
Published online 31 March 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 1
doi: 10.1093/nargab/lqaa022

HIPPIE2: a method for fine-scale identification of
physically interacting chromatin regions
Pavel P. Kuksa1,†, Alexandre Amlie-Wolf 2,†, Yih-Chii Hwang3,†, Otto Valladares1, Brian
D. Gregory 2,4 and Li-San Wang1,2,*

1Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of
Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA, 2Genomics and Computational Biology
Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA,
3DNAnexus, Inc., Mountain View, CA 94040, USA and 4Department of Biology, University of Pennsylvania,
Philadelphia, PA 19104, USA

Received June 19, 2019; Revised January 15, 2020; Editorial Decision March 10, 2020; Accepted March 16, 2020

ABSTRACT

Most regulatory chromatin interactions are mediated
by various transcription factors (TFs) and involve
physically interacting elements such as enhancers,
insulators or promoters. To map these elements and
interactions at a fine scale, we developed HIPPIE2
that analyzes raw reads from high-throughput chro-
mosome conformation (Hi-C) experiments to identify
precise loci of DNA physically interacting regions
(PIRs). Unlike standard genome binning approaches
(e.g. 10-kb to 1-Mb bins), HIPPIE2 dynamically in-
fers the physical locations of PIRs using the distri-
bution of restriction sites to increase analysis pre-
cision and resolution. We applied HIPPIE2 to in situ
Hi-C datasets across six human cell lines (GM12878,
IMR90, K562, HMEC, HUVEC, NHEK) with matched
ENCODE/Roadmap functional genomic data. HIP-
PIE2 detected 1042 738 distinct PIRs, with high res-
olution (average PIR length of 1006 bp) and high re-
producibility (92.3% in GM12878). PIRs are enriched
for epigenetic marks (H3K27ac, H3K4me1) and open
chromatin, suggesting active regulatory roles. HIP-
PIE2 identified 2.8 million significant PIR–PIR inter-
actions, 27.2% of which were enriched for TF binding
sites. 50 608 interactions were enhancer–promoter
interactions and were enriched for 33 TFs, including
known DNA looping/long-range mediators. These
findings demonstrate that the novel dynamic ap-
proach of HIPPIE2 (https://bitbucket.com/wanglab-
upenn/HIPPIE2) enables the characterization of chro-
matin and regulatory interactions with high resolu-
tion and reproducibility.

INTRODUCTION

Enhancers are non-coding DNA elements that regu-
late gene expression by recruiting transcription factors
(TFs) that in turn mediate physical interactions with the
promoters of their target genes to increase transcription
of those genes. The genome-wide relationship between en-
hancers and their target genes depends on the 3D DNA
looping associated with enhancer–promoter interactions.
To capture genome-wide chromatin interactions in high-
throughput chromosome conformation (Hi-C) (1), DNA
physically interacting regions (PIRs) and their binding pro-
teins are cross-linked, followed by restriction enzyme cleav-
age and proximity ligation of the interacting DNA frag-
ments to localize and capture pairs of interacting DNA
fragments. These ligated DNA fragments are then se-
quenced to identify the chromatin interaction map genome-
wide. Higher resolution in localizing interacting DNA frag-
ments has been achieved by using a restriction enzyme with
more frequent sites throughout the genome (e.g., MboI, a
4-cutter with a 4-bp motif, instead of a 6-cutter such as
HindIII or NcoI) and by performing the DNA–DNA prox-
imity ligation in intact nuclei to generate denser Hi-C con-
tact matrices (2).

Previous methods for analyzing Hi-C data (1–14) have
implemented a binning-based scheme for identifying inter-
acting genomic regions, where reads are aggregated into
equally sized bins by genome coordinates and interacting
regions are identified as pairs of bins with significant enrich-
ments of reads using statistical models accounting for biases
(e.g. negative correlation between linear genomic distance,
number of reads and mappability) of the individual bins.
While binning is effective at delineating large-scale chro-
matin structure, it does not capture specific DNA PIRs. The
methods of Jin et al. and Hwang et al. (9,15,16) have shown
that it is possible to study interactions at the level of restric-
tion fragments [i.e. the DNA region between two consecu-
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Figure 1. Description of HIPPIE2 pipeline and mapping statistics. (A) Detailed processing pipeline of HIPPIE2. (B) Overview of HIPPIE2 algorithm. (C)
Mapping statistics across cell lines.

tive restriction sites (RSs)] rather than bins using 6-cutter
restriction. Restriction fragment-based binning might be
problematic for more frequent cutters such as 4-cutter (e.g.
MboI) (2), since restriction fragment length is much smaller
on average and interacting DNA sites are more likely to
span more than one restriction fragment, thus highlighting
the need for an approach to accurately infer interacting sites
that span individual restriction fragments.

To address these limitations, we propose HIPPIE2 (Fig-
ure 1A and B), a novel computational method that uniquely
infers the locations of DNA PIRs by identifying regions
enclosed by restriction events observed on both sides of

DNA–protein Hi-C construct (Figure 2; ‘Materials and
Methods’ section; Supplementary Figure S6) using multiple
sources of information including read-pileup information,
patterns of observed restriction events, ligation constraints,
and read strand and orientation (Figure 2A; Supplementary
Figures S6–S8; Table 1).

The main novelty of HIPPIE2 algorithm is the develop-
ment of an approach for interaction detection that does not
use binned data or fragment-based mapping in contrast to
HIPPIE and most of the existing methods (Table 1; Figures
1 and 2; Supplementary Figures S6–S8) to increase analysis
resolution and precision.
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Figure 2. Hi-C model and identification of DNA PIR. (A) Interacting DNA regions are cut by the MboI restriction enzyme. (B) Cut fragments are
ligated together and size selected. (C) Paired-end sequencing is performed on the ligated fragments. (D) Read pileups around the cleavage sites inform the
identification of the PIR. (E) Genomic view of read pileups, RSs and PIR locations. Upstream (ubl) and downstream (dbl) boundary locations for PIRs
correspond to most consistently cut (as evidenced by the number of reads) restriction/ligation sites. (F) Distribution of restriction events around DNA
PIRs identified by HIPPIE2. Shown is the distribution of the restriction events for PIRs in GM12878 cell line.

Table 1. Comparison of HIPPIE2 with other Hi-C methodologies

Method Input Resolution Output Downstream analyses

HIPPIE2 Raw reads Dynamic, restriction
event-based (1 kb average)

High-resolution RS-based PIRs,
PIR–PIR interactions

Genic and cell type-specific
epigenetic annotation of
interactions, identification of
mediating TFs, identification of
enhancer–promoter interactions

HIPPIE (15) Raw reads Restriction fragment-based
(4 kb average)

Full restriction fragment-based
PIRs

Annotated interactions,
enhancer–promoter interactions

HiCCUPS (2,12) Raw reads Fixed bins Loops (bin–bin interactions) NA

This strategy allows HIPPIE2 to identify individual inter-
acting DNA elements with better specificity than binning.
HIPPIE2 uses cell type-matched functional genomic data
to characterize the interacting PIRs into functional cate-
gories, including enhancers and promoters. This enables the
high-resolution identification of cell type-specific enhancer–
promoter interactions, and we show a corresponding en-
richment in PIR–PIR interactions of TF binding sites (TF-
BSs) for TFs known to be involved in enhancer–promoter
interactions. HIPPIE2 is open source (https://bitbucket.
com/wanglab-upenn/HIPPIE2) and freely available as a full
pipeline to automate analysis from raw Hi-C reads to iden-
tification of PIRs, significant PIR–PIR interactions, func-
tional genomic annotations and TF analysis.

MATERIALS AND METHODS

Hi-C data acquisition and genome mapping

For our analysis, we used the Hi-C datasets for GM12878
(primary and secondary replicates), HMEC, HUVEC,
IMR90, K562 and NHEK cell lines from (2) (GEO
database accession number GSE63525). For each condi-
tion, we acquired FASTQ files from the SRA files available

on GEO corresponding to sequencing libraries within each
condition. Each library was mapped separately and then
combined for downstream analyses. HIPPIE2 first aligns
the paired-end reads to the human genome (GRCh37/hg19
assembly) using the STAR aligner (17) allowing only unique
mapping (full parameters available in HIPPIE2 open-
source repository, starMappingToBam.sh script). Each
of the single-end reads from a read pair was first mapped
separately and then re-associated with the corresponding
second read in a read pair. To improve mapping, both con-
tiguously mapped and chimeric reads are identified and
paired. Both halves of a chimeric read were required to map
uniquely and have a minimum mapped length of 22 nt. For
those paired-end reads with a chimeric read involved, we
required that the pairing partner of the chimeric read (a
single-end read) mapped in the proximity of one of the two
split halves spanned by the chimeric read.

Hi-C read normalization

To remove potential random ligation events, including un-
cut, self-ligated, or re-ligated read pairs, we filtered out the
read pairs that are <5000 bp apart from each other as

https://bitbucket.com/wanglab-upenn/HIPPIE2


4 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

suggested in (9,18). In addition, to correct for all possi-
ble Hi-C experimental biases including length of the cross-
linked DNA fragments, RS accessibility or ligation rate of
the restriction enzyme digested fragments, we normalized
the read counts using the matrix normalization method by
Knight and Ruiz (19) as used in (2). Additionally, to avoid
any biases on detecting the region that cannot be mapped
as a unique genomic locus, we also removed from the anal-
ysis RSs that have mappability <0.8. We found that 96% of
the RSs have mappability >0.8; i.e. most of RSs had high
mappability given a relatively long read length (101 nt).

Identification of PIRs

To identify DNA PIRs, we utilized the idea that each single-
end Hi-C read is always located in the proximity of an RS
that serves as both the restriction enzyme cleavage and lig-
ation site in the Hi-C protocol. The RSs correspond to sites
in the genomic DNA containing sequence that can be rec-
ognized by the restriction enzyme, e.g. ‘GATC’ for restric-
tion enzyme MboI. After HIPPIE2 maps reads, it first de-
termines corresponding RSs (cleavage/ligation sites), and
infers the relative position (upstream or downstream from
the RSs) for the DNA PIR.

The cleavage/ligation sites are identifiable from the map-
ping information of Hi-C paired-end reads because (i) a
proper DNA ligation forms a phosphodiester bond between
the 5′ phosphate of the donor DNA and the 3′ hydroxyl of
the acceptor DNA and (ii) the strand orientation pattern
reported by Illumina sequencer is restricting the combina-
tions of upstream or downstream cleavage/ligation site of
each read pairs. The workflow of identifying all PIRs and
PIR–PIR interactions along the genome includes three ma-
jor phases: (i) finding ligation junctions for read pairs; (ii)
identifying PIRs; and (iii) finding PIR–PIR interactions.
Each phase is described next.

Identifying ligation junctions for read pairs. Each mapped
read has two candidate (nearest upstream or downstream)
RSs to be assigned as the restriction enzyme cut-and-
ligation site. To determine the cut-and-ligation site, we first
determine which type of interaction has happened based
on the mapped strand orientation (Supplementary Fig-
ures S7 and S8). We enumerated all possible ligation types:
head/tail, tail/head, head/head or tail/tail ligations, where
head is the end with smaller genome coordinate and tail is
the end that is on a larger coordinate of the chromosome.

Because (i) the ligation of two DNA fragments is formed
by a phosphodiester bond between a 3′ hydroxyl and a 5′
phosphate and (ii) Illumina paired-end sequencing reads are
generated from opposite strands from the sequenced DNA
fragments, we can narrow down four possible ligation types
for each paired-end reads to two scenarios using its strand
orientation. For the read strand combinations of +/− or
−/+ (different strand), the two possible ligation types are
either head/tail or tail/head ligations (Supplementary Fig-
ure S7, left). Similarly, for the read strand combinations of
+/+ or −/− (same strand), the two possible ligation types
are either head/head or tail/tail ligations (Supplementary
Figure S7, right). Next, because of the size-selection step
in the Hi-C protocol, cut-and-ligation events are expected

to generate read pairs within 500 bp of the restriction en-
zyme (MboI) cutting sites due to the size selection; to re-
solve the two possible cases of head/tail or tail/head for
+/− and −/+, we calculated the two possible sums of the
two distances to the nearest cutter sites, and ruled out the
ligation event that made the sum >300 bp, which would be
result from ligation of non-specific cleavage product (8) in
the Hi-C experiment (Supplementary Figure S8). As shown
in Supplementary Table S2, the observed fractions of strand
orientation combinations for sequenced Hi-C read pairs are
close to uniform as expected from the stochastic nature of
the proximity ligation reaction.

Identifying PIRs. With the identified RSs that form
DNA–DNA ligation junctions, we further identify PIRs (al-
gorithm in Supplementary Figure S6B). First, we note the
sum of upstream and downstream read counts (single-end
reads from read pairs) for each RS identified in the previous
step. To group restriction events corresponding to the same
interaction (interacting region), we clustered RSs separately
for upstream and downstream read counts by thresholds of
the maximum gap (dcluster) and the minimum read (rthreshold).
The maximum gap is defined as the third quantile of the re-
striction fragment distance distribution, and the minimum
read requirement is defined as the median of the normal-
ized read distribution for each chromosome. Within each
corresponding cluster, we identify the RSs with the maxi-
mum read count (i.e. most consistently cut site) as the candi-
date flanking ends for PIRs. Finally, we matched the nearest
upstream and downstream candidate flanking ends with a
max-gap algorithm (in this study, the max gap is 4000 bp),
and report the PIRs as regions that are enclosed by the up-
stream and downstream RSs with the maximum read count
in the upstream and downstream restriction clusters.

Finding all PIR–PIR interactions. We find the interactions
between PIRs by tracing the Hi-C read pairs that partic-
ipated in the identification of PIRs (algorithm in Supple-
mentary Figure S6C). For each PIR identified in the pre-
vious step, IDs of single-end reads in the left and right RS
clusters are used to identify PIRs containing mate reads (i.e.
other single-end reads from read pairs) as interacting part-
ners. All such PIR–PIR interactions are then reported along
with the read counts.

Identifying significant PIR–PIR interactions genome-wide

To identify significant intrachromosomal PIR–PIR interac-
tions, we applied the Fit-Hi-C method (11) in R v3.2.3. For
each of the autosomal chromosomes (1–22) and chromo-
some X, we split all observed PIR–PIR interactions into
2000 distance groups according to the linear distance (in
nucleotides) between interacting PIRs. We filtered out the
PIR pairs that are <5000 nt apart. For each distance group,
we calculated the average distance and the average normal-
ized read counts of the interacting PIRs. With the 2000 ag-
gregated data points, we fit the normalized read counts by
the function of distance using smooth.spline function in R.
After the first spline fitting, we removed the outliers as de-
scribed in (11) and fit the second spline function. We then
reported PIR–PIR interactions that are significant after
Benjamini–Hochberg correction (adjusted P-value ≤0.05).
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Overlap with DNA loops from Rao et al.

We compared PIR–PIR interactions in our study with the
set of DNA loops identified in (2) using HiCCUPS. We
downloaded the set of loops and Hi-C loci (DNA regions
that are participating in significant DNA loops) and fil-
tered to include only those with the highest 10 kb resolution
from GEO database under accession number GSE63525.
We then overlapped these loop anchors and interactions
with HIPPIE2-identified PIRs and PIR–PIR interactions
using a custom script (available in the HIPPIE2 software
repository) using awk, bedtools v2.25.0 (20) and Python
v2.7.9.

Functional and genomic annotation data

We downloaded the cell type-specific ChIP-seq peak
data for histone modifications (H3K4me1, H3K4me2,
H3K4me3, H3K27ac and H3K36me3), DNase I hypersen-
sitive sites, and TFs or DNA-binding proteins (RNA poly-
merase II, p300 and CTCF) from the 2011 freeze of the
UCSC Genome Browser (21) for ENCODE datasets and di-
rectly from the web portal (https://egg2.wustl.edu/roadmap/
web portal/index.html) for Roadmap datasets including
combinatorial epigenomic states from ChromHMM (22)
that we used to identify enhancer states. Functional and ge-
nomic annotation data integrated into HIPPIE2 are sum-
marized in Supplementary Table S1.

Enrichment analysis of functional genomic overlaps

To estimate the extent of overlap between PIRs and regula-
tory and epigenetic marks genome-wide, we calculated the
sum of overlapped nucleotides between PIRs and each sig-
nal track (regulatory/epigenetic mark) genome-wide as the
observed value. We sampled (1000 times) random genomic
regions from the genome with length distribution matched
with the length of PIRs. We calculated the average of 1000
sums of overlaps between the sampled regions and each of
the signal tracks. We then reported the percentage differ-
ences between the observed value and the averaged value
from the background as the enrichment of the PIRs for each
of the signal tracks. All region intersections were performed
with bedtools v2.25.0 (20).

Regulatory and genetic annotation of the interacting PIRs

HIPPIE2 annotates PIRs as enhancers, promoters, exons,
introns or intergenic elements. To do this, we used the
cell type-matched enhancer annotations described above
and gene models downloaded from RefSeq (23). We anno-
tate as enhancers the promoter-interacting PIRs that over-
lapped the enhancer or weak enhancer annotation from
the genome segmentation track [ChromHMM (22)]. We
also annotated all promoter-interacting PIRs as an en-
hancer if they overlapped an open chromatin region with
H3K4me1 or H3K27ac ChIP-seq peak, while not overlap-
ping H3K4me3 and H3K27me3 peaks. The rest of the PIRs
were annotated as promoters, exons, introns and intergenic
elements using RefSeq gene models (GRCh37/hg19 assem-
bly). The promoters were defined as 500-bp-long regions
upstream of the RefSeq TSS of protein-coding genes. We

then annotated PIRs as promoter, exonic, intronic or in-
tergenic elements (in this prioritized order) based on their
overlap with RefSeq gene models. To calculate the back-
ground expectations of interactions between annotations a
and b, we used the product of the proportion of individual
PIRs in annotation a and the proportion in annotation b.

Transcription factor binding analysis of PIR–PIR interac-
tions

To identify PIRs with evidence of TF binding, we used Fac-
torbook data (24) that integrate ENCODE ChIP-seq ex-
perimental data with computational prediction of TFBSs
to comprehensively survey protein–DNA binding genome-
wide. The Factorbook data were obtained from UCSC hg19
database (factorbookMotifPos table, release 4). The Factor-
book data contain 161 factors and the motifs were discov-
ered from 91 cell types. We focused on 133 known DNA-
binding TFs. We filtered out the TFs with <10 binding sites
within PIRs genome-wide. For each PIR, we reported all
TFs that have at least one binding site within that PIR.
We reported enrichment for each of the surveyed binding
motifs in PIR–PIR interactions. To do this, we categorized
PIR–PIR interactions according to the classes of interact-
ing PIR elements (enhancers, promoters, exons, introns or
intergenic elements). We estimated binding motif enrich-
ment as observed/expected frequency odds ratio. We com-
puted the expected probability as the probability of the first
PIR class (Ci) having a motif Mk times the probability of the
second PIR class (Cj) having another motif (Ml) as follows:

Prob (Mk, Ml observed in Ci , Ci ) = P (Mk|Ci ) × P
(
Ml |Cj

)

= P(Mk,Ci )
P(Ci ) × P(Ml ,Cj )

P(Cj )
= #(Ci containing Mk)

#Ci

× #(Cj containing Ml )
#Cj

.

We performed a binomial distribution test to report the
significance of observed binding motifs in each type of
PIR–PIR interaction. To compare against the BioGRID
database (25,26), we downloaded the list of TF–TF interac-
tions across cell lines and searched for TF matches by name
and by alias.

RESULTS

HIPPIE2 identifies fine-scale DNA PIRs

The HIPPIE2 method presented in this paper further de-
velops our HIPPIE method (15): HIPPIE2 applies a newer
read mapping protocol to resolve chimeric reads, uses an in-
teraction calling algorithm and introduces novel algorithms
to dynamically identify fine-scale interacting regions (Fig-
ures 1 and 2; Supplementary Figures S6–S8) instead of bin-
ning reads into full restriction fragments used in HIPPIE
(15). To illustrate our method, we used HIPPIE2 to analyze
high read depth Hi-C sequencing datasets (2) using the 4-
bp cutter MboI across six human cell lines that had match-
ing functional genomic data from ENCODE or Roadmap
(5,27), including K562, HMEC, HUVEC, IMR90, NHEK
and GM12878, with two replicates for GM12878 (Figure

https://egg2.wustl.edu/roadmap/web_portal/index.html
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1A and B). For each cell line, we mapped the raw Hi-C read
pairs using STAR (17) (see ‘Materials and Methods’ sec-
tion), uniquely mapping between 73.6% and 85.4% of Hi-
C reads across the 51 separate libraries for these cell lines
(Figure 1C; Supplementary Figure S1). Following (2), we
normalized the read counts using matrix normalization by
Knight and Ruiz (19) (see ‘Materials and Methods’ sec-
tion). Using normalized counts, HIPPIE2 identifies PIRs
as the DNA regions flanked on both sides by RSs that
were observed to be consistently cleaved/ligated in a given
Hi-C sequencing library (Figure 2D–F), using information
from the Hi-C sequencing read-out including the read map-
ping coordinates, distances from reads to their nearest RSs,
DNA ligation constraints and strand orientations (+/−) of
the mapped read pairs, and relative locations of DNA in-
teraction sites with respect to mapped reads (see ‘Materi-
als and Methods’ section; Figure 2). This dynamic PIR-
based approach enables finer scale identification of specific
interacting DNA regions compared to the genomic binning-
based approaches (Table 1).

In total, HIPPIE2 called between 1584 000 and 1886 000
PIRs from chromosomes 1–22 and X across cell lines (Fig-
ure 3A). These PIRs had an average length of 1006 bp con-
sistent across cell lines (Supplementary Figure S2A), which
corresponds to 2.4 average restriction fragment length.
Across libraries, these identified PIRs covered 53.2–59.3%
of the genome (Supplementary Figure S2B). HIPPIE2 an-
notated these PIRs with gene annotations (28) including
promoters, exons and introns, which found that a major-
ity of PIRs in all cell types were intergenic and the next
largest class of overlaps were in mRNA introns, support-
ing the regulatory roles of these PIRs (Figure 3B). Com-
paring overlaps between HIPPIE2-called PIRs and DNase-
seq-based regions of open chromatin in each of cell types
from Roadmap/ENCODE, we found that 73.84–79.04% of
open chromatin regions overlapped with at least one PIR
across cell types, with an average of 69.97% of the open
chromatin regions covered by PIRs (Figure 3C). PIR iden-
tification by HIPPIE2 is highly robust, with 92.3% PIRs
(1649 417) found in both of the GM12878 replicates.

HIPPIE2 detects fine-scale chromatin interactions

To identify which PIR–PIR pairs are significantly interact-
ing, HIPPIE2 applies the Fit-Hi-C algorithm (11) using the
normalized read counts and linear genomic distance be-
tween pairs of potentially interacting PIRs (see ‘Materials
and Methods’ section). Across cell lines, HIPPIE2 identi-
fied between 42 500 and 1194 010 intrachromosomal signif-
icant PIR–PIR interactions (>5 kb apart, adjusted P-value
≤0.05, Figure 4A). To investigate robustness of interaction
calling, we compared the two GM12878 replicates. Consis-
tent with the lower sequencing depth of the replicate library
(2.5 billion versus 3 billion reads), we identified fewer signif-
icant interactions and PIRs involved in significant interac-
tions in the replicate library (Figure 4A), but found a signifi-
cant overlap between PIRs and PIR–PIR interactions (Fig-
ure 4B and C), with majority (66.2%; 274 445/414 343; Jac-
card index = 0.3696) of PIRs and 31.1% (196 343/631 610;
Jaccard index = 0.1205) of PIR–PIR interactions in the
replicate found in the primary library. This level of replica-

tion is consistent with prior studies of Hi-C replication (14),
which found similar levels of replicated interactions across
Hi-C datasets [e.g., Jaccard index <0.1 on GM12878 Rao
data for all tested methods in (14)].

To interrogate the relationship between sequencing depth
and interaction replication, we binned the interactions from
the GM12878 primary library into deciles by read coverage
(analogous to downsampling) and compared their replica-
tion rates. We found a striking positive correlation between
read coverage and replication rate (R2 = 0.9398, Figure 4D),
suggesting that reproducibility between replicates may be
increased with a higher sequencing depth.

Comparison with uniform binning-based approach

HIPPIE2 provides a more accurate approach for identify-
ing fine-scale interacting sites by design: previous methods
that use a binning-based approach maximize their statisti-
cal power to detect interactions, with a trade-off of accu-
racy for identifying the interacting site (Table 1). Due to
the fundamentally different natures of the binning-based al-
gorithms compared to HIPPIE2 and the lack of a ‘ground
truth’ dataset of expected Hi-C interactions, it is challeng-
ing to directly compare the HIPPIE2 interactions with these
previous methods. However, to explore the differences be-
tween the binning approaches and HIPPIE2 PIR-based ap-
proach, we compare the HIPPIE2 results with the results
from (2) obtained using the HiCCUPS method [we note that
a detailed comparison among Hi-C methods has been re-
ported in the recent study by Forcato et al. (14)].

We compared our HIPPIE2-identified PIRs with the
HiCCUPS-identified loop anchors and interactions (bin
size = 10 000) (2). Across cell lines, the set of PIRs identi-
fied by HIPPIE2 is consistent with and is complementary to
the previously identified set of interacting genomic regions:
we found that HIPPIE2 PIRs covered an average of 60.2%
of HiCCUPS-identified loop anchors across cell lines, with
the highest proportion (91.4%) in the primary, most deeply
sequenced GM12878 library (see ‘Materials and Methods’
section; Figure 4E). The HMEC, HUVEC and NHEK cell
lines were the only ones with a proportion <50%, corre-
sponding to their shallower sequencing depth (Pearson R2

= 0.862 between sequencing depth and replication propor-
tion).

Next considering HIPPIE2 PIR–PIR interactions and
HiCCUPS loops, we found that 37.4% of HiCCUPS loops
in GM12878 primary library, with an average of 16.6% of
HiCCUPS loops across cell lines, were supported by signif-
icant HIPPIE2 PIR–PIR interactions across cell lines (Fig-
ure 4E). When we matched the bin size (10 000) used in
HiCCUPS analysis by expanding HIPPIE2 PIR–PIR inter-
actions so that each PIR covered at least 10 kb, we found
that the majority (55.8%) of HiCCUPS loops replicated in
the primary GM12878 library (highest sequencing depth)
and the average proportion of replicated HiCCUPS loops
across cell lines increased to 28.88% from 16.6%, with an
average of 68% of HiCCUPS loop anchors replicated (Sup-
plementary Figure S3C). Interestingly, each PIR overlap-
ping a HiCCUPS-identified loop anchor was involved in
an average of between 5.62 and 21.52 significant PIR–PIR
interactions across cell lines compared to a single interac-
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Figure 3. PIR characteristics. (A) Total PIRs identified across cell lines. (B) Localization patterns of PIRs in various genomic annotations. (C) Over-
lap patterns of PIRs with cell type-matched open chromatin annotations. For each cell type, cell-specific open chromatin regions were overlapped with
HIPPIE2-called PIRs. Shown are (i) proportion of open chromatin regions overlapping with PIRs in each cell type (purple bars) and (ii) fraction of
individual open chromatin regions covered by PIRs (distribution in yellow).

tion (loop) reported by HiCCUPS, corresponding to an av-
erage fold enrichment of 10.07 more interactions identified
by HIPPIE2 than by the HiCCUPS binning/loop detection
approach. Overall, HIPPIE2 identified about two orders of
magnitude more interactions than the bin-based approach
across all cell lines (2794 123 versus 27 827). This illustrates
that HIPPIE2 identifies more, finer scale regulatory inter-
actions than the bin-based approach to maximize power to
detect large-scale genomic architecture rather than a mul-
tiplicity of fine-scale regulatory interactions. For example,
in the 1-Mb locus on chr14 investigated in Rao et al. (2)
(chr14:94 000 000–95 000 000), there were 1082 HIPPIE2
significant PIR–PIR interactions within four bin–bin inter-
actions that were called in the original study (Supplemen-
tary Figure S4). We have also compared HIPPIE2 with the
recent Binless method proposed by Spill et al. (29) (Sup-
plementary Figure S9) with 86/102 (84%) HIPPIE2-called

PIRs overlapping with Binless loci. As can be seen from
the figure, while HIPPIE2 does not recover all the interact-
ing sites or indeed the smaller interactions from the Binless
method, HIPPIE2 recovers a lot more longer range inter-
actions especially closer to the HCF gene, suggesting that
HIPPIE2 and Binless are complementary methods where
Binless may recover shorter range interactions while HIP-
PIE2 may more reliably identify more long-range interac-
tions (indeed by design with the 5-kb threshold; see ‘Mate-
rials and Methods’ section).

When comparing power to recall validated interactions
from 5C data (Supplementary Tables S6 and S7), using the
benchmark results from (14) on the same GM12978 Rao et
al. data [as reported in figure 2 in (14)], HIPPIE2 recovers
more interactions (99 5C-based loops) than most of other
benchmarked methods (14) including HiCCUPS, which re-
cover an average of 11.33 5C-based loops (14).
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Figure 4. Characteristics of significant PIR–PIR interaction identification and replication. (A) Counts of PIRs involved in significant interactions (left)
and number of significant PIR–PIR interactions (right) across cell lines. (B) Number of PIRs involved in significant interactions replicated between the
primary and secondary GM12878 libraries. (C) Number of PIR–PIR interactions replicated between the primary and secondary GM12878 libraries. (D)
Plot of replication rate against PIR read coverage quantiles. Correlation is the Pearson correlation. (E) Replication of Rao data by HIPPIE2. Interacting
bins refer to 10-kb Rao bins involved in significant interactions and bin–bin interactions are significant interactions. Across cell lines, an average of 60.2%
of HiCCUPS loop anchors and 16.6% of loops are reproduced by HIPPIE2, while for most deeply sequenced GM12878 library 91.4% of loop anchors
and 37.4% of loops were reproduced by HIPPIE2 (see also main text for other comparisons).
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Table 2. Enrichment of all GM12878 PIRs in transcriptional and architectural protein binding sites relative to randomly sampled background genomic
regions

ChIP-seq dataset
Number of base pairs
overlapped by PIRs

Number of ChIP-seq
peaks overlapped by
PIRs

% increase in number of
base pairs overlapped by
PIRs

% increase in number
of ChIP-seq peaks
overlapped by PIRs Empirical P-value

CTCF 10 214 990 41 134 20.69 18.51 <0.001
P300 4662 562 16 509 23.99 19.12 <0.001
PolII 2758 845 9678 23.07 18.21 <0.001

HIPPIE2 PIR–PIR interactions are enriched in regulatory
genomic features

To evaluate how PIRs co-locate with binding of factors
known to be involved in genome architecture and tran-
scriptional mechanisms, we overlapped HIPPIE2-identified
PIRs from the primary GM12878 library, the most deeply
sequenced library, with ENCODE ChIP-seq binding sites
for CTCF, PolII and P300 (Table 2) from the same cell type
(27). We found that HIPPIE2 PIRs overlapped 92% (41 134
out of 44 597) CTCF sites, consistent with studies that sug-
gest CTCF has a role in mediating chromatin interactions
(30). Similarly, for PolII and P300, associated with tran-
scriptional and enhancer activity (31), we found high over-
laps at 96.5% (9678 out of 10 026) and 96.3% (16 509 out
of 17 150 sites), respectively. We randomly sampled 1000
sets of background genomic regions matched to the distri-
bution of PIR lengths and calculated percent enrichment
of the GM12878 PIRs relative to these background sites
(see ‘Materials and Methods’ section; Table 2). We found
that the GM12878 PIRs had increases of 20–23% base pairs
of overlap over background and overlapped 18–19% more
ChIP-seq sites, suggesting that the GM12878 PIRs are in-
volved in genomic architecture and regulatory function.

To characterize the function of PIRs involved in sig-
nificant interactions, HIPPIE2 automatically annotates
PIRs with DNase-based open chromatin regions, en-
hancers defined by combinatorial epigenomic status using
ChromHMM (22), the enhancer-associated histone modi-
fications H3K4me1 and H3K27ac (32,33), the inactive or
poised enhancer histone modification H3K27me3 (34) and
the promoter-associated histone modification H3K4me3
(35), all in the matching cell types from ENCODE or
Roadmap (5,27) (Figure 5A and B; Supplementary Tables
S4 and S5). Between 18.35% and 42.26% of PIRs involved
in significant PIR–PIR interactions overlapped open chro-
matin sites across cell lines, with the lowest proportions in
the shallowest sequencing libraries, while the other anno-
tations encompassed between 7.4% (H3K4me3) and 17.2%
(Roadmap ChromHMM enhancers) of PIRs on average
across cell lines. By comparing against samples of length-
matched background intervals (see ‘Materials and Meth-
ods’ section), we found that the PIRs involved in significant
interactions were enriched for overlaps with all of the active
epigenomic marks in every cell line except for NHEK, where
PIRs were depleted of overlaps with all annotations except
H3K4me3 (Figure 5B). The repressive mark H3K27me3
had the smallest average enrichment (40.75%) across cell
lines, suggesting that significant PIR interactions are asso-
ciated with active regulatory elements (2,16), which showed
much stronger enrichments.

We have also assessed degree of overlap between
HIPPIE2-called PIRs and open chromatin regions in cell
type-specific manner using Jaccard indexes and odds ratios
(Supplementary Table S4). Across cell lines, we observe an
average enrichment odds ratio of 2.1 indicating high degree
of overlap between PIRs and open chromatin regions.

Similarly, we have also assessed an overlap between PIRs
involved in significant interactions (interactor PIRs) and
cell type-specific functional genomic annotations (Supple-
mentary Table S5). Across cell lines, we observed significant
overlaps with all functional genomic features compared,
with the strongest enrichments in enhancer- and promoter-
associated histone modifications including H3K27ac and
H3K4me1/3 (Supplementary Table S5).

HIPPIE2 PIR–PIR interactions are enriched for enhancer–
promoter mechanisms

HIPPIE2 identifies specific enhancer–promoter interac-
tions by classifying PIRs as enhancers if they overlap (i) an
open chromatin region and a shared H3K4me1/H3K27ac
peak and/or (ii) a ChromHMM (22) epigenomic en-
hancer (see ‘Materials and Methods’ section). For en-
hancer elements, HIPPIE2 further requires that the pu-
tative enhancer PIR display at least one significant in-
teraction with a promoter-overlapping PIR and does
not overlap any H3K4me3 (active promoter mark) or
H3K27me3 (repressive mark) peaks in the matching tis-
sue. We found that the percentage of regulatory interactions
(enhancer–promoter, enhancer–enhancer or promoter–
promoter pairs) accounted for an average of 2.36% (rang-
ing from 0.36% to 3.78%) of significant interactions across
cell lines, a significant enrichment compared to the back-
ground expectation of an average of 0.076% (ranging from
0.0049% to 0.2%) of interactions. For enhancer–promoter
interactions specifically, we detected an average of 51.95×
enrichment over the background expectation (ranging from
26.79× to 86.47×), and these were the most enriched in-
teractions in all cell types, suggesting that the interactions
identified by HIPPIE2 are indeed reflective of transcrip-
tional regulatory processes (see ‘Materials and Methods’
section; Figure 5C).

HIPPIE2 recovers a repertoire of known regulatory TFs me-
diating chromatin interactions

In order to elucidate the mechanisms underlying the ob-
served enhancer–promoter interactions, HIPPIE2 anno-
tates interacting PIRs with TFBSs from the Factorbook
database that contains TFBSs for 133 DNA-binding pro-
teins identified by ChIP-seq experiments (24). Combined
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Figure 5. Regulatory annotation of PIR–PIR interactions. (A) Proportion of PIRs involved in significant interactions (interactor PIRs) overlapping cell
type-matched functional annotations. (B) Enrichment of interactor PIRs relative to background expectation calculated by sampling. (C) Ratio of number
of observed annotation–annotation PIR–PIR interactions relative to background expectations.

with our HIPPIE2-identified fine-scale PIR annotations,
this approach enables HIPPIE2 to identify the TFs medi-
ating enhancer–promoter interactions with high resolution.
We found that an average of 14.11% of PIRs involved in
all significant interactions had overlaps with known TFBS
across cell lines, while an average of 39.2% of HIPPIE2-
identified enhancer–promoter interactions across cell lines
had an evidence of known TF binding (Supplementary Fig-
ure S5A).

To determine whether enhancer–promoter inter-
actions were enriched in TFBSs, we quantified the
observed/expected ratio for binding motif enrichment and

used a binomial model to identify significant enrichments
of TFs involved in enhancer–promoter interactions (see
‘Materials and Methods’ section). We found significant
enrichments for 31 TFs in enhancers and 29 in promoters
for a total of 33 unique TFs across all cell lines except
for HUVEC and NHEK (Supplementary Figure S5B;
Supplementary Table S3). To test whether these puta-
tive HIPPIE2-identifed TF–TF interactions correspond
to known protein–protein interactions, we compared
HIPPIE2 TF–TF interactions to the BioGRID database
(25,26). To do this, for each cell line, we identified all
the TFs involved in significant enhancer–promoter in-
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teractions, quantified all their interactions in BioGRID
and determined the proportion of BioGRID interactions
involving these TFs that were recapitulated by HIPPIE2.
We found that HIPPIE2-identified TF–TF interactions
in GM12878 recapitulated most (78%) of known physical
TF–TF interactions reported in BioGRID, with an average
of 57.5% of known physical interactions between TFs
in BioGRID (31–78%) recovered across cell lines. These
proportions were strongly correlated with the sequencing
depth of each cell line (Pearson R2 = 0.88), suggesting
that increased read depth may recover more BioGRID
interactions.

We then stratified these TFs by how many different cell
lines they were enriched in to identify regulatory mech-
anisms common across cellular contexts (Supplementary
Figure S5C). This identified several TFs enriched in sev-
eral cell lines that were consistent with known enhancer and
chromatin architecture biology, including SP1, AP1, MYC,
CEBPB, YY1 and CTCF. SP1 has been shown to func-
tion as a link of both sides of DNA, and is able to form
a tetrameric structure and assemble multiple tetramers that
facilitate a DNA looping structure (36). AP1 is a TF in-
volved in cellular proliferation, transformation and apop-
tosis that forms heterodimers with the Jun oncogene (37).
MYC is an oncogene involved in several different cancer
types and exerts widespread transcriptional regulatory ef-
fects (38). CEBPB is another major enhancer-binding pro-
tein family that can aid the transition of enhancer elements
from closed chromatin to a primed or poised state and
is involved in immune and inflammatory responses (39).
CTCF is a major architectural protein with a role in defining
megabase-scale topologically associated domains as well
as regulating smaller scale enhancer–promoter interactions
such as those observed here (30,40). YY1 is another ma-
jor architectural protein that cooperates with CTCF to me-
diate looping interactions involved in developmental pro-
cesses and enhancer–promoter interactions (41,42).

DISCUSSION

In this paper, we introduce a novel method for Hi-C data
analysis, HIPPIE2, which dynamically discovers fine-scale
PIRs of the genome with increased resolution compared
to previous methods, detects fine-scale chromatin interac-
tions and provides functional and mechanistic characteri-
zation of these interactions. HIPPIE2 uses the pattern of
restriction events as evidenced by sequencing read pileups
relative to RSs to fine-map interacting DNA regions. Our
results suggest that HIPPIE2 detects more specific, finer
scale interactions at the gene regulatory level of chromatin
architecture (average PIR length of 1006 bp), offering a
complementary approach to the binning-based procedures
(2,11,12,14,43,44).

Our method also complements restriction fragment-
based methods (9,15) for mapping Hi-C data as an alter-
native approach for analyzing data from more frequent cut-
ters with much smaller fragment length and interaction re-
gions spanning more than one fragment. While fragment-
based mapping methods were successfully used with data
from low-frequency cutters (relatively large fragment size)
where interactions were likely to be contained within the

fragments themselves, HIPPIE2 addresses the main diffi-
culty of using the data from more frequent cutters with
much smaller restriction fragment sizes when interactions
are likely to span more than one restriction fragment neces-
sitating accurate inference of interacting sites/boundaries
such as those provided by the HIPPIE2 algorithm.

HIPPIE2 algorithm, differently from restriction
fragment-based or fixed-size genomic bin-based meth-
ods, introduces a dynamic algorithm for identifying precise
location of interacting sites using multiple sources of
information, including read-pileup information, patterns
of observed restriction events, ligation constraints, and
read strand and orientation.

While an original (2) normalization procedure (Knight–
Ruiz method) was used for all Hi-C datasets in this study,
the HIPPIE2 approach is designed to work independent of
the normalization procedure (i.e. downstream of the data
normalization steps), and as such our method can be eas-
ily paired with an appropriate normalization method that
captures specific biases and characteristics of a particular
experimental protocol or with an improved normalization
procedure for high-resolution, non-binned data, which is
an ongoing effort (29,45). Additionally, HIPPIE2 can be
paired with other methods for calling significant interac-
tions such as (46).

With our approach designed to work at the inherent res-
olution of the data (as determined by restriction enzyme
cutting frequency and restriction efficiency), our method
will prove useful in the analysis of chromosome conforma-
tion capture experiments with further increased sequencing
depth or improved restriction protocols. Another natural
application in which our approach will prove useful is the
analysis of the data generated by the assays targeting par-
ticular types of interactions, such as Capture-C and Capture
Hi-C (43,47) that capture promoter-centric interactions.

Furthermore, the fine-scale resolution of our method for
detecting interacting regions enables analysis, identification
and interpretation of specific proteins/TF complexes medi-
ating these interactions. This TF analysis can be improved
by de novo motif discovery in PIR sequences, incorpora-
tion of protein–protein interaction networks to identify
protein/TF complexes and protein domain compatibility
information. Using the identified interacting sequences and
mediating TFs can help build predictive models for regu-
latory interactions such as (48,49). Another direction in
which our fine-mapping HIPPIE2 method will prove useful
is in comparison and analysis of changes in fine-scale reg-
ulatory networks during development or between different
conditions. HIPPIE2 is freely available as an open-source
pipeline (https://bitbucket.org/wanglab-upenn/HIPPIE2).
HIPPIE2-generated interaction data are also available
in UCSC Genome Browser hub (https://genome.ucsc.
edu/s/alexamlie/HIPPIE2%20vs%20Rao%20all%20cell%
20lines%20darker%20interaction%20lines).

DATA AVAILABILITY

HIPPIE2 software is freely available at https:
//bitbucket.org/wanglab-upenn/HIPPIE2. All of the
functional genomic data and annotations used by
HIPPIE2 are available at https://tf.lisanwanglab.org/

https://bitbucket.org/wanglab-upenn/HIPPIE2
https://genome.ucsc.edu/s/alexamlie/HIPPIE2%20vs%20Rao%20all%20cell%20lines%20darker%20interaction%20lines
https://bitbucket.org/wanglab-upenn/HIPPIE2
https://tf.lisanwanglab.org/GADB/full_HIPPIE2_annotations.tar.gz
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GADB/full HIPPIE2 annotations.tar.gz. The corre-
sponding interaction data tracks are available on the
UCSC Genome Browser: https://genome.ucsc.edu/
s/alexamlie/HIPPIE2%20vs%20Rao%20all%20cell%
20lines%20darker%20interaction%20lines.
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