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Abstract: In this study, micro-arc oxidation (MAO) of aluminum 6061 alloy was carried out within a
silicate base electrolyte containing 0.75 g/L of cellulose, and the tribological properties of the coating
were investigated. The as-prepared coating was detected by Fourier Transform Infrared Spectroscopy
(FTIR), X-ray diffraction (XRD), a scanning electron microscope (SEM) and an energy-dispersive
spectrometer (EDS), respectively. The results suggested that cellulose filled in the microcracks and
micropores, or it existed by cross-linking with Al3+. In addition, it was found that the cellulose
had little effect on the coating hardness. However, the thickness and roughness of the coating were
improved with the increase in cellulose concentration. Moreover, the ball-on-disk test showed that
the friction coefficient, weight loss and wear rate of the MAO coating decreased with the increase in
cellulose concentration. Further, the performances of the coatings obtained in the same electrolyte,
under different preserved storage periods, were compared, revealing that the cellulose was uniformly
dispersed in the electrolyte and improved the tribological properties of the MAO coating within
30 days.

Keywords: cellulose; tribological performance; stability; MAO (micro-arc oxidation) coating;
self-lubricating

1. Introduction

Aluminum alloys are characterized by their excellent castability, high specific strength and low
thermal expansion coefficient [1]. As a result, they have aroused increasing interest in the automobile
industry, as well as having aerospace structural and military applications [2–4]. Nonetheless, aluminum
alloys are associated with poor tribological performances, since the friction coefficient is as high as 0.5–0.8
under dry friction conditions [5]. Typically, aluminum alloys exhibit poor tribological performances
when they come into contact with other metal materials. This is ascribed to severe adhesive wear, plastic
deformation and metallic wear [6]. Consequently, surface modification approaches are indispensable
when it comes to enhancing the tribological performances of aluminum alloys.

A variety of surface treatment techniques are available at present, such as the electrochemical
approach [7], electroless deposition [8], chemical surface conversion [9], deposition from the
gas-phase [10], laser surface alloying [11] and organic polymer coating [12]. Micro-arc oxidation
(MAO), also referred to as plasma electrolytic oxidation, sparks anodization or micro-plasma discharge
oxidation [13,14] and emerges as a unique technique to produce hard and thick ceramic oxide coatings
on diverse Al [15], Mg [16] and Ti [17] alloys. Noteworthily, coatings synthesized according to the
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MAO process exhibit superior mechanical properties, including excellent adhesive strength [18], high
micro-hardness [19], and high thermal conductivity [20] compared with those obtained through other
methods. MAO coatings offer several advantages over other coatings. MAO coatings are very stable
and hard, which means they can be used at high temperatures. MAO treatment can significantly
enhance the surface properties of Mg, Al, Ti and their alloys. For instance, MAO coatings exhibit better
anti-wear and anti-corrosion performances than other chemical conversion layers. In addition, the pores
and cracks generated in MAO coatings during micro-arc discharges can help relieve the residual
stress of the coating. Thus, MAO coatings are promising for the corrosion protection of aluminum
and magnesium [21], the wear resistance of light metals and their alloys [22], and the improved
biofunctionality of titanium [23]. In addition, the composition, structure, and properties of coatings
produced by the MAO process depend on various parameters, among which chemical composition
and electrolyte concentration are the most important [24–26]. The microstructures and properties of
diverse composites have also been extensively investigated in plenty of reviews and books [27–30].

Generally, composites are added into the electrolyte to improve the tribological performances
of aluminum alloys, since they are able to compact the coating by filling in the microcracks and
micropores of the MAO coating [31,32], sealing the surface or reacting with the aluminum ion as the
coating forming matter [33,34].

However, these techniques are linked with certain shortcomings [35,36]:

1. The carbide and nitride oxide that must be mixed into the metal matrices are so hard and brittle
that they may be broken in the course of mixing or in the consolidation processes.

2. The additive may not be uniformly dispersed into the electrolyte.
3. A chemical reaction between the metal matrix and the coating may occur during the exposure to

elevating temperature, which leads to poor mechanical properties of the composites.
4. The particle sizes are typically in tens to hundreds of microns, which considerably reduces

the ductility and toughness, as well as ineffectively utilizing the strength and stiffness of
the reinforcement.

5. The electrolyte is unstable and cannot be used in actual industrial production.
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Cellulose is different from the above components because it is a polymer compound that 
contains multiple hydroxyl groups and experiences limited swelling under alkaline conditions, 
resulting in the formation of a stable uniform sol electrolyte [37]. 

Figure 1 illustrates that the anti-friction mechanism of cellulose improves the MAO coating. As 
a polymer, cellulose possesses favorable self-lubricity and plastic deformation ability. The possible 
mechanisms by which cellulose typically prompts the tribological performance are explained below. 

First, the MAO coating can be decreased depending on the self-lubrication ability of the 
cellulose. Secondly, the propagation of microcracks and micropores generated by thermal stress in 
the coating can be inhibited based on the plastic deformation capacity. Thirdly, the cellulose fills in 
the microcracks and micropores. As a result, the coating compactness is increased when it forms the 
complex with the aluminum ion. 

It is well known that the coating’s tribological performance is enhanced with an increase in 
compactness and a decrease in friction coefficient, whereas an increase in coating toughness [38] 
reduces the occurrence of adhesive wear [39], which seriously affects the service life of the coating 
[40]. 

Figure 1. The anti-friction mechanism of cellulose improves the micro-arc oxidation (MAO) coating.

Cellulose is different from the above components because it is a polymer compound that contains
multiple hydroxyl groups and experiences limited swelling under alkaline conditions, resulting in the
formation of a stable uniform sol electrolyte [37].

Figure 1 illustrates that the anti-friction mechanism of cellulose improves the MAO coating. As a
polymer, cellulose possesses favorable self-lubricity and plastic deformation ability. The possible
mechanisms by which cellulose typically prompts the tribological performance are explained below.

First, the MAO coating can be decreased depending on the self-lubrication ability of the cellulose.
Secondly, the propagation of microcracks and micropores generated by thermal stress in the coating
can be inhibited based on the plastic deformation capacity. Thirdly, the cellulose fills in the microcracks
and micropores. As a result, the coating compactness is increased when it forms the complex with the
aluminum ion.
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It is well known that the coating’s tribological performance is enhanced with an increase in
compactness and a decrease in friction coefficient, whereas an increase in coating toughness [38] reduces
the occurrence of adhesive wear [39], which seriously affects the service life of the coating [40].

On this account, mixing cellulose into the electrolyte contributes to obtaining a stable sol
solution with uniform dispersion, which is helpful for preparing a MAO coating with excellent
tribological performance.

This study mainly aimed to improve the tribological performance of the MAO coating by adding
cellulose into the electrolyte. Moreover, the effect of cellulose content on the tribological performance of
the coating was investigated under optimized parameters; subsequently, the tribological performances
of coatings obtained during different storage periods were compared in order to investigate the stability
of the sol electrolyte.

2. Experimental Procedure

2.1. Materials

Aluminum 6061 alloy (AA 6061) specimens with the dimensions of 20 × 20 × 3.5 mm3 were
used as the anodized substrates. Specifically, the alloy composition by wt % included 0.8–1.2% Mg,
0.4–0.8% Si, 0.15–0.4% Cu, and 0.04–0.35% Cr, and Al was the balance. The contents of Fe, Mn, Zn and
Ti in the alloy were not higher than 0.7, 0.15, 0.25 and 0.15 wt %, respectively. Prior to the experiment,
all specimens were mechanically ground using 240, 400 and 800 grit silicon carbide paper and then
washed with distilled water.

2.2. Experiment Process

Two 300 × 300 mm2 AISI 321 stainless steel sheets (BENLAIMETAL, Shanghai, China) were used
as the cathode. Then, the MAO process was carried out in a stirred electrolyte consisting of 15 g/L
Na2SiO3 (MACKLIN, Beijing, China), 5 g/L KOH (MACKLIN, Beijing, China), and 5 g/L (NaPO3)6

(MACKLIN, Beijing, China). Except for the adjusted cellulose concentrations (0, 0.25, 0.50, 0.75,
and 1 g/L), the MAO processes of specimens were carried out at 20 ◦C for 30 min with a DC pulse
supply at the frequency of 50 kHz, the constant current density of 1 A/cm2, and the duty cycle of 15%.
To examine the electrolyte stability, the MAO processes were conducted within the same electrolyte
after various storage periods for 0, 1, 7, 14 and 30 days.

2.3. Characterization

The phase compositions of diverse coatings were examined through an X-ray diffractometer (XRD)
(D/max-rB, RICOH, Tokyo, Japan) with a Cu Ka source, and the accelerating voltage and applied
current were 40 kV and 30 mA, respectively. In addition, the radiation emitted by the sample surface
was detected by a Fourier transform infrared (FT-IR) spectrometer (JASCO FT/IR-6100, JASCO, Toykp,
Japan). Meanwhile, scanning electron microscopy (SEM, JSM-6700F, JEOL, Japan) was employed to
observe the microstructure and morphology of the MAO coatings, whereas the element compositions
on the coating were analyzed by an energy-dispersive spectrometer (EDS, Oxford, UK) combined with
SEM. Further, the coating thicknesses generated under different conditions were measured using an
eddy current coating thickness measurement gauge (CTG-10, Time Company, Beijing, China). To be
specific, the thicknesses at 10 different sites on the coating surface were measured to calculate and
record the average. Additionally, the coating roughness was tested using a roughness tester (TR-3200,
Time Company, Beijing, China, vertical resolution of 0.01 µm). The micro-hardness of the coating was
evaluated using the HVS-100 micro-hardness tester (TMVS-1, TIMES Group, Beijing, China) with a
load of 100 g for 10 s. In addition, the tribological behaviors of the coatings were evaluated using
the ball-on-disk tester (UMT-Tribolab, BRUKER, Bremen, Germany) under dry sliding conditions.
Typically, balls of GCr15 with a diameter of 10 mm and a hardness of HRC 60 were used as the
counterface materials. The normal load was 5 N, and the linear sliding speed was 0.01 m/s. All tests
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were run under the laboratory conditions (temperature of 25 ◦C and relative humidity of 50%) for
30 min each. The friction coefficient was recorded on a computer during each test. The wear loss was
weighed using an electronic balance, and the wear rate (k) was calculated according to the following
Formula (1).

k =
π•D[arcsin( Lu

2r )r
2
− Lu(

√
4r2−Lu2

4 )]

P× S
(1)

where r stands for the radius of the corundum ball (mm), D represents the diameter of the wear track
(mm), Lu indicates the width of the wear track (mm), S is the sliding distance (m), and P is the applied
normal load (N).

3. Results and Discussion

3.1. Thickness and Roughness of the MAO Coating

The tribological performance of the MAO coating was affected by its thickness and roughness;
therefore, the impacts of cellulose content on the coating thickness and roughness were examined,
as shown in Figure 2.
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Figure 2. Effects of cellulose content on the thickness and roughness of the MAO coating. 

It can be observed from Figure 2 that with the increase in cellulose concentration, the thickness 
of the MAO coating increased, whereas its roughness decreased. At the cellulose content of 0.75 g/L, 
the coating thickness and roughness reached 32.1 μm microns and 0.66 μm, respectively. However, 
further increase in the cellulose concentration showed no obvious improvement in the thickness and 
roughness of the MAO coating, which was mainly ascribed to the low cellulose content. Specifically, 
it contained the multiple-hydroxy, and a double electric layer was formed during the 
electrochemical process, which attracted Al3+ contiguous to the substrate surface [38], resulting in the 
increase in the MAO coating thickness. In addition, cellulose participated in the coating formation 
by filling in the microcracks and micropores, even cross-linking with Al3+ in the coating, as observed 
in Figure 1. Moreover, the excellent polymer plasticity contributed to reducing the quantity and size 
of microcracks and micropores, thus decreasing the MAO coating roughness. Nonetheless, the Al3+ 
escaping from the substrate was limited by the electrochemical parameters, and further increase in 
the cellulose contents showed no significant improvement of the coating thickness and roughness 
when most of the Al3+ ions were attracted by the cellulose. Additionally, the electrolyte became 
inhomogeneous after over 24 h of preservation, so the optimal cellulose content was determined to 
be 0.75 g/L.  

3.2. Microstructure of the MAO Coating 

Figure 2. Effects of cellulose content on the thickness and roughness of the MAO coating.

It can be observed from Figure 2 that with the increase in cellulose concentration, the thickness
of the MAO coating increased, whereas its roughness decreased. At the cellulose content of 0.75 g/L,
the coating thickness and roughness reached 32.1 µm microns and 0.66 µm, respectively. However,
further increase in the cellulose concentration showed no obvious improvement in the thickness and
roughness of the MAO coating, which was mainly ascribed to the low cellulose content. Specifically,
it contained the multiple-hydroxy, and a double electric layer was formed during the electrochemical
process, which attracted Al3+ contiguous to the substrate surface [38], resulting in the increase in the
MAO coating thickness. In addition, cellulose participated in the coating formation by filling in the
microcracks and micropores, even cross-linking with Al3+ in the coating, as observed in Figure 1.
Moreover, the excellent polymer plasticity contributed to reducing the quantity and size of microcracks
and micropores, thus decreasing the MAO coating roughness. Nonetheless, the Al3+ escaping from the
substrate was limited by the electrochemical parameters, and further increase in the cellulose contents
showed no significant improvement of the coating thickness and roughness when most of the Al3+

ions were attracted by the cellulose. Additionally, the electrolyte became inhomogeneous after over
24 h of preservation, so the optimal cellulose content was determined to be 0.75 g/L.



Materials 2019, 12, 4226 5 of 12

3.2. Microstructure of the MAO Coating

The surfaces and cross-section microstructures of the MAO coatings at different cellulose contents
were observed through SEM. The results are shown in Figures 3 and 4, respectively. As observed from
Figure 3, the increase in cellulose content led to the decreased size of the microcracks and micropores,
while it increased the quantity of the micropores.Materials 2019, 12, x FOR PEER REVIEW 5 of 13 
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Figure 4. Cross-section of the MAO coating at cellulose concentrations of (a) 0 g/L, (b) 0.25 g/L,
(c) 0.50 g/L, and (d) 0.75 g/L.

The cross-section photograph displayed in Figure 4 proves the above findings. In addition,
Figure 4 also suggests that when the cellulose concentration was 0 g/L, the coating thickness was
small and the adhesion between coating and substrate was poor (seen in Figure 4a). With the increase
in cellulose concentration, the coating thickness increased and the adhesion between coating and
substrate was enhanced (seen in Figure 3b,c,d). The possibility of adhesive wear was reduced with the
increase in the bonding force between the coating and the substrate. To further investigate the coating
component, EDS was carried out. The carbon contents at different sites are presented in Figure 5 and
Table 1. As displayed in Table 1, the carbon element spread all over the coating, which proved that
part of the cellulose filled in the microcracks and micropores, while part of it cross-linked with the Al3+

in the coating. In addition, the cellulose content in the micropores and microcracks was higher than it
was at the other sites, indicating that they were filled in by a relatively small portion of the cellulose.
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Figure 5. Micrograph illustrating the zone of energy-dispersive spectrometer (EDS) analysis.

Table 1. C, O, Al element contents at different positions.

Point C K (at. %) O K (at. %) Al K (at. %)

1 4.21 45.31 42.48
2 3.16 48.43 45.41
3 3.83 46.54 43.63
4 2.43 49.84 46.73

3.3. Phase Structure of the Coating

The crystalline phase compositions of the MAO coatings at the cellulose contents of 0, 0.25, 0.50,
0.75 and 1 g/L were analyzed by means of FTIR and XRD, respectively. The results are shown in
Figures 6 and 7, separately. Figure 6 illustrates the infrared absorption peaks of the MAO coatings
obtained under various cellulose contents. Notably, the peaks at 3406 cm−1 were assigned to O–H
stretching vibrations, while those at 1630 cm−1 corresponded to C–O stretching vibrations, and those
at 838 and 648 cm−1 were indexed to Al–O stretching vibrations. As indicated by Figure 7, the increase
in the cellulose content gave rise to the enhanced characteristic peak of the cellulose and the decreased
peak intensity of the alumina. Taken together, the analyzed results of the FTIR and XRD spectra proved
the presence of cellulose in the MAO coating.
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3.4. Tribological Performances of the MAO Coatings

Figure 8 exhibits the influences of the cellulose content on the friction coefficient. Clearly,
the friction coefficient was significantly reduced after the aluminum alloys were treated by the MAO
technology, and it slowly decreased with the further increase in the cellulose content. In addition,
the friction coefficients of most samples were maintained at fixed values when cellulose was used as
the additive; however, that of the cellulose-free MAO coating was suddenly increased after 20 min.
These findings revealed that the MAO surface treatment technology reduced the friction coefficient of
the aluminum alloy, and the addition of cellulose into the electrolyte was beneficial to further decrease
and maintain the friction coefficient for a long time. To examine the tribological properties of the MAO
coatings obtained at different cellulose contents, the micro-hardness of the MAO coatings were tested
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by the micro-hardness tester, while the wear loss (the amount of material lost during the mechanical
tests) and wear rate were determined through wear tests. Results are presented in Table 2.

Materials 2019, 12, x FOR PEER REVIEW 9 of 13 

 

coatings were tested by the micro-hardness tester, while the wear loss (the amount of material lost 
during the mechanical tests) and wear rate were determined through wear tests. Results are presented 
in Table 2. 

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8
fri

ct
io

n 
co

ef
fic

ie
nt

time (min)

 substrate
 cellulose concentration 0 g/L
 cellulose concentration 0.25 g/L
 cellulose concentration 0.50 g/L
 cellulose concentration 0.75 g/L

 

Figure 8. Friction coefficients of the MAO coatings obtained at different cellulose contents. 

Table 2. Hardness and tribological performances of the MAO coatings obtained at different cellulose 
contents. 

Cellulose 
Concentration 

g/L 

Micro-Hardness 
HV0.1 

Weight Loss 
mg 

Wear Track 
Depth 

µm 

Wear Track 
Width 

µm 

Wear Rate  
10−5 mm3/N·m 

0 1260 16 6.42 679.61 2.30 
0.25 1230 14 4.59 537.49 1.13 
0.50 1240 12 4.31 522.32 1.03 
0.75 1230 11 3.54 486.26 0.84 
1.00 1220 10 3.13 482.01 0.82 

According to Table 2, the micro-hardness of the coatings remained at about 1230 HV0.1, while 
the wear loss and wear rate decreased when the cellulose content was elevated from 0% to 1.0%. 
These results suggest that the addition of cellulose was beneficial for improving the tribological 
performances of the MAO coatings. 

3.5. Stability of the Electrolyte 

Apart from the favorable anti-wear performance, the electrolyte stability, especially when 
polymer is used as the additive, is also a crustal parameter in practical industrial production. To 
investigate the electrolyte stability during long-term storage, the performances of the MAO coatings 
(such as thickness, roughness, hardness, friction coefficient, wear loss and wear rate) obtained at 
different electrolyte storage periods were compared, as shown in Figure 9 and Table 3. There was no 
obvious difference between them, demonstrating that the electrolyte might be employed to improve 
the tribological performance of the MAO coating within 30 days. 

Figure 8. Friction coefficients of the MAO coatings obtained at different cellulose contents.

Table 2. Hardness and tribological performances of the MAO coatings obtained at different
cellulose contents.

Cellulose
Concentration

g/L

Micro-Hardness
HV0.1

Weight Loss
mg

Wear Track
Depth µm

Wear Track
Width µm

Wear Rate 10−5

mm3/N·m

0 1260 16 6.42 679.61 2.30
0.25 1230 14 4.59 537.49 1.13
0.50 1240 12 4.31 522.32 1.03
0.75 1230 11 3.54 486.26 0.84
1.00 1220 10 3.13 482.01 0.82

According to Table 2, the micro-hardness of the coatings remained at about 1230 HV0.1, while the
wear loss and wear rate decreased when the cellulose content was elevated from 0% to 1.0%.
These results suggest that the addition of cellulose was beneficial for improving the tribological
performances of the MAO coatings.

3.5. Stability of the Electrolyte

Apart from the favorable anti-wear performance, the electrolyte stability, especially when polymer
is used as the additive, is also a crustal parameter in practical industrial production. To investigate the
electrolyte stability during long-term storage, the performances of the MAO coatings (such as thickness,
roughness, hardness, friction coefficient, wear loss and wear rate) obtained at different electrolyte
storage periods were compared, as shown in Figure 9 and Table 3. There was no obvious difference
between them, demonstrating that the electrolyte might be employed to improve the tribological
performance of the MAO coating within 30 days.
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Table 3. Coating performances under different storage periods.

Stability of the
Electrolyte

Day

Micro-Hardness
HV0.1

Weight Loss
mg Thickness µm Roughness µm Wear Rate 10−5

mm3/N·m

0 1230 11 32.1 0.66 0.84
1 1230 15 32.2 0.72 0.79
7 1220 10 31.9 0.68 0.91
14 1230 11 32.1 0.69 0.89
30 1220 11 31.9 0.67 0.92

4. Conclusions

1. The tribological performances of MAO coatings are improved by mixing 0.75 g/L of cellulose into
the electrolyte. The thickness of the coating increases while the roughness decreases with the
increase in cellulose content.

2. The coating compositions are thereby analyzed by FTIR and XRD, which prove the presence
of cellulose in the coating. Moreover, the coating microstructure is observed through SEM,
which reveals that the coating has a compact structure; meanwhile, the coating compositions at
micropores, microcracks and normal positions are examined through EDS, suggesting that part
of the cellulose fills in the microcracks and micropores, and part of it cross-links with the Al3+.

3. The tribological performances of the coatings at different cellulose concentrations are evaluated
using a ball-on-disk tester under dry sliding conditions. After different storage periods, they are
compared at the same electrolyte, revealing that MAO coatings with consistent quality can be
produced in this electrolyte.
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preparation, W.S.; writing—review and editing, D.J.

Funding: This research received no external funding.
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