elegant efforts for measuring mRNA levels 

in specific cell-types from intact mouse tissues capture a snapshot of transcriptional activity within 

hours of transcription (18, 19). However, these approaches cannot access transcriptionally-

engaged Pol II, therefore the early steps of transcription activation remain hidden. Therefore, a 

lineage-specific, genome-wide assay for measuring transcriptionally-engaged Pol II activity in 

intact mammalian tissue is urgently needed. 
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Here, we develop PReCIS-seq (Precision Run-on in Cell-type-specific In vivo System 

followed by sequencing) which implements high resolution precision transcriptional run-on (e.g., 

PRO-seq) (20) to specific cell lineages in intact mouse tissue (Fig. 1A). To this end, we generated 

a knock-in mouse line which enables cell-lineage-specific, Cre-LoxP-driven replacement of the 

endogenous Pol II with a GFP-tagged Pol II. As a prototype cell linage, we employ keratinocytes– 

an essential skin building block with body protective functions (21) that maintains a distinct 

transcriptomic profile throughout organismal life (22). To obtain a global view of the keratinocyte 

transcriptome in intact skin tissue, we apply PReCIS-seq at three major developmental stages: 1) 

embryonic day (E)16.5 as mature skin epidermal structures are formed; 2) adult skin resting stage 

at postnatal day (PD) 21 (telogen); and 3) adult skin growth stage at PD24 (anagen), when 

keratinocytes increase proliferation preceding tissue expansion and differentiation (23). This 

enabled classification of developmentally controlled functional gene sets based on Pol II levels at 

the promoter-proximal pause region and gene body, resulting from Pol II recruitment and pause-

release. Simultaneously, PReCIS-seq enabled genome-wide identification of transcriptionally-

active enhancer candidates. Our platform uncovers mechanistic gene regulatory principles of 

mouse tissue biology enabling new access points into the molecular basis of human disease. 
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Results  

PReCIS-seq reveals lineage-specific nascent transcriptomics in intact mouse tissue 

Precise and highly-sensitive mapping of RNA Pol II occupancy and nascent transcription 

of specific cell lineages in their natural tissue environment, without cell isolation, is critical for 

rigorously identifying and assessing the role and mechanisms of transcription regulation in cell-

type development, homeostasis and disease. Here, we engineer a mouse model where cell-type-

specific Cre activity can fuse GFP to the 3’ end of the endogenous second largest subunit of RNA 

Pol II (Polr2b), resulting in the RPB2-GFP fusion protein (herein referred to as Pol II-GFP) (Fig. 

1A and fig. S1, A and B; see Materials and Methods). In our first test of this method, the Keratin 

(K) 14-Cre driver excises the intervening sequence in the Polr2bf/f-GFP construct allowing 

production of a Pol II-GFP fusion protein exclusively in keratinocytes. The transcriptionally-

engaged Pol II-GFP in a chromatin fraction can then be enriched by immuno-precipitation with 

anti-GFP (aGFP) (Fig. 1Ai) (24). To preserve in vivo Pol II transcription engagement patterns, 

freshly collected whole tissue is immediately snap frozen, followed by chromatin isolation, DNA 

fragmentation, and transcription run-on with biotin-ribonucleotides to label nascent RNAs (Fig. 

1Aii-iii). Next, aGFP chromatin immunoprecipitation (ChIP) pulls down complexes of Pol II-GFP 

and the associated nascent RNAs from Cre-targeted cells (Fig. 1Aiv). Streptavidin pull-down of 

biotin-labeled nascent RNAs is followed by strand-specific RNA library generation, sequencing, 

and genome-wide mapping to identify precise locations of transcriptionally-engaged Pol II (Fig. 

1Av). Precision Run-On sequencing (PRO-seq) is a widely-used assay employed in cultured cells 

and bulk tissues or tumors to map transcriptionally-engaged Pol II with high sensitivity at single 

base-pair resolution (20). Precision Run-on in Cell-type-specific In vivo System followed by 

sequencing (PReCIS-seq) integrates PRO-seq with aGFP immunoprecipitation of cell-type-

specific Pol II-GFP enabling nascent transcription profiling of specific cell lineages in a complex 

tissue sample (Fig. 1A). 

To create a Cre-inducible Pol II-GFP mice, we targeted the endogenous Polr2b gene locus 

in mouse embryonic stem cells (mESCs) generating the Polr2bf/f-GFP allele (Fig. 1A and fig. S1, 

A and B). We tested the inducibility of the Pol II-GFP fusion protein by transient Cre expression 

in mESCs (fig. S1, C and D; see Supplementary Text) and the functionality by ChIP-seq (fig. S1, 

E to H). Next, we generated homozygous Polr2bf/f-GFP mice carrying hemizygous K14-Cre 

(Polr2bf/f-GFP; K14-Cre). Mice were viable and fertile with normal skin and hair follicles, and 
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expressed keratinocyte-specific Pol II-GFP (Fig. 1, B and C, and fig. S2, A to D). Conventional 

ChIP-seq of Polr2bf/f-GFP; K14-Cre mouse back skin showed strong enrichment of known 

keratinocyte-specific genes in ChIP-seq with aGFP as compared to aPol II pull-down (fig. S2, E 

to I), as expected.  

PReCIS-seq of mouse back skin from an adult skin resting stage (telogen) or a growth stage 

(anagen) with increased keratinocyte proliferation provided genome-wide nascent transcriptomic 

data (fig. S3, A to H’). Using previously published scRNA-seq data of whole skin at two 

developmental stages, we identified lineage-specific gene sets for: keratinocytes, mesenchymal, 

endothelial, and immune cells (fig. S4, A to C and data S1) (25, 26). Nascent transcript data in the 

aGFP pull-down revealed strong enrichment of engaged Pol II around the transcription start sites 

(TSSs) of keratinocyte lineage-specific genes (n=52), but not at genes specific to other lineages 

(Fig. 1D, fig. S4D, and data S2). In contrast, all gene sets displayed nascent transcript signal in the 

aPol II or input control conditions that probe all lineages in the skin (Fig. 1D, fig. S4D, and data 

S2). Specific examples for keratinocytes (i.e., Krt14, Trp63) and non-keratinocytes (i.e., Cd74) 

genes confirmed the expected signals (Fig. 1E) (20). Notably, the promoters of active genes 

showed divergent transcription, and transcription in the direction of the gene covered the entire 

transcription unit (Fig. 1E). Thus, PReCIS-seq provides high-resolution transcriptomic data of a 

specific cell lineage in its natural tissue microenvironment, without cumbersome and perturbing 

cell isolation procedures. 

 

Transcription regulation by Pol II promoter-recruitment vs. pause-release  

Pol II engagement and nascent transcript studies in cultured and isolated cells documented 

transcription activation by two mechanisms: de novo Pol II promoter-recruitment or Pol II 

promoter-proximal pause-release (3, 11, 13, 27). Specifically, upon transcriptional activation the 

ratio of normalized promoter-proximal counts (PPC) to gene body counts (GBC), known as the 

pausing index (PI), remains relatively constant on genes regulated mainly at promoter-recruitment 

and decreases on genes regulated at the pause-release step (Fig. 2A). Comparison of PReCIS-seq 

data of adult skin keratinocytes at telogen and anagen (a quiescence to proliferation transition) 

demonstrates distinct and reproducible differences and provides a genome-wide view of the 

transcription regulatory mechanisms operating during this cell state transition (Fig. 2A and fig. 

S5A). Cumulative genome-wide analyses show similar PI, PPC, and GBC distributions at the two 
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stages analyzed (Fig. 2B, data S3, and Materials and Methods); however, by DESeq2 analysis (28), 

we identified 186 transcriptionally activated genes [GBC Fold Change (FC)>2], of which ~21% 

(n=39) underwent increased Pol II pause-release (PI FC < -2) whereas ~79% (n=147) displayed 

increased Pol II promoter-recruitment (PI ~ constant) (Fig. 2, C and D). Function-based analysis 

showed an overall enrichment in cell cycle and signaling categories (Fig. 2E, fig. S5, B to E, and 

data S4), as expected at this quiescence-to-proliferation transition (29). Interestingly, HOMER 

analysis (30) in the 1 kb promoter region of these genes for transcription factor (TF) binding motifs 

showed that only promoter-recruitment– but not pause-release– regulated cell cycle genes 

contained motifs for TFs implicated in cell cycle gene regulation (31-33) (Fig. 2F and data S5). 

Several Shh signaling genes were upregulated at anagen (fig. S5E), as expected (34), and they also 

displayed both transcription activation mechanisms (fig. S5E). These data illuminate the global 

landscape of transcription activation mechanisms in a particular cell lineage within its intact tissue 

during adult mouse homeostasis.  

 

Low-paused lineage identity and high-paused cellular safeguarding genes  

Development, cell cycle, and signaling genes can be “poised” for transcriptional activation, 

with high Pol II promoter-proximal pausing and pause-release regulation, as reported in 

Drosophila development and mammalian cell culture (12, 35-37). Little is known about genome-

wide pausing of functional gene categories in a lineage of an intact mammalian tissue. PReCIS-

seq of keratinocytes at telogen features the global status of Pol II engagement at a resting stage of 

skin homeostasis, which characterizes most of adult mouse life. We began the analysis by curating 

six gene sets expressed in keratinocytes with known biological functions (see Material and 

Methods): 1) keratinocyte-specific lineage identity genes (n=49); 2) development (n=34); 3) 

signaling (n=36); 4) metabolism (n=56); 5) cell cycle (n=105); and 6) cytoskeleton (n=58) (data 

S6). Interestingly, keratinocyte lineage identity genes were uniquely distinguished by high 

expression (indicated by high GBC) and very low pausing index (PI) (Fig. 3A and fig. S6A).  

Further unbiased assessment of genome-wide Pol II activity revealed positive correlation 

of gene expression (GBC) with Pol II promoter-proximal density (PPC), and a negative correlation 

with Pol II pausing index (PI) (Fig. 3, B and C). Genes expressed above the background (n=10,132) 

displayed various levels of pausing as follows: ~79% mid-paused (n=7979 genes, R2 region in 

Fig. 3C), ~13% (n=1336, R1) low-paused, and ~8% (n=817, R3) high-paused (Fig. 3C and data 
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S7; see Material and Methods). Finally, a small group of 413 genes were unexpressed (log2 GBC 

[RPKM] < -2) but highly paused (Log2 PI > 6) (Fig. 3C, R4). To functionally characterize 

differentially paused genes, we performed gene ontology (GO) analysis of expressed genes in the 

low-, mid-, and high-paused groups (R1-R3) (fig. S6B and data S8). Clustering of top unique GO-

terms (total 45) using a binary cut method (38) demonstrates that low-paused genes are enriched 

in skin development and epidermis differentiation-associated keratinocyte lineage functions; mid-

paused genes are enriched in ribosome biogenesis, RNA processing and macromolecule 

metabolism; and high-paused genes are enriched for ubiquitin-dependent protein catabolic 

processes and autophagy (Fig. 3D). Finally, high-paused unexpressed genes (R4) were enriched in 

DNA repair and cilium functions (fig. S6B). The average PIs of five gene categories derived from 

the top unique GO terms of groups R1-R4 confirmed these results and showed that high expression 

and low pausing are not necessarily correlated (Fig. 3E). Altogether, these analyses reveal the 

relationship of global Pol II pausing and gene expression status with gene sets of specific functions 

in an adult lineage of an intact mouse tissue (see Discussion).  

 

Enhancer proximity and promoter TF motifs relate to Pol II activity and pausing level 

Pol II activity is influenced by transcription regulatory elements that contain TF binding 

sites and can act from a distance (e.g., enhancers) or close (e.g., promoters) to a gene TSS (39). 

While inspecting PReCIS-seq patterns of lineage-specific genes (i.e., Krt14), we noticed multiple 

divergently transcribed elements (Fig. 4A) reminiscent of active enhancers (40). To assess the 

capability of PReCIS-seq methodology to detect putative active enhancers genome-wide, we 

employed previously described dREG analysis (41) on our PReCIS-seq data at telogen. After 

exclusion of annotated promoters, we identified 5132 dREGs as putative enhancers, which showed 

divergent pattern of transcription from a TSS not associated with a NCBI RefSeq transcript (Fig. 

4, B and C, data S9 and see Methods). These dREGs also showed high chromatin accessibility in 

published ATAC-seq data of epidermal keratinocytes at telogen (42) (fig. S7, A and B). These 

putative enhancers also displayed high overlap with mouse candidate cis-Regulatory Elements 

(cCREs) (43), of which a majority are classified as distal or proximal Enhancer Like Sites (dELS 

or pELS) (Fig. 4D and data S10). Importantly, analysis of enhancer-promoter proximity revealed 

a striking positive correlation with PReCIS-seq gene body transcription level, with most high 

expressed genes containing an active enhancer within ~10kb of TSS whereas most medium and 
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low expressed genes have active enhancers at ~100kb or further away from TSS (Fig. 4E, fig. S7, 

C and D and data S11). We found only a mild (if any) inverse correlation with Pol II pausing level 

as defined by PI obtained from our PReCIS-seq telogen data (Fig. 4, F and G, fig. S7, E and F, and 

data S12 and S13).  

We then asked if specific TFs acting on either enhancer or promoter regions may be 

associated with Pol II promoter-proximal pausing level by comparing the low-paused and high-

paused genes identified in our PReCIS-seq telogen data. TF DNA binding motif enrichment 

analysis using HOMER did not reveal significant enrichment within nearest enhancers of any gene 

group analyzed (Table S1). In contrast, multiple TF DNA binding motifs distinguished the 

promoter (+/-300bp around TSS) of low- vs. high-paused gene groups (Fig. 4H and data S14) and 

this was independent of expression level (Table S1). Some of the motifs associated with high 

pausing were also enriched in specific functional gene categories, such as Autophagy/Protein 

Catabolism when compared with the rest of the genome (Table S1). Interestingly, integration of 

localization patterns for all TF motifs identified in the high-paused gene group revealed strong 

positioning directly on the TSS or slightly upstream (Fig. 4I and fig. S8A). In contrast, TF motifs 

associated with low-paused genes showed on average a notable peak located more than 100bp 

downstream of TSS (Fig. 4I and fig. S8B, green arrows). In summary, these findings highlight the 

applicability of PReCIS-seq methodology to map active enhancers simultaneous with gene 

expression and Pol II pausing status; they revealed several basic rules of Pol II activity and pausing 

in a specific lineage of an intact tissue (see Discussion). 

 

Context-dependent dynamic Pol II pause-release of specific functional gene sets  

Finally, we wondered if specific gene categories maintain their pausing patterns stably across 

different developmental and ‘ex vivo’ conditions. To this end, we examined the status of Pol II 

pausing for three intact-tissue, or ‘in vivo’, conditions [i.e., PD21, telogen; PD24, anagen; and 

embryonic day (E)16.5] and two ‘ex vivo’ conditions [i.e., freshly isolated and cultured 

keratinocytes] (see Materials and Methods). Interestingly, nascent transcript data indicates 

comparable expression levels (GBC) but distinct proximal-promoter levels (PPC) and pausing 

statuses (PI) across conditions (fig. S9A, and data S3 and S15). To normalize across experimental 

conditions, we used several functional gene categories identified at telogen and plotted PI and 

GBC relative to the whole genome (Fig. 5, A to C’ and fig. S9, B to E’). Statistical pairwise 
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analysis demonstrates context-dependent changes of pausing levels across conditions that were 

characteristic to each gene category (Fig. 5D and fig. S9F). Specifically, genes involved in 

tricarboxylic acid cycle and amino acid ‘metabolic process’ mid-paused at telogen (Fig. 3, R2) 

strongly maintained their pausing status across all experimental conditions (Fig. 5, A to A’ and 

D). In contrast, keratinocyte lineage identity genes low-paused at telogen (R1) gained pausing 

whereas high-paused autophagy and protein catabolism genes (R3) lost pausing in the ex vivo 

conditions (Fig. 5, B to D). Finally, biogenesis genes, cell cycle, and signaling genes mid-paused 

at telogen (R2) as well as high-paused, unexpressed DNA repair and cilium genes (R4) display 

minimal changes in pausing status across conditions (Fig. 5D and fig. S9, B to E’). Despite these 

changes, the low-paused (R1) gene group remained highly enriched in various keratinocyte lineage 

identity functions, irrespective of condition (Fig. 5E, fig. S9G and data S16). In contrast, the high-

paused and expressed (R3) genes maintain top enrichment in autophagy and protein catabolism 

processes only in the intact tissue (Fig. 5E and fig. S9G). Instead, ‘signaling’ and ‘oxidative stress’ 

or ‘cell cycle’ and ‘DNA repair/cilium’ were top enriched in the high-paused and expressed genes 

ex vivo. Together, our data highlights the dynamic Pol II pausing status of functional gene groups 

within an intact mammalian-tissue environment and its profound change in ex vivo stress 

conditions (see Discussion). 

 

Considerations for future PReCIS-seq studies 

Comparison of PReCIS-seq nascent transcript levels with steady-state mRNA levels 

measured by conventional RNA-seq could in theory provide information about the extent to which 

transcription versus mRNA stability contribute to gene expression at specific biological 

transitions. Using our Polr2bf/f-GFP; K14-Cre mice, we obtained total RNA-seq data of freshly 

isolated skin and GFP+ keratinocytes at telogen (fig. S10, A and B; see Methods). Direct 

comparison between PReCIS-seq gene body counts and RNA-seq counts shows moderate 

correlation independent of gene length (fig. S10, C and D). Interestingly, ~5% of all detected genes 

show poor correlation between nascent transcription and total mRNA levels, suggesting regulation 

at the mRNA stability level for different functional gene categories for future exploration (fig. S10, 

E and F).  

Although we focused here on adult skin keratinocytes, PReCIS-seq methodology can in 

principle be implemented to any mouse tissue where lineage-specific Cre recombinases are 
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available. Since keratinocytes are a relatively abundant cell lineage, we tested the sensitivity limits 

of our method by employing the Shh-CreERT2 driver (44). This driver targets a small progenitor 

population in the hair follicle matrix, with labelled cells representing only ~1% of the entire PD27 

anagen skin tissue cells (fig. S11, A and B, and data S17). PReCIS-seq methodology and data 

analysis applied to skin of Polr2bf/f-GFP; Shh-CreERT2 mice demonstrate successful profiling of 

this small, targeted population (fig. S11, C to J and data S18). Although further optimizations and 

deeper sequencing of PReCIS-seq libraries are necessary for a more detailed and comprehensive 

analysis of this rare cell population, we are confident that our results demonstrate high sensitivity 

and broad applicability of PReCIS-seq for Pol II activity mapping in small cell populations within 

complex mammalian tissues.  
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Discussion  

Here, we developed PReCIS-seq technology to provide lineage-specific genome-wide 

quantitative mapping of transcriptionally-engaged RNA Pol II in a complex intact adult mouse 

tissue. These measurements provide views of Pol II as it progresses through critical regulatory 

steps of transcription initiation (Pol II promoter-recruitment) or elongation (Pol II pause-release); 

they also simultaneously map active divergent transcription sites at locations away from promoters 

that are likely to function as enhancers (45, 46). This approach can reveal fundamental mechanisms 

by which transcription factors and co-factors at promoters and enhancers regulate Pol II activity 

and gene expression during development, homeostasis and disease (6, 47). PReCIS-seq avoids 

laborious tissue dissociation and cell isolation procedures (15, 16), which can alter the 

spatiotemporal regulatory landscape. Using an adult keratinocyte prototype lineage in intact mouse 

skin at its resting stage (telogen), which characterizes most of mouse adult life (29), we uncovered 

several principles of gene regulation.  

First, analysis of pausing index (PI) changes at specific biological transitions can reveal 

the critical step of transcription activation: Pol II promoter-recruitment vs. pause-release (3, 11, 

13, 27). Here, by focusing on a simple biological transition that involves increased proliferation in 

the keratinocyte lineage, we found several hundred activated genes implicated in signaling, cell 

cycle and DNA repair, as expected (34). Importantly, activated genes employed primarily Pol II 

promoter-recruitment with only about a fifth clearly utilizing Pol II pause-release mechanisms. Pol 

II pause-release regulation of cell cycle genes was also reported in an in vitro developmental 

context (15). Presumably, transcription factors and co-factors recruited to genes act on distinct 

steps in transcription regulation (31-33). Intriguingly, cell cycle related TF motifs decorated the 

promoters (within 1KB upstream of TSS) of Pol II promoter-recruitment but not pause-release 

genes, providing clear candidates for future mechanistic studies. 

Second, Pol II pausing level on the proximal promoter inversely determine the rate of Pol 

II firing into elongation and the overall level of gene expression (48). High Pol II pausing is directly 

poising genes for rapid activation by pause-release (12, 37, 49). Previous functional studies that 

perturbed pause-release in various model systems, including the keratinocyte lineage of interest 

here (50-52), demonstrate the crucial biological relevance of this regulatory step (11, 37). 

Interestingly, we find that keratinocyte lineage-identity genes (i.e., related to keratinocyte 

differentiation, skin development, intermediate filament organization and wound healing (21)) 
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show atypically low Pol II pausing in all intact-tissue and ex vivo conditions tested. These low-

paused genes are also highly expressed, which demonstrates rapid firing from the Pol II paused 

site into effective elongation. On the other hand, the highest paused genes poised for activation in 

intact-skin keratinocytes were involved in cellular safeguarding processes, such as DNA break 

repair (53), autophagy - essential for recycling damaged organelles and maintaining healthy cells 

(54) - and the associated ubiquitin dependent protein catabolism (55). Indeed, these safeguarding 

processes are rapidly activated in adult skin keratinocytes upon acute UV exposure, an imminent 

stress constantly faced by this lineage (56, 57). Importantly, cellular safeguarding genes lose the 

highest-paused status upon tissue dissociation, likely due to increased Pol II firing into elongation 

in these new stress conditions (48). In fact, the highest-paused genes in ex vivo conditions were 

related to signaling, cell cycle, and oxidative stress, as reported in other cell culture studies (37, 

51, 58). This likely reflects a high proliferative incentive from growth factors in the medium and 

new stress conditions outside the tissue hypoxic environment. These data pinpoint the dynamic 

context-dependent nature of pause-release and the importance of studying tissue regulatory 

mechanisms in the natural tissue context. 

Third, multiple ON/OFF switch mechanisms influence Pol II pausing level, but how pause-

release is differentially regulated on different promoters is unclear (6-9). Scarce literature reports 

attest the role of several developmental transcription factors (TF) in establishing pausing status or 

promoting pause-release on specific genes. These include the pioneering work on GAGA 

transcription factor for establishing paused Pol II (59, 60) and heat shock factor (HSF), TRIM28, 

MYC (bHLH), KLF4 and ZMYND8 (Zf), and MYB (HTH) transcription factors regulating pause-

release (61-64). However, aside from these scattered examples, we currently do not have genome-

wide consensus motifs or mechanistic rules connecting the rates of Pol II pause-release to specific 

transcription factors on promoters or enhancers. Interestingly, our analysis provides clear 

candidates of distinct TF consensus motifs associated with extreme levels of Pol II pausing. For 

example, bHLH and RHD factors are differentially enriched on low-paused gene promoters 

whereas NRF, ETS, and HTH factors preferentially decorate the high-paused gene promoters. 

Furthermore, we find that TF DNA binding motif positioning relative to the gene TSS differed 

greatly in the high-paused vs. low-paused gene groups. For the former, TFs bind directly on the 

TSS or immediately upstream. For the latter, specific TFs bind more than 100bp downstream of 

TSS beyond the typical Pol II pausing region, onto the previously reported inhibitory +1 
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nucleosome region (65-67). It is tempting to speculate that this binding might efficiently clear the 

way for rapid Pol II pause-release into elongation. Surprisingly, we found no enriched TF motifs 

associated with Pol II pausing on the nearest active enhancer elements. In addition, we found that 

relative distance of enhancers to promoters was associated with gene expression level but not with 

Pol II pausing. Future investigation is needed to understand how different classes of TFs act from 

specific positions on promoters and cooperate with enhancers to regulate the level of pause-release.  

In conclusion, we provide a new platform for precise mapping of Pol II activity and nascent 

transcription on genes and enhancers in specific cell lineages of intact mouse tissue to characterize 

regulation of biological transitions in their natural context. This work provides un-precedented 

access to basic mechanistic principles of gene regulation in development, homeostasis, and 

disease. 
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Fig. 1. Precision Run-on in Cell-type-specific In vivo System followed by Sequencing 

(PReCIS-seq) maps transcriptionally-engaged RNA Pol II in intact mouse tissue 

(A) Schematic depiction of PReCIS-seq assay (see also fig. S1A) in mouse back skin. (B) 

Homozygous Polr2bf/f-GFP transgenic mouse at postnatal day (PD) 21 (telogen) after crossing 

with mice bearing a keratinocyte-specific K14-Cre driver. (C) Immunofluorescence stainings of 

Fig. 1. Precision Run-on in Cell-type-specific In vivo System followed by Sequencing (PReCIS-seq) 
maps transcriptionally-engaged RNA Pol II in intact mouse tissue
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GFP and Ki67 proliferative cells and DNA DAPI staining in indicated colors in back skin sections 

from Polr2bf/f-GFP; K14-Cre mice. (D) Metaplots of PReCIS-seq and input data from telogen 

samples displaying density of Pol II around 2kb from TSS (mm39 RefSeq) on four major skin-

lineage-specific gene sets. (E) Genome browser views of PReCIS-seq telogen data for Krt14, a 

keratinocyte-specific gene; Trp63, an epidermis differentiation transcription factor; and Cd74, a 

non-lineage, immune-cell-specific gene. The sense and anti-sense strands are shown on different 

scales and colors; red and blue, respectively. Krt14 gene orientation is flipped for visualization 

purposes. 
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Fig. 2. PReCIS-seq uncovers gene sets regulated by Pol II pause-release vs. promoter-

recruitment  

(A) Schematic of PReCIS-seq pattern expected for transcription activation via Pol II pause-release 

vs. promoter-recruitment during telogen to anagen transition. PI was calculated using RPKM 

normalized counts. (B) Cumulative distribution plots comparing PI, PPC and GBC in keratinocytes 

at telogen and anagen for all expressed genes. (C) Scatter plot showing changes in PI (x-axis) of 

transcriptionally upregulated genes (i.e., GBC FC > 2) (y-axis) at anagen. A cutoff of PI FC < -2 

was used to delineate pause-release vs. promoter-recruitment genes. (D) Box plots comparing 

log2 FC (PI) 
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GBC, PPC and PI of the two gene categories regulated by pause-release (n=39) or promoter-

recruitment (n=147). Mann-Whitney U rank sum test. (E) Pie charts summarizing distribution of 

top functional gene categories. (F) Summary of enriched transcription factor (TF) motifs from 

HOMER analysis on cell cycle and DNA repair genes regulated by promoter-recruitment. 
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Fig. 3. Genome-wide Pol II pausing distribution of telogen keratinocytes in intact skin tissue 

(A) Bar plots of mean PI and mean GBC of six gene sets curated based on major biological 

functions (statistical analysis by ANOVA followed by Tukey HSD). (B) Comparison of gene body 

counts (GBC) vs. promoter-proximal counts (PPC) of all n=18,025 genes. (C) Comparison of gene 

expression (GBC) vs. pausing index (PI) and divisions of gene groups (see Materials and Methods) 

to obtain low- (R1) , mid- (R2), and high- (R3) paused and expressed genes. R4, high-paused, 

unexpressed genes. (D) Binary cut clustering of top 45 unique GO terms from R1-R3 gene groups. 

Resulting C1-C4 clusters with bar plot distribution of R1-R3 genes (left panel), similarity matrix 

(middle panel), and most common GO words (right panel). (E) Bar plots of PI and GBC for the 

genes of top unique GO terms from R1-R4 gene groups and control of random highly expressed 

genes (statistical analysis by ANOVA followed by Tukey HSD). 
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Fig. 4. Active enhancer and promoter analysis reveals basic rules of Pol II activity 

(A) Genome browser view of PReCIS-seq signal at the Krt14 gene locus including an upstream 

putative enhancer displaying divergent transcription. (B) Heatmap of PReCIS-seq signal on minus 

(left panel) and plus strands (right panel) at dREG elements that are aligned at their center and 

sorted based on their size, shorter dREG elements on top and longer elements at the bottom. 
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Dashed lines delineate the center of the divergent peaks. (C) Profile plot of plus and minus strand 

reads for all dREG elements (5132) showing their divergent transcription pattern, a typical 

characteristic of active enhancer elements. All elements were aligned at the center of divergent 

peaks. (D) Fractions of overlapped and non-overlapped dREG elements with candidate Cis 

Regulatory Elements (cCREs) from the ENCODE database. Most overlapped dREG elements are 

distal or proximal Enhancer Like Sites (dELS or pELS). (E-G) Cumulative distribution plot 

comparing the distance of the nearest enhancer for genes in different gene groups based on 

expression levels (E), PI levels (F) and GO functions (G). (H) Table summarizing differential 

enrichment of TF motifs in low and high paused gene promoters. TFs are grouped in TF families 

and a representative motif (underlined) for the top enriched TF is included in the table. (I) 

Metaplots depicts pattern of localization for TF motifs enriched in high and low paused genes 

relative to TSS for each gene group indicated. Shaded area represents mean ±SD of the normalized 

motif counts.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.15.618417doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618417
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Fig. 5. Context-dependent dynamic pause-release of specific gene categories 

(A-C’) Scatter plots of GBC vs. PI for in vivo and ex vivo (isolated and cultured) experimental 

conditions. Specific gene categories indicated on y axis identified at telogen (see Fig. 3) are colored 

brown and the remaining genes in the genome are green. (D) Dot plot of the change in PI of specific 

gene categories as compared to the rest of the genome across pairwise comparisons for all five 

experimental conditions. (E) Table summarizing the top unique GO term(s) for low- and high-

paused genes for all five experimental conditions. 
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