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A B S T R A C T   

The COVID-19 pandemic has infected nearly 178 million people and claimed the lives of over 3.8 million in less 
than 15 months. This has prompted a flurry of research studies into the mechanisms and effects of SARS-CoV-2 
viral infection in humans. However, studies examining the effects of COVID-19 in pregnant women, their 
placentae and their babies remain limited. Furthermore, reports of safety and efficacy of vaccines for SARS-CoV-2 
in pregnancy are limited. 

This review concisely summarises the case studies and research on COVID-19 in pregnancy, to date. It also 
reviews the mechanism of infection with SARS-CoV-2, and its reliance and effects upon the renin-angiotensin- 
aldosterone system. Overall, the data suggest that infection during pregnancy can be dangerous at any time, 
but this risk to both the mother and fetus, as well as placental damage, increases during the third trimester. The 
possibility of vertical transmission, which is explored in this review, remains contentious. However, maternal 
infection with SARS-CoV-2 can increase risk of miscarriage, preterm birth and stillbirth, which is likely due to 
damage to the placenta.   

1. Introduction 

It is over 15 months since the World Health Organisation declared 
the COVID-19 outbreak a pandemic on the 11th March 2020 [1]. The 
disease is caused by infection with SARS-CoV-2, a novel β-coronavirus 
with similarities to MERS-CoV and SARS-CoV [2]. It is characterised by 
high infectivity and multiple transmission routes [3]. COVID-19 is pri-
marily a respiratory disease and patients typically present with fever, 
dry cough, shortness of breath and fatigue. However, a recent study 
reported that around 50% of patients experience gastrointestinal 
distress, with approximately 10% of cases experiencing only gastroin-
testinal symptoms [4,5]. 

COVID-19 can be life-threatening, with approximately 14% of cases 
evolving to severe pneumonia, and potentially life-threatening acute 
respiratory distress syndrome (ARDS) requiring admission to intensive 
care for respiratory support [6]. Importantly, whilst COVID-19 is 
considered a primarily respiratory infection, it has systemic effects 
including hypertension [7], thrombocytopenia [8], kidney disease [9], 
myocardial injury [10] and liver injury [11]. Furthermore, long-term 
complications after COVID-19 resolution have been reported, 
including persistent cardiac inflammation, lung function abnormalities, 
acute kidney injury, neurological and psychiatric changes [12]. While 
the implications of COVID-19 infection during pregnancy are still being 

investigated, these systemic effects alone can have adverse effects on 
both the mother and fetus. A recent systematic review on the effects of 
COVID-19 on maternal, fetal and neonatal outcomes has found a sig-
nificant increase in stillbirth and maternal death, and poorer maternal 
mental health during the pandemic [13]. In this review we aimed to 
summarise the physiological and immunological effects of SARS-CoV-2 
infection on pregnancy health. 

2. SARS-CoV-2 and the renin-angiotensin-aldosterone system 

SARS-CoV-2 is transmitted through respiratory droplets, aerosols 
and infected fomites [14–16]. It accesses the host cell through the cell 
entry receptor angiotensin-converting enzyme 2 (ACE2) [17], a mono-
carboxypeptidase that is a key enzyme in regulating the renin- 
angiotension-aldosterone system (RAAS). There are several tissues that 
have a local renin-angiotensin system (RAS), including the heart, lung, 
kidney and placenta [18]. 

In the classical RAAS, the ACE, angiotensin II, angiotensin type 1 
receptor (AT1R) arm causes vasoconstriction plus water retention via 
aldosterone. ACE2 is a non-classical ACE. ACE2 catalyses the conversion 
of angiotensin I (Ang-I) to Ang(1–9), and of Ang-II to Ang(1–7) that 
binds the Mas receptor [19], as well as cleavage of numerous other 
peptides outside the RAAS [20] (Fig. 1). This arm of the RAAS is 
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associated with vasodilation reducing blood pressure [21], and is anti- 
inflammatory and cardioprotective [22]. ACE2/Ang(1–7)/Mas actions 
are anti-inflammatory and antioxidant, and were shown to protect lung 
tissue from damage caused by the H5N1 virus [23]. 

The spike protein of SARS-CoV-2 is known to dock with the mem-
brane ACE2 receptor to access the host cell (Fig. 2). Using the Cryo-EM 
structure of the spike protein, it was found that it has a 10–20-fold 
higher affinity for ACE2 in SARS-CoV-2 than is the case for SARS-CoV 
[24,25]. Furthermore, susceptibility to SARS-CoV infection was posi-
tively correlated with ACE2 expression in cell models [26,27]. 

The SARS-CoV-2 viral spike protein is cleaved by the serine protease 
TMPRSS2, which facilitates injection of viral RNA into the host cell [17]. 
Previous studies showed this is essential for lung infection in wild-type 
mice as SARS-CoV down-regulated ACE2 protein levels [28]. The com-
plex formed by the spike protein and ACE2 is degraded by the lysosomal 
pathway, effectively destroying ACE2 and preventing it from being shed 
from the cell surface. ACE2 is normally shed into the lung surface liquid 
layer by being cleaved by a number of enzymes including ADAM17. The 
shed soluble ACE2 would then potentially be a sink for SARS-CoV-2 in 
lung surface liquid preventing host cell infection [29] and is thought to 
be protective. Importantly, this also results in release of the ACE2 
ectodomain into the circulation, as shown by in vitro experiments, 
allowing further catalysis and bioactivity [30]. 

Whilst ACE2 is required for SARS-CoV-2 entry into the host cell, its 
overall systemic expression and circulating levels paradoxically have a 
protective effect on disease severity. The protective effects of ACE2 are 
likely due to changes to the ACE:ACE2 ratio in tissues and in circulation, 
balancing the pro-inflammatory and anti-inflammatory arms of the 
RAAS. Circulating ACE2 has been shown to mediate against acute lung 
injury caused by influenza A (H7N9) [34]. Global ACE2 knockdown in 
mice leads to severe lung damage when infected with H5N1 and treat-
ment with ACE2 reversed some injury [34]. Furthermore, ACE2-mutant 
mice exhibit reduced lung pathology upon infection with SARS-CoV, and 
this was reversed when treated with recombinant ACE2 [28]. Treatment 
with intravenous ACE2 in humans also has protective effects in the 
context of pulmonary arterial hypertension [35], which is also a 

symptom of COVID-19. 

3. Factors affecting COVID-19 susceptibility and severity 

3.1. ACE2 expression 

A recent study utilised numerous publicly available datasets to 
determine patterns in ACE2 expression depending on age, sex and 
ethnicity [36]. Whilst an excellent resource, limitations of this study 
were mainly that the data sources did not cover ACE2 levels and poly-
morphisms in children, nor those in pregnant women. Using data for 
adults from 20 years of age, the study showed that ACE2 levels are 
highest in young adults regardless of ethnicity, and these levels decrease 
with age [36]. High ACE2 levels in young people could elicit protective 
effects which, if also confirmed in children, could explain the very mild 
symptoms of the disease mostly seen in children [24]. It has been pro-
posed that increased ACE2 expression (as determined from RNA 
sequencing, across a variety of tissues) might enable a lower inflam-
matory state by maintaining a functioning ACE2-Ang(1–7)-Mas system 
during infection [37]. Furthermore, the immune system in children is 
immature and thus the cytokine reaction to SARS-CoV-2 infection may 
be less harmful than in adults. ACE2 receptors on the type II alveolar 
epithelial cells of the lower respiratory tract can be functionally 
immature in children, abating SARS-CoV-2 infection potential [38]. 

This age-dependent decrease in ACE2 expression across tissues is 
more profound in males than in females. This coheres with reports that 
COVID-19 severity is greatest in elderly men, who would be expected to 
have the lowest ACE2 expression [36]. 

Comorbidities affect ACE2 expression, with significantly decreased 
levels in type II diabetics. ACE2 was also significantly reduced with 
inflammatory cytokine treatment, supporting its anti-inflammatory role 
in the body. ACE2 levels were also positively correlated with estrogen 
and androgen levels; both of which decrease with age [36]. 

ACE2 expression is variable as pregnancy proceeds. We have shown 
that fetal sex can influence pregnancy outcomes, with circulating ACE 
(which is partially secreted by placenta) higher in women carrying a 

Fig. 1. The activation cascade of the renin angiotensin system. Abbreviations: AGT is Angiotensinogen; Ang-I is angiotensin I; Ang-II is angiotensin II; Ang-III is 
angiotensin III; Ang-IV is angiotensin IV; Ang(1–9) is angiotensin 1–9; Ang(1–7) is angiotensin 1–7; ACE is angiotensin converting enzyme; ACE2 is angiotensin 
converting enzyme 2; AMPA is aminopeptidase A; AMPM is aminopeptidase M; NEP is neural endopeptidase; PEP is prolyl-endopeptidase; (P)RR is (pro)renin re-
ceptor; AT1R is angiotensin type 1 receptor; AT2R is angiotensin type 2 receptor; AT4R is angiotensin type 4 receptor; NF-κB is nuclear factor-κB; IL-6 is interleukin-6; 
TNF-α is tumour necrosis factor-α; PAI-1 is platelet activator inhibitor-1. 
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female fetus than a male at 15 weeks' gestation. This was associated with 
alterations in maternal blood pressure and an increased risk for having a 
small for gestational age baby [39]. We have also previously shown that 
the median ratio of circulating Ang-II:Ang1–7, which are peptides pro-
duced by ACE and ACE2 respectively, at 15 weeks' gestation is 2.5 [40]. 
Furthermore, maternal health plays a role in ACE/ACE2 levels. Reduced 
ACE2 levels seen in non-pregnant Type 2 diabetes mellitus patients 
predisposes them to severe lung injury from SARS-CoV-2 infection [41], 
which may have dangerous implications for mothers with gestational 
diabetes. 

3.2. SNPs in ACE and ACE2 

It is possible that genotypic and phenotypic variations also play a 
role in responses to SARS-CoV-2. For example, East-Asian females have 
significantly higher expression of ACE2 in a variety of tissues, approxi-
mately 30% higher than other ethnic groups, due to highly prevalent 
SNPs expressed in the ACE2 gene [36]. Genetic factors account for two 
thirds of the phenotypic variation in circulating ACE2 [42]. Specifically, 
the ACE2 rs2106809 polymorphism has been suggested to influence 
overall ACE2 levels [24]. Similarly, we have previously shown that 
maternal carriage of the ACE A11860G (rs4343) G allele increases 
circulating ACE at 15 weeks' gestation in a dose-dependent and fetal sex- 
specific fashion indicating some circulating ACE in pregnancy emanates 
from the placenta [39]. Circulating ACE was associated with maternal 
blood pressure [39]. Increased levels of ACE would be predicted to 
disrupt the ratio of ACE:ACE2 in tissues and circulation, potentially 
exacerbating inflammation. Moreover, potential for alternative splicing 
of ACE2 may also play a role in SARS-CoV-2 responses. There are two 
reported isoforms of the human ACE2 gene in the hg38 genome. Using 
this knowledge, splice-switching oligonucleotides (which induce iso-
form switching) are being investigated as a potential treatment for 
SARS-CoV-2 infection [43]. 

4. The effect of COVID-19 on pregnant mothers 

The main symptoms of COVID-19 are consistent with dysregulation 
of the RAAS [44,45]; indeed, pregnant women with COVID-19 experi-
ence preeclampsia (PE)-like symptoms [46], a disease which is 

associated with RAAS dysfunction [47]. The syndrome induced by 
COVID-19 can be distinguished from preeclampsia itself by assessing 
levels of sFlt-1/PIGF and LDH [46] but the RAAS dysregulation is very 
similar. One study followed 5 pregnant women with severe COVID-19 
infection in their second and third trimesters, who developed PE-like 
symptoms. However, in 4 of these women sFlt-1/PIGF levels were not 
abnormal. Furthermore, one pregnancy continued after recovery from 
COVID-19 and PE-like symptoms spontaneously resolved [46]. PE is also 
well known to resolve after delivery of the placenta but not before [48]. 

It is likely that the PE-like syndrome observed in pregnant women 
with COVID-19 [46] is associated with systemic endothelial dysfunction. 
A thromboinflammatory state has been reported in infected patients, as 
well as systemic coagulopathy [49–51]. Maternal infection with COVID- 
19 is dangerous in pregnancy, and has also been associated with higher 
incidence rate of actual PE [52], spontaneous preterm birth (sPTB) and 
maternal morbidity [53] (Fig. 3). Indeed, a recent paper from Brazil 
reported 124 maternal deaths due to COVID-19 in pregnancy [54]. The 
risk of developing severe COVID-19 symptoms is significantly increased 
in pregnant compared with nonpregnant women [55,56], with a 
significantly greater percentage of pregnant women requiring intensive 
care unit admission and mechanical ventilation support [55]. Further-
more, women giving birth during the pandemic reported higher stress 
associated with childbirth, as well as issues bonding with their infants 
and breastfeeding, compared with women giving birth before the 
pandemic [57] likely due to fears for their baby and imposed distancing. 

Whether the infection with SARS-CoV-2 is symptomatic or asymp-
tomatic also influences maternal and neonatal outcomes. Symptomatic 
pregnant women have a significantly higher risk of sPTB compared with 
asymptomatic [58]. Furthermore, acute onset or worsening of symptoms 
in the perinatal or postnatal period has been noted in mildly symp-
tomatic or asymptomatic pregnant women [59]. 

COVID-19 symptoms influence decision making about the safest 
method of delivery. In a study of 241 pregnant women with COVID-19 
across multiple New York medical centres, it was reported that 52.4% 
of women with severe symptoms, and 91.7% of women with critical 
symptoms, underwent caesarean section to deliver [60]. In the majority 
of COVID-19 cases in pregnant women, the clinical course taken is 
similar to that in non-pregnant patients, where distancing between the 
mother and newborn is enforced [61]. Nevertheless, there have been 

Fig. 2. Cell entry mechanism of SARS-CoV-2 via surface-expressed protein cleavage or cathepsin L endocytosis. Spike proteins on the surface of SARS-CoV-2 virions 
allow docking to the ACE2 receptor, often utilising host cell surface proteins such as CD147 [31]. 2A: Surface-expressed proteases such as TMPRSS2 [17] and furin 
[32] facilitate proteolysis and fusion of viral RNA and entry into the host cell. Cleavage of ACE2 and subsequent shedding can occur via ADAM17 protease activity 
[30]. 2B: The virus is endocytosed and cathepsin L mediates proteolysis via endosomal acidification [33], allowing fusion of viral RNA into the host cell. 
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reports of newborns infected with SARS-CoV-2. While the COVID-19 
commonly presents with mild or no symptoms [62–64], some babies 
experience respiratory distress, thrombocytopenia and adverse liver 
function, with rare cases resulting in death [65]. The mode of viral 
infection in newborns is still under contention. 

5. The effect of COVID-19 on pregnancy health 

5.1. Immune response in the placenta 

Maternal immune tolerance of the fetus and placenta is complex and 
involves both the maternal immune system, particularly in the decidua, 
and the placenta. The immune state of the placenta is highly regulated 
and changes across pregnancy [66]. The first trimester of gestation can 
be categorised as a pro-inflammatory phase, which is necessary to allow 
successful implantation and placentation. The decidua and placenta 
adopt an anti-inflammatory state to optimise fetal development in the 
second trimester, which later switches to a pro-inflammatory state for 
parturition [67]. Once parturition is initiated, immune cell recruitment 
into the myometrium and cervix creates a proinflammatory environ-
ment, stimulating uterine contractions [68]. 

In healthy pregnancies, the decidua contains a large number of im-
mune cells, including T regulatory cells [69], natural killer cells [70] 
and macrophages [71]. These cells are necessary for a viable pregnancy 
[72–74]. T lymphocytes account for up to 10% of decidual immune cells, 
whilst B cells are not present [75]. However, this state of immune pro-
tection for the fetus could potentially be detrimental to pregnancy in 
COVID-19. The inflammatory response to infection can cause sPTB as a 
result of inflammatory cytokine release [76], increased prostaglandin 
production and compromised fetal immune tolerance [38]. 

Indeed, in pregnant women during the 2009 H1N1 flu pandemic, the 
activation of the cellular immune response leading to inflammatory 
cytokine release was shown to cause placental damage [77]. The 
placenta is also potentially susceptible to SARS-CoV-2 infection, 

containing all required molecules to allow viral entry into the cells. 
ACE2 levels in the placenta are highest in early gestation and decrease in 
mid to late gestation [78]. The expression of ACE2 is particularly high in 
the decidual cells, villous cytotrophoblasts and syncytiotrophoblast 
[79,80]. ACE2 and TMPRSS2 co-expression has been established in first 
trimester syncytiotrophoblast, second trimester extravillous cyto-
trophoblasts and in third trimester chorioamniotic membranes [81–83]. 

Furthermore, ACE2 is an interferon-stimulated gene, activated by 
interferon signalling via the Jak/STAT pathway. It is suggested that 
SARS-CoV-2 may manipulate species-specific interferon-driven upre-
gulation of ACE2 to augment infection [84]. This is particularly relevant 
in the context of pregnancy, where interferon expression is highly 
regulated [85]. Indeed, while ACE2 expression in the placenta usually 
decreases across gestation and third trimester placentae usually have 
low ACE2 expression, in placentae taken from term COVID-19 positive 
women the ACE2 expression is significantly higher [86]. It is therefore 
possible that ACE2 expression is stimulated by interferon upon SARS- 
CoV-2 infection. 

Placentae from pregnant women infected by SARS-CoV-2 show 
extensive immune activation, with heavy recruitment of both CD4+ and 
CD8+ T lymphocytes [87,88]. One study found that in 67% of cases there 
was evidence of inflammation in the decidua and chorionic villi, with 
the majority of these showing CD8+ T-cell lymphocytic infiltrate [38]. 
This is consistent with a diagnosis of chronic villitis [89]. Acute cho-
rionitis and chorioamnionitis are also reported in 33% of SARS-CoV-2 
positive placentas from 11 different studies [90]. 

Maternal immunoglobulin (Ig) G (IgG) antibodies are reported to be 
detectable within 2 weeks of SARS-CoV-2 infection [91]. Of note, 
maternal IgG antibodies readily transfer through the placenta to the 
fetus throughout gestation but this is not the case for maternal IgM 
antibodies, the presence of which in fetal or cord blood is associated 
with infection or fetal immune response [92]. 

Neonatal levels of maternal IgG and IgM antibodies have been tested, 
purportedly to obtain serological evidence of vertical transmission. One 

Fig. 3. The effects of SARS-CoV-2 infection in pregnancy, and factors influencing ACE2 levels. SARS-CoV-2 infection in pregnancy is dangerous, with a myriad of 
reported effects in maternal, placental and neonatal health. It is hypothesised that these effects can be somewhat mitigated by ACE2 expression levels (relative to 
ACE), which are influenced by sex, age, ethnicity, comorbidities and gene variants in the patient, as well as the fetal sex and gestational week in pregnant patients. 
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study found that SARS-CoV-2 IgG antibodies were detectable in cord 
blood of 87% of newborns born to COVID-19 positive mothers. Cord 
blood IgG concentrations were positively correlated with those in the 
mother, as well as duration between the onset of the infection and de-
livery. However, IgM antibodies were not detected in any cord blood 
samples [93]. There has been one report of a neonate with elevated IgG 
and IgM antibodies two hours postpartum, although at no point did the 
infant test positive for SARS-CoV- 2 by RT-PCR [94]. Overall, at this 
stage, use of IgG and IgM antibodies to infer vertical transmission (see 
Section 5.3) appears to be inconclusive. 

5.2. Effect of maternal COVID-19 infection on placental function 

Many recent studies have reported numerous histopathological dif-
ferences in placentae from women with COVID-19 compared to control 
(uninfected) placentae. Maternal infection with SARS-CoV-2 results in 
placental features of maternal vascular malperfusion [95], including 
retroplacental hematoma, distal villous hyperplasia, mural hypertrophy, 
acute atherosis and fibrinoid necrosis [95,96] as well as hemorrhagic 
necrosis [96]. Features of fetal vascular malperfusion have also been 
observed, including chorioangiosis [95], thrombosis [49,95] and fibrin 
deposition [95], as well as chorioamnionitis [95,97], chronic villitis, 
thrombosis and hemorrhage [38] (Fig. 3). These histopathological 
changes reflect an inflammatory state in the placenta. An inflammatory 
infiltrate has been observed in placental chorionic villi which is similar 
to damage observed in lungs of deceased COVID-19 patients [98]. 
CD68+ histiocytes have been detected in areas of placental inflamma-
tion [97]. Lymphocyte infiltration has been noted surrounding endo-
thelial cells and decidual vessels, and the chorionic villi adjacent to this 
decidual tissue showed changes consistent with chronic hypoxia [96]. 
Indeed, vascular abnormalities in the placenta resulting from maternal 
COVID-19 infection have been associated with maternal and neonatal 
adverse outcomes [89]. 

However, it is clear that timing of infection with SARS-CoV-2 during 
pregnancy is critical when determining the potential harmful effects on 
the placenta. One study examined placentae from pregnant women who 
had contracted COVID-19 in their first trimester (Group I) with 
placentae from women delivering in the acute stage of COVID-19 
infection (Group II) and placentae from pregnant women who had 
recovered from COVID-19 infection in their third trimester (Group III). 
Placental histopathology was unchanged in Group I compared to 
placentae from uninfected women. Group II placentae had intervillous 
and subchorionic fibrin deposition. However, Group III placentae 
showed widespread thrombotic vasculopathy and the newborns from 
this group had significantly higher rates of intrauterine growth restric-
tion and were more likely to be small for gestational age [54]. 

5.3. Possibility of vertical transmission 

Whether or not SARS-CoV-2 is able to infect a fetus by vertical 
transmission is still unknown. There are several notable examples of 
viruses causing severe complications during pregnancy [99,100]. Pa-
tients suffering from SARS-CoV and MERS-CoV whilst pregnant experi-
enced maternal hypoxia, resulting in fetal distress and prematurity 
[100]. Viruses such as CMV [101] and Zika [102] can cause placental 
inflammation and are able to cross the placenta and infect the fetus 
through vertical transmission [103]. In one report, placentae from 
pregnant women with SARS-CoV underwent histological examination, 
with increased subchorionic and intervillous fibrin seen in 40% of 
samples and thrombotic vasculopathy associated with IUGR seen in 28% 
of samples (similar to effects of SARS-CoV-2 in the placenta). However, 
chronic villitis was not observed in any samples [104]. 

Vertical transmission of SARS-CoV-2 from the mother to the fetus via 
the placenta is possible though reports remain controversial. The pro-
teins required for SARS-CoV-2 entry to placenta cells, ACE2 and 
TMPRSS2, are highly expressed in term maternal-fetal interface tissues 

[80]. However, the exact cellular and molecular pathway to trans-
mission of viruses is still unclear for SARS-CoV-2 and many others [105]. 
Whilst pathogens can cross the barrier via leukocytes and infection of 
cytotrophoblasts, pathogens are often captured by Hofbauer cells 
(placental macrophages) [106]. Furthermore, ACE2 is not expressed in 
the extravillous cytotrophoblasts in first trimester placenta, and there is 
very low TMPRSS2 activation in the syncytiotrophoblast [80,107]. 
Hence, further research is required to elucidate the mechanism of ver-
tical transmission. 

To date, evidence as to whether neonates have acquired COVID-19 in 
utero is equivocal. One study reported no evidence of vertical trans-
mission of SARS-CoV-2 in early pregnancy [108]. However, a recent 
case study of a miscarriage at 13 weeks' gestation shows the presence of 
viral RNA and SARS-CoV-2 nucleocapsid protein in the placenta, as well 
as multiple fetal tissues thus confirming vertical transmission [109]. The 
study also showed evidence of hyperinflammatory processes in multiple 
fetal organs. Further reports stated that elevated SARS-CoV-2 IgM 
antibody levels were found in three newborn babies but these results 
were unable to be substantiated in follow-up tests [110,111]. One report 
described positive qRT-PCR results for SARS-CoV-2 in both the mother 
and the neonate, despite delivery via caesarean section and immediate 
distancing of the baby from the mother. However, the results of swabs 
from the placenta were negative [112], confounding the suggestion of 
vertical transmission. Conversely, in another study, SARS-CoV-2 RNA 
was detected in three separate placental samples from pregnant women 
with COVID-19 but none of the newborns tested positive for the disease 
[113]. 

Other reports remain confident regarding the possibility of vertical 
transmission. Studies list the incidence of positive SARS-CoV-2 swabs in 
neonates born to mothers with COVID-19 to range from approximately 
3% [108] to 8% [114]. However, the incidence of positive SARS-CoV-2 
tests in neonates varies with delivery method, with approximately 
0.4–5% incidence in babies delivered via caesarean section [115] but 
approximately 10–22% incidence in babies delivered vaginally. How-
ever, to add confusion these studies have reported no positivity for 
SARS-CoV-2 in vaginal fluids [116,117]. 

A meta-analysis of nearly 40 studies which found approximately 3% 
incidence of SARS-CoV-2 infection in neonates also found approximately 
8% incidence of infection in placentae, 3.5% in umbilical cord blood, 
10% in anal/rectal swabs and also 3.5% positivity in serological tests. 
However, no positive tests were found in amniotic fluid [108]. One 
positive qRT-PCR result for SARS-CoV-2 was reported in a mother, 
placenta and newborn triad [111]. The study also utilised in situ 
hybridisation to localise the virus spike protein RNA to the syncytio-
trophoblast but was not detected in other chorionic villus cell layers 
below it. This may indicate a potential first step in vertical transmission 
but also may reflect the barrier function of syncytiotrophoblast. 
Furthermore, high IgM levels have been reported in another neonate 
aged two hours which could be taken as an indicator of intrauterine 
infection but this neonate never tested positive for the disease [118]. 

Regardless of whether vertical transmission is possible, the effects of 
COVID-19 on women during pregnancy are serious. COVID-19 infection 
can cause hypoxemia and maternal respiratory failure, compromising 
utero-placental oxygen delivery and triggering miscarriage [119]. Two 
stillbirths have already been recorded in cases where one pregnant 
woman experienced ARDS leading to multiple organ failure and another 
where the mother eventually died [58,120]. Difficulties for mothers 
with COVID-19 include premature rupture of membranes and fetal 
distress and there are postnatal reports of tachycardia, shock, thombo-
cytopenia, respiratory distress and death in some neonates, regardless of 
the newborns testing negative for the virus [15,58,121,122]. 

6. Effects on the neonate 

Maternal SARS-CoV-2 infection has been shown to have serious 
consequences on neonatal health. Pregnant women with COVID-19 have 
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high rates of sPTB, with studies reporting rates of 21% [123] and 40% 
sPTB in their cohorts [53,124] which is 2–4 times higher than the 
average rate of 10% [125]. Approximately 3% of pregnancies in women 
with COVID-19 end in stillbirth [126], where the usual rate is <1% 
[127]. 

Numerous studies indicate that the placental damage from SARS- 
CoV-2 infection is sufficient to cause serious morbidity and even mor-
tality in neonates (Fig. 3). There are reports of both stillborn neonates 
and their placentae testing negative for SARS-CoV-2 infection despite 
extensive damage to the placenta and funisitis [128–130] (see more 
detail in Section 5.2). Furthermore, absence of symptoms in an infected 
mother does not preclude neonatal death. One study reported a SARS- 
CoV-2 positive, asymptomatic pregnant woman in week 32 of her 
pregnancy. At 35 weeks' gestation, she had no physical symptoms but 
the fetal heartbeat was absent. Upon delivery, no abnormalities were 
detected in her stillborn baby but 75% of the placenta showed extensive 
fetal vascular malperfusion and parenchymal infarcts [131]. 

6.1. COVID-19 and breastfeeding 

The WHO states that breastfeeding is the optimal form of nutrition 
for babies and recommends that women infected with COVID-19 should 
still breastfeed their babies wherever possible [132]. Many studies have 
not detected any SARS-CoV-2 virus in breastmilk [133,134] and have 
also confirmed that SARS-CoV-2 antibodies are transmitted through 
breastmilk [135]. However, there have been recent reports of SARS- 
CoV-2 virus detected in breastmilk samples. One study detected the 
virus in a sample taken at one day postpartum but could not detect it 
after this timepoint [136]. Another case report from a patient with se-
vere COVID-19 symptoms detected viral RNA in breastmilk samples 
from four days postpartum [137]. Furthermore, one case study posits 
infection via breastmilk; milk samples from one, three and four days 
postpartum were positive for SARS-CoV-2 RNA and the neonate did not 
test positive for COVID-19 until four days postpartum. There are obvi-
ously other factors for transmission that should be taken into account 
[138]. The American Academy of Paediatrics provides breastfeeding 
recommendations to minimise the risk of transmission from mother to 
the baby. For women with mild symptoms these recommendations 
include wearing a surgical mask and washing hands and breasts with 
soap and water before breastfeeding. Women with more moderate 
symptoms are required to follow the same recommendations except that 
they are advised to express milk and for milk to be given to the baby in a 
separate room [139]. 

7. Conclusion 

Intense research efforts in the last 12 months, together with previous 
knowledge on other SARS viruses, have yielded a lot of information 
about SARS-CoV-2 and COVID-19, the disease it causes. With nearly 178 
million cases and 3.8 million deaths to date, we can't know enough 
about this pandemic. Pregnant women have been somewhat neglected 
with mostly case reports and small studies. CDC data in the United States 
is mostly for women infected in third trimester with little information on 
early pregnancy infection and impact on pregnancy outcome. In addi-
tion, vaccine trials and rollouts have only recently included pregnant 
women. However, data to date show that COVID-19 in pregnancy, as 
with other SARS viral infections and influenza, can be more severe than 
in non-pregnant women of reproductive age requiring intensive care 
admission. Although data on vertical transmission are contentious, risks 
to the baby can include stillbirth and preterm delivery likely mediated 
by damage to the placenta. Clearly more effort is required to understand 
the full implications of COVID-19 for maternal and newborn health. 

Note: In June 2021 the Royal Australia and New Zealand College of 
Obstetrics and Gynaecology has recommended that pregnant women be 
vaccinated at any time in pregnancy to protect them from COVID-19. 
The US CDC also states that pregnant women can receive the 

vaccination, while WHO recommends COVID-19 vaccination for preg-
nant women for whom the benefits outweigh the risks such as health 
care workers. 
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