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Abstract

Nicotine exerts its oncogenic effects through the binding to nicotinic acetylcholine receptors (nAChRs) and the activation of
downstream pathways that block apoptosis and promote neo-angiogenesis. The nAChRs of the a7 subtype are present on a
wide variety of cancer cells and their inhibition by cobra venom neurotoxins has been proposed in several articles and
reviews as a potential innovative lung cancer therapy. However, since part of the published results was recently retracted,
we believe that the antitumoral activity of cobra venom neurotoxins needs to be independently re-evaluated. We
determined the activity of a-neurotoxins from Naja atra (short-chain neurotoxin, a-cobrotoxin) and Naja kaouthia (long-
chain neurotoxin, a-cobratoxin) in vitro by cytotoxicity measurements in 5 lung cancer cell lines, by colony formation assay
with a7nAChRs expressing and non-expressing cell lines and in vivo by assessing tumor growth in an orthotopic Non-Obese
Diabetic/Severe Combined Immunodeficient (NOD/SCID) mouse model system utilizing different treatment schedules and
dosages. No statistically significant reduction in tumor growth was observed in the treatment arms in comparison to the
control for both toxins. Paradoxically a-cobrotoxin from Naja atra showed the tendency to enhance tumor growth
although, even in this case, the statistical significance was not reached. In conclusion our results show that, in contrast with
other reports, the nAChR inhibitors a-cobratoxin from N. kaouthia and a-cobrotoxin from N. atra neither suppressed tumor
growth nor prolonged the survival of the treated animals.
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Introduction

The experimental evidences suggesting that stimulatory or

inhibitory neurotransmission is involved in cancer development,

progression and in the response to therapy have steadily accu-

mulated [1]. Indeed, tobacco components regulate cellular

functions related to cell transformation and are involved with

smoking addiction and lung cancer predisposition and develop-

ment by directly interacting with neuronal and non-neuronal

nicotinic acetylcholine receptors (nAChRs) [2,3,4,5,6,7,8,9,10,11].

Nicotine itself has limited lung cancer initiating capabilities but

can sustain tumor growth and promote metastatic spread through

its antiapoptotic and neoangiogenic properties [2,7,12].

The expression of nAChRs in non-neural cells of the lung, and

particularly in the airway epithelium, reflects the multiple essential

functions exerted by the cholinergic system in normal lung

development and function [13,14]. In this respect, it has been

proposed that the role of nAChRs in lung cancer might be similar

to that of estrogen receptors in breast cancer since in both cases

the inappropriate stimulation of the receptors contributes to

cancer development [15]. In view of the high level of expression of

certain subtypes of nAChRs in lung cancer cells compared to the

surrounding unaffected tissue [16,17] and of supporting experi-

mental evidences [18,19,20,21], it was hypothesized that antag-

onists of nAChRs, and in particular cobra a-neurotoxins, could be

exploited as potential therapeutic agents [22,23,24]. However, the

limited knowledge of the functionality and of the long-term effects

of the stimulation of these receptors in cancer cells [2,25,26] and,

most importantly, the recent retraction of a report supporting the

antitumoral effects of cobra a-neurotoxins in vitro and in vivo [27]

renders questionable the targeting of nAChRs with these toxins for

lung cancer treatment.

Cobra venom is constituted by many polypeptides with multiple

toxic activities. Among these, the three-fingered toxins (TFTs) are

the main components and are represented by a-neurotoxins and

cytotoxins. The a-neurotoxins bind to nAChR with different

specificity and affinity: short-chain toxins (60–62 amino acid

residues, 4 disulfide bridges) block muscle-type nAChRs whereas

long-chain toxins (66–75 amino acid residues, 5 disulfide bonds,

the fifth bond being present in the central polypeptide loop) in

addition to muscle-type nAChRs block also the neuronal receptors

[28,29]. As an example of short-chain toxins, a-neurotoxin called

a-cobr*o*toxin from Naja atra cobra venom can be mentioned.

The principal a-neurotoxin from Naja kaouthia cobra venom called
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a-cobr*a*toxin is an example of long-chain toxins. The short-

chain toxins are structurally related to the cytotoxins that non-

selectively kill the cells [30].

While reviewing the literature on the anti-tumor effects of

a-cobratoxin [18,19,20,21,22,27] we realized that the various

reports presented major differences on the dosage of the toxin

utilized for the in vivo experiments, on the number of injected cells

and on mice survival. Also the presence of the a7 nAChR on the

cell line utilized for the in vivo studies was uncertain since

conflicting results are present in the literature [22,31]. Further-

more, since part of the data were retracted with no specific

motivation [27], we felt necessary to re-evaluate the anti-cancer

properties of cobra neurotoxins in vitro and in vivo in a clinically

relevant animal model of lung cancer [18] to clarify if these toxins

could be considered the prototype of a novel class of natural

products with antitumor properties as proposed [15,22,24].

Results and Discussion

Expression of a7 nAChR in A549 and A549-luc cells
The interaction between a-cobratoxin and the a7 nicotinic

receptor [32] was one of the experimental evidences behind the

rationale of utilizing cobra venom toxins as anticancer agents [22].

Although this receptor is expressed on a wide spectrum of tissues

and cell lines, a recent survey of the literature [22,31] reported

conflicting data on the expression of this receptor in A549, the cell

line utilized for the in vivo and most of the in vitro anticancer assays

on a-cobratoxin. Therefore, as an initial step to verify the activity

of a-cobratoxin in NSCLC, we performed a semiquantitative RT-

PCR and qPCR survey to demonstrate the expression of a7
nAChR in 5 lung cancer cell lines. Three of the cell lines utilized in

the present study (A549, H1650 and SK-MES 1) were the same of

the original set of experiments [18,19,20,27]. As shown in Figure 1,

Panel A, the a7 nicotinic receptor was readily detectable in A549,

H1650 and SK-MES 1 but not in H1975 and CALU 1. The

qPCR analysis confirmed the presence of different amount of the

a7 nAChR mRNA in A549, H1650 and SK-MES 1 (Figure 1,

Panel B). In agreement with the RT-PCR results, in H1975 and

CALU 1 the a7 nAChR transcript, using the same amount of

cDNA used for all the cell lines, appeared after cycle 40, a result

that could be attributed either to an extremely low level of

expression or to background noise

The expression of a7 nAChR at the protein level was confirmed

by western blot analysis in A549 and A549-luc cells (Figure 1,

Panel C).

It has been reported that stimulation of a7 nAChR in human

lung cancer cells results in the up regulation of this receptor [33].

We have tested the influence of the a-neurotoxins from N. atra and

N.kaouthia on the level of a7 nAChR focusing on A549 and A549-

luc.

The qPCR analysis showed that the treatment with either

a-cobrotoxin or a-cobratoxin at the concentration of 0.003 mM,

the reported IC50 for a-cobratoxin in A549 [20], together with

concentrations three times lower (0.001 mM) and three times

higher (0.009 mM), did not substantially change the level of

expression of the receptor in these cell lines (less than two-fold

change, Figure S1).

In vitro effects of short- and long-chain a-neurotoxins on
NSCLC cell lines

Early in vitro experiments suggested that the effect of

a-cobratoxin is dose dependent and that the high selectivity and

specificity of this molecule depends from the density of a7 nAChR

[20,21]. In this respect non-tumoral pulmonary cells as well as

other primary unaffected cells expressing low levels of a7 receptors

were remarkably resistant to a-cobratoxin treatment [20].

To evaluate the cytotoxic activity of a-cobratoxin, that

efficiently binds to the a7 nAChR (see Materials and Methods)

and the specificity and selectivity of its action, we performed MTT

assays with the short- and long-chain a-neurotoxins on presum-

ably sensitive a7 nAChR-positive and presumably resistant a7

nAChR–negative cell lines. Dose-response curves were drawn to

assess the drug concentration reducing survival. The initial

cytotoxicity experiments were carried out utilizing toxins concen-

trations that in other publications were reported to be effective in

a7 nAChR-positive NSCLC cell lines but not toxic in normal cells

(IC50: 0.003 mM for A549, 0.04 mM for SK-MES 1 and 1 mM for

H1650) [18,20,21,22]. However, at these concentrations we could

not detect appreciable cytotoxic activity and the IC50 could not be

reached with any of the two toxins (data not shown).

At higher concentrations (up to 30 mM) the a-cobrotoxin

showed a limited non dose-dependent toxicity that remained

essentially constant in a wide range of concentrations in all 5 cell

lines (Figure 2, Panel A).

At high concentrations the a-cobratoxin showed a clear dose-

dependent toxicity (Figure 2, Panel B). However the IC50

concentration observed in our study for A549 and SK-MES 1 was

2466 and 105 fold higher than that reported in an earlier publication

[20]. The difference was much lower for H1650 (2.9 fold) a result

compatible with the utilization of a different toxin preparation.

The limited toxic effect of the short chain a-cobrotoxin could be

explained by its inability to bind to the a7 receptor. Surprisingly

however, the a-cobratoxin was effective also on a7 nAChR-

negative cells suggesting that the toxic activity is not mediated by

the binding of the toxin to the a7 receptor.

To confirm and extend this observation we have conducted

a colony formation assay with the a7 nAChR+A549 and with

the a7 nAChR2NCI-H1975 cell lines . Since the IC50 was

not reached with a-cobrotoxin, we utilized the two highest

concentrations tested by MTT (15 and 30 mM). For a-cobratoxin

we utilized the concentrations corresponding to the IC50 for A549

and NCI-H1975 (7. 5 and 3 mM, respectively) and concentrations

corresponding to half and twice the IC50. As shown in Figure 3,

the clonogenic activity of the two cell lines was not affected by the

treatment and by the presence of the a7 nACh receptor.

The activation of the apoptotic cascade was considered the key

effect of the binding of the a-cobratoxin to the a7 nAChR

[18,20,21,22]. In view of the major differences between our results

and those previously published regarding the dosage at which the

IC50 could be obtained and the absence of selective action of a-

cobratoxin on a7 nAChR-positive cells, we tried to understand if

activation of apoptosis indeed occurs upon treatment with a-

cobratoxin by Annexin V-PI flow cytometry staining. It was

reported that the maximum induction of apoptosis in A549 cells

could be obtained by treatment with 1 mM toxin for 24 hours [18].

We have repeated the same experiment utilizing the same

methodology but with toxin concentrations (1, 10 and 50 mM) that

induced growth inibition ranging from 5 to 87% in MTT assays.

As shown in Figure 4, even at the highest concentration very few

cells (1–3%) presented evidences of apoptosis with necrotic cells

being prevalent.

Overall these results suggest that the cell death observed in vitro is

likely the result of necrosis rather than the activation of the apoptotic

pathway following the specific binding of a-cobratoxin to its ligand.

In vivo toxicity of a-neurotoxins
The acute toxicity of increasing doses of toxins after i.v.

administration (as in M&M) was assessed in CD1 mice on the
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basis of clinical and behavioral signs. Acute symptoms developed

within 15 minutes after injection and were mostly characterized

by general discomfort and respiratory distress that restored to the

normal conditions within 60–180 minutes. Based on the number

of dead CD1 mice, following administration of either a-

cobrotoxin or a-cobratoxin and over an observation period of

14 days, the LD values were determined and the MTD identified

as 0.1 mg/kg for a-cobrotoxin and 0.2 mg/kg for a-cobratoxin

as shown in Table 1.

Importantly, the LD50 for a-cobrotoxin determined in our

study (0.128 mg/kg) was in very good agreement with literature

data (0.1 mg/kg: http://www.uniprot.org/uniprot/P60770). The

observed LD50 for a-cobratoxin was 0.35 mg/kg, a value in the

same order of magnitude of the literature data (0.1 mg/kg; http://

www.uniprot.org/uniprot/P01391).

The reports on the in vivo toxicity of a-cobratoxin are confusing

and in the recent literature we have observed that the LD50

concentration reported in three different publications from the same

Figure 2. Cytotoxicity assay. The NSCLC cell lines A549, NCI-H1975, H1650, CALU 1 and SK-MES 1 were incubated for 72 hours with a-cobrotoxin
(0.6–30 mM), upper panel, or a-cobratoxin (0.75–50 mM), lower panel, and the toxicity was measured with the colorimetric MTT test. The IC50 was
reached only with a-cobratoxin.
doi:10.1371/journal.pone.0020695.g002

Figure 1. Presence of the a7-nACh receptor on NSCLC cell lines. A) Semiquantitative Alpha7 RT-PCR analysis on Human NSCLC
adenocarcinoma e squamous cell carcinoma cell lines. GAPDH expression was utilized as internal control for mRNA integrity and cDNA quantification.
NCI-H1975 and Calu1 are negative. C: No template control. B) qPCR alpha 7 expression in the same cell lines. On y-axis natural logaritm (ln) of fold
change. NCI-H1650 was used as calibrator, GAPDH as reference gene. One ugr of Total RNA was retrotrascibed and the same amount of cDNA per
sample (2 ul) was used (Ct GAPDH comprised between 15.65 and 17.65). NCI-H1975 and Calu1 resulted negative or with extremely low expression
due to Ct.40. C) Western blot analysis for alpha 7. PC12 was loaded as positive control. Actin expression was utilized as internal control.
doi:10.1371/journal.pone.0020695.g001
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group differs of 1000 fold (0.15 mg/kg or 0.15 mg/kg) [18,21,22].

The results obtained in the present study are essentially in agreement

with those of two of the previous reports [18,21] and, importantly,

demonstrate the biological activity in vivo of our toxin preparations.

Half of the MTD for each toxin (0.05 and 0.1 mg/kg,

respectively) were then used in one of the two treatment

protocols designed to assess the antitumor activity in vivo of

these toxins.

Figure 3. Clonality assay. The cell lines A549 (a7 AChR +) and NCI-H1975 (a7 AChR -) were plated in 35 mm Petri dishes or in 24 wells plates at
densities of 150 (A549) and 300 (NCI-H1975) cells/dish and exposed to either long-chain a-neurotoxin from Naja Kaouthia, at concentrations of
15 mM, 7.5 mM, 3.8 mM (A549) and 6 mM, 3 mM, 1.5 mM (NCI-H1975), or short-chain from Naja Atra, at concentrations of 30 mM and 15 mM (both cell
lines). Treated cells were then incubated for 7–10 days, until visible colonies formed.
doi:10.1371/journal.pone.0020695.g003

Figure 4. Evaluation of the Apoptosis elicited by a-cobratoxin in A549 cells. Cells were incubated for 24 hours with 1, 10 and 50 mM a-
cobratoxin and apoptosis was evaluated by Annexin V-PI staining and FACS separation. Apoptosis in untreated cells was 0.63% and in treated cells
was in the range 0.98–2.32%.
doi:10.1371/journal.pone.0020695.g004
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Antitumor activity of a-neurotoxins
To assess the antitumor activity of both toxins, NOD/SCID mice

were orthotopically transplanted with 0.56106 human A549-luc

cells/in a volume of 10 ml PBS into the right lung. As surrogate

marker of tumor growth we measured the light emission of the

luciferase-tagged A549 cells; this system enabled us to longitudi-

nally follow each animal and to monitor the effect of the

treatment.

Following the assessment of tumor implants, by IVIS detection,

the mice were randomly assigned to one of the study groups and

treatment started 7 days after orthotopic transplantation according

to the two different protocols outlined in Figure 5.

Protocol 1: 8 animals were assigned to receive i.v. 0.12 mg/kg of

toxin (1/1000 of the LD10 indicated in [20]), three times a week

for three weeks according to a previously reported schedule [20]

and 8 animals received vehicle alone.

Protocol 2: 8 animals were treated i.v. once a week for three

weeks with of 0.05 mg/kg of a-cobrotoxin or 0.1 mg/kg of a-

cobratoxin (corresponding to half-MTD). For a-cobratoxin the

half-MTD corresponds to 12.8 mM, a concentration that in vitro

should kill between 50 and 63% of the A549 cells. Eight control

animals received vehicle alone.

In another publication [18] where the time-schedule of protocol

1 was utilized, the reported a-cobratoxin dosage was 0.12 mg/kg.

On the basis of our in vivo toxicity determination we considered

this dosage too high to be administered for three consecutive days

to mice with compromised respiratory function.

After an initial assessment of tumor growth at day 7, the

antitumoral activity induced by toxins was evaluated in treated

and untreated mice, at days 14, 21 and 28 post-administration in

both protocols. We have observed that at the initial stages of

growth, the bioluminiscence of the animals closely represented the

extent of tumor growth. Conversely, at later stages, tumor necrosis

and reduced perfusion, likely diminished the light emission in mice

even when the tumor had completely invaded the thoracic cavity

and, in most cases, had extended outside the thorax.

The pre-treatment IVIS evaluation of the 56 mice included in

the study at day 7 showed successful tumor growth in all animals

in spite of a 300-fold individual variability (average photon

emission: 5.56107/mouse, range 6.68610522.066108). There-

fore, for data analysis, we considered the fold-change of emission

between treated and non-treated animals at each treatment time

point (14, 21 and 28 days) rather than the absolute photon

emission values [18].

In Figure 6, we report the raw IVIS determination in each mice

treated with a-cobrotoxin according to schedule 1 and in the

corresponding control group. As shown, this treatment does not

seem to have an appreciable effect on tumor growth in this animal

model system. The only apparent striking difference was the

number of dead animals at the end of the observational period (4

in the control group and 2 in the treatment group). However, it

must be noticed that at this time all animals had to be sacrificed for

ethical reasons and that autopsy revealed that the tumor had

extended outside the thoracic cavity in all treated and untreated

mice. As shown in Figure 7 also at the higher dosages utilized in

the schedule 2 treatment plan, the effect of a-cobrotoxin as

antitumor agent was negligible, if any. As for the schedule 1

treatment plan, also these animals were sacrificed at day 28

because of tumor growth-related symptoms. Indeed, at autopsy all

animals presented a completely invaded thoracic cavity with

tumors extending outside the chest irrespective of treatment

scheme.

In Figure 8 is reported the averaged fold-change of emission in

the treatment and control arms for schedule 1 (Panel A) and

schedule 2 (Panel B). Although the difference, evaluated by the

Table 1. In vivo toxicity of a-cobrotoxin and a-cobratoxin.

CbTx (mg/kg) i.v. Dead/Overall LD Dead/Overall LD

a-cobrotoxin a-cobratoxin

5 1/1 100

1 1/1 100

0.5 1/1 100 3/3 100

0.4 2/3 60

0.35 2/4 50

0.30 1/3 30

0.25 2/2 100

0.20 4/4 100 0/2 MTD

0.16 4/4 100

0.135 4/5 80

0.130 3/4 75

0.128 2/4 50

0.125 1/6 16 0/2 -

0.100 0/2 MTD 0/2 -

doi:10.1371/journal.pone.0020695.t001

Figure 5. Treatment schedules for in vivo studies. Mice were injected with 0.56106 human A549-luc cells. At day 7, after the IVIS determination,
the animals were randomized and subjected to treatment. For schedule 1 the mice were treated with 1/1000 of the LD10 as indicated in [20] three
times/week for three weeks. For schedule 2 the mice were treated once a week with a dosage corresponding to K MTD (determined in the present
study).
doi:10.1371/journal.pone.0020695.g005
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Figure 6. Raw IVIS determination of tumor growth in mice treated with a-cobrotoxin according to schedule 1. X denotes the dead
animals.
doi:10.1371/journal.pone.0020695.g006

Figure 7. Raw IVIS determination of tumor growth in mice treated with a-cobrotoxin according to schedule 2. X denotes the dead
animals.
doi:10.1371/journal.pone.0020695.g007
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Mann-Withney test, did not reach statistical significance (except

for schedule 1, day 14, p = 0.04), we observed a striking higher

emission in the toxin treatment group with respect to the control

arm. This effect was dramatically evident in the schedule 2 at day

28, although, the difference in the photon emission did not reach

statistical significance, likely because of the limited number of

animals,

The same treatment schedules were also utilized with the a-

cobratoxin. The results of this set of experiments showed that this

toxin lacks evident antitumoral activity as well. In Figure 9, we

report the raw IVIS determination for each mice treated with a-

cobratoxin according to schedules 1 and 2 while in Figure 8, Panel

C, we show the average fold-change of emission in the control and

treated mice. As can be seen, the treatment does not appreciably

influence tumor growth as photon emission in treated mice was

comparable to that of the controls at each time-point. The number

of animals that had to be sacrificed for humanitarian reasons

before the end of the observational period was higher in control as

compared to treated mice. However, it must be pointed out that

also in this case all animals, at day 28, presented massive tumor

growth that extended outside the thoracic cavity irrespectively of

the treatment plan.

The in vivo experiments were conducted only with the A549-luc

cell line since the utilization of non-luc tagged cells would have

required a large number of mice to assess the antitumor activity of

the toxins. In view of the results obtained in vitro on 5 cell lines and

in vivo with A549-luc we considered unethical to precede with

additional animal studies

The molecular basis of lung cancer have been extensively

studied and the interaction between nicotine and nAChRs has

been recognized as one of the key events leading to the

development of this tumor [2,4,5,6,7,8,9,10,11,16,26]. It is thus

not surprising that nAChRs were considered as good candidate

targets for innovative ‘‘biologic’’ therapies [15,22,23,24]. In this

respect, the existence of potent toxins inhibiting nACh receptors

might open the possibility of adapting the Paul Ehrlich’s ‘‘magic

bullet’’ concept to lung cancer therapy [34].

The cobra snake venom is a source of different toxins possessing

cytolytic and nAChR inhibiting activities [32,35]. Because of this

latter activity, the a-cobratoxin from N. kaouthia has been proposed

as an innovative natural therapeutic agent for lung cancer

[18,19,20,22,24] capable of dramatically inhibit lung tumor cells

growth and to significantly improve the survival of lung tumor-

bearing mice. We have re-evaluated the antitumoral activities of

two different cobra neurotoxins in vitro and in vivo utilizing two

schedules of administration and the same experimental conditions

of previous reports. The results of our experiments clearly show

that these two biologically active toxins have essentially no effects

on tumor cell growth in in vitro assays at the concentration reported

in other publications. A significant tumor cell growth inhibition

was obtained at a-cobratoxin concentration too high to be utilized

in vivo. Importantly a-neurotoxins, at concentrations usable in vivo,

did not inhibit tumor growth nor were capable of significantly

prolonging the survival in mice bearing an orthotopically-grafted

NSCLC. Indeed, the in vivo experiments had to be interrupted at

day 28, or earlier, in treated and untreated experimental animals

for ethical reasons since in all cases the grafted tumor had

extended outside the thorax. These results are in striking contrast

with those of other studies that reported an increased lifespan of

93% in a-cobratoxin treated versus untreated mice [20] and

suggest that cobra a-neurotoxins have no potential therapeutic

effect in lung cancer.

It remains to be explained why in one published report from the

same group all animals had to be killed for humanitarian reasons

at day 29 [18] while in another study the animals, similarly

treated, could be followed up to day 170 [20], (reviewed in [22]).

Surprisingly we have observed that the in vivo tumor growth in

the mice treated with a-cobrotoxin was higher than that of the

control groups. This unexpected finding might suggest that

although this toxin does not bind to the a7 receptor, the reported

predominant subtype present on A549 cells, it might activate the

nicotine-dependent tumorigenic pathway through its binding to

different nAChR (most probably to muscle-type receptor). Thus,

this toxin may be an excellent tool for finely dissecting the

biological pathways where the nAChRs are involved.

Materials and Methods

Ethics statement
All the details about: permissions, regulations and animal

welfare are reported in the ‘‘Animals’’ sub-section of this Methods

section.

Tumour cell lines and a-neurotoxin preparations
The rat pheochromocytoma cell line PC12, utilized as positive

control for a7 nAChR expression, the human NSCLC adenocar-

cinoma cell lines H1650 and H1975 were obtained from the

ATCC; the NSCLC adenocarcinoma A549 and the squamous

carcinoma cell lines SK-MES 1 and CALU 1, were obtained from

our Institutional Cell Repository (ICLC, www.iclc.it). The cell line

A549-luc, modified to stably express luciferase, and utilized for in

vivo studies was kindly provided by Dr. J.W. Shay (H. Simmons

Comprehensive Cancer Center, University of Texas, Dallas). The

A549, A549-luc, SK-MES 1 and H1650 utilized in the present

study had the same origin of those utilized in other published

works [18,19,20,27]. Cells were grown in RPMI 1640 with 10%

bovine serum. (Invitrogen, San Giuliano Milanese, Italy).

The short-chain a-cobrotoxin from N. atra (MW 6949 kDa) was

obtained from Sigma (Milano, Italy). The LD50 in mice of the

batch utilized in this work, determined by the Company, was

0.09 mg/kg.

The long-chain a-cobratoxin (MW 7821 kDa) was purified

from N. kaouthia venom as described [36]. The procedure involves:

gel-filtration, high performance ion-exchange and reversed-phase

chromatography and is utilized to produce large quantities of the

toxin for receptor studies [37]. The a-cobratoxin prepared by this

method is fully active and inhibited acetylcholine-induced currents

in Xenopus oocytes expressing human a7 nicotinic acetylcholine

receptor with IC50 of 4.1 nM [38]. The biologic activity of the

batch of toxin utilized in this study was tested for ability to inhibit

radioactive a-bungarotoxin binding to human a7 nicotinic

acetylcholine receptor heterologously expressed in GH4C1 cells.

At 20 nM a-cobratoxin inhibited a-bungarotoxin binding by more

than 50%.

The lyophilized toxins were dissolved at the stock concen-

tration of 1023 M in Phosphate-Buffered Saline (PBS) and kept

at 220uC.

Western blot analysis
Cell suspensions were obtained after trypsinization of A549 or

A549-luc and PC12 cultures (used as positive control). Cells were

dissolved in lysis buffer and processed as previously described [39].

The protein concentration of cell lysates was determined by the

Bio-Rad Protein Assay (Bio-Rad Laboratories, Segrate, Italy)

according to the manufacturer’s instructions.

Fifty mg of total proteins were separated on NuPAGE 4–12%

bis-Tris gel (Invitrogen, San Giuliano Milanese, Italy) and then
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transferred onto a nitrocellulose membrane by iBlotTM Gel

Tranfer Stacks (Invitrogen).

Blots were probed with the anti a7 AChR polyclonal antibody

(Santa Cruz, Heidelberg, Germany) and subsequently with anti-

ßActin monoclonal antibody (Sigma, Milano, Italy) to ascertain

that an equal amount of protein was loaded in each lane.

Immunodetection was performed using the enhanced chemilu-

minescence (ECL) kit (GE Healthcare, Milano, Italy) following the

supplier’s recommended procedures.

RT and qPCR analysis
Total RNA from A549-luc (untreated and treated with 1, 3

and 9 nM of a-cobratoxin or a-cobrotoxin for 72 h), A549

(untreated and treated with 1, 3 and 9 nM of a-cobratoxin),

H1650, H1975 , SK-MES 1, CALU 1 and PC12 cell lines was

isolated using the RNAeasy Mini Kit (Qiagen) following the

manufacturer instructions. RNA was treated with RNAse-free

DNAse during on-column purification. RNA integrity was

assessed by gel electrophoresis: ratio of 28S to 18S was

approximately 2:1. RNA was quantified by spectrophotometry.

The ratio of the readings at 260 nm and 280 nm was comprised

between 1.9 and 2.1.

One mg of total RNA was used to prepare cDNA with the

SuperScriptTM II RNase H- Reverse Trascriptase (Invitrogen)

according to the manufacturer instructions.

To determine the presence of a7 nAChR on cell lines,

cDNA were used in a semiquantitative reaction as elsewhere

described [40,41,42].

PCR conditions were: 95uC for 10 min, 45 cycles 95uC for

15 sec, 55uC for 15 sec and 72uC for 30 sec).

qPCR reactions were performed using Maxima Sybr Green

qPCR Master Mix (Fermentas GMBH, St. Leon-Rot , Germany),

0.3 mM of each primer and nuclease-free water in a total volume

of 25 ml. Relative expression was calculated using as calibrator

A549-luc with ß2 Microglobulin as the reference gene. The

reactions were performed using the Mastercycler ep RealPlex

instrument and its analytical software (Eppendorf, Milano, Italy).

PCR conditions were: 95uC for 10 min, followed by 45 cycles as

follow: 95uC for 15 sec, 50uC for 30 sec and 72uC for 30 sec.

Specificity of the reaction was controlled by melting curve analysis

ramping from 60uC to 95uC in 20 minutes.

Two independent quantitative PCR reactions were performed

for each sample.

The sequences of the primers for RT and qPCR were: forward

59-GCCAATGACTCGCAACCACTC-3; reverse 59-CCAGCG-

TACATCGATGTAGCA-39. These primers encompass bases

236–571 of the human a7 nAChR, Genbank accession number

X70297 [33]. . The same primers are used also on PC12 positive

control cell lines: human and rat target sequences have 84%

overall homology and complete identity in the crucial 39-terminal

sequence.

Cytotoxicity, colony formation assay and apoptosis
detection in vitro

The colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-

nyltetrazolium bromide) test was used to determine the sensitivity

Figure 8. Fold-Change of bioluminescence emission in tumor-bearing mice. Panel A: mice treated with a-cobrotoxin according to schedule
1. Panel B: mice treated with a-cobrotoxin according to schedule 2. Panel C: mice treated with a-cobratoxin according to schedules 1 and 2.
doi:10.1371/journal.pone.0020695.g008

Figure 9. Raw IVIS determination of tumor growth in mice treated with a-cobratoxin according to schedules 1 and 2. X denotes the
dead animals.
doi:10.1371/journal.pone.0020695.g009
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of the A549, SK-MES 1 (both 1.56103 cells) H1650, H1975 , and

CALU 1 (36103 cells) cell lines towards increasing concentrations

of toxins (from 0.6 to 50.0 mM) or CDDP (from 1.25 to 20.0 mM)

(31). The IC values, defined as the concentrations inhibiting cell

growth relative to control, were determined from the analysis of

dose response-curves obtained after 72 h of exposure. Every

concentration was tested in quadruplicate wells in each experiment

and at least three independent experiments were performed.

The cell lines A549 (a7 AChR +) and NCI-H1975 (a7 AChR -),

were grown in RPMI 1640 supplemented with 10% FBS. Cells were

trypsinized and plated in 24-well plates or 35 mm Petri at densities

of 50 and 100 or 150 and 300 cells/dish for A549 and NCI-H1975,

respectively. Cells were allowed to adhere overnight and then

exposed to either long- chain a-neurotoxin from Naja Kaouthia, at

concentrations of 15 mM, 7.5 mM, 3.8 mM (A549) and 6 mM, 3 mM,

1.5 mM (NCI-H1975), or short-chain a-neurotoxin from Naja Atra,

at concentrations of 30 mM and 15 mM (both cell lines).

Treated cells were then incubated for 7–10 days, until visible

colonies formed. The dishes were then washed in phosphate-

buffered saline, and colonies stained with 1% methylene blue in

methanol for 15 min. Plates were then washed in tap water, and

colonies containing greater than 50 cells were counted on an

inverted microscope. Survival was compared to the plating

efficiency of untreated controls.

Apoptosis was determined by annexin V–FITC and propidium

iodide (PI) double staining (Bender MedSystem,Vienna, Austria),

by fluorescence activated cell-sorting (FACS) (BD Biosciences,

Milan, Italy) analysis [43]. A5409 cells (2.56105) were treated for

24 h with 1, 10 and 50 mM a-cobratoxin from N. kaouthia.

Animals
All the procedures involving animals were conducted as

indicated in the Italian National Guidelines (D.L. No. 116 G.U.,

suppl. 40, 18.2.1992, circolare No. 8, G.U. July 1994) and in the

appropriate European Directives (EEC Council Directive 86/609,

1.12.1987), adhering to the Guide for the Care and Use of

Laboratory Animals (United States National Research Council,

1996) and according to an approved protocol reviewed by the

Institutional Animal Care and Use Committee (Genova, 15

November 2004, reference N.149). All the in vivo experiments

reported here were done on the basis of authorization no. 254 of

the Animal Ethics Committee of the IST of Genoa (Italy).

CD1 female mice (Harlan Nossan, Milano, Italy), 6–7 weeks

old, were used for toxicity studies. Mice were allowed a 7-day rest

period before experiments. All mice were housed at 7–9 per cage,

maintained at 22uC with a 12 h light/dark cycle and fed with a

standard diet and water ad libitum.

Non-Obese Diabetic/Severe Combined Immunodeficient

(NOD/SCID) mice (8 week-old) were used for toxin antitumor

activity studies. They were born and housed in specific filter-

capped cages, kept in pathogen-free conditions and maintained in

the facilities within the animal resources centre at the IST of

Genoa in accordance with the recommendations, regulations and

standards approved by the Federation of European Laboratory

Animal Science Association (FELASA).

In vivo toxicity studies and identification of the Maximum
tolerated dose (MTD)

Toxicity of a-neurotoxins was studied in CD1 mice. Animals

were given intravenous injection (i.v.) of single toxin dose (range

0.1–5,0.mg/kg and 0.1–0.5 mg/kg for cobrotoxin and cobratoxin,

respectively) and checked for acute toxicity. Fifteen minutes after

dosing the mice were allowed free access to food and water. The

behavior and number of survivors were checked daily over an

observation period of 14 days. Body weight was recorded every 2

days and was used as an index of toxicity. Animals were sacrificed

by CO2 at the end of the observation period and immediate

autopsy was carried out.

The lethal dose (LD: the dose of a drug or treatment that will

cause death) and maximum tolerated dose (MTD: the highest dose

of a drug or treatment that does not cause unacceptable side

effects) were identified.

In Vivo orthotopic grafting of A549-luc human lung
cancer cells and bioluminescence imaging (BLI) detection

NOD/SCID mice were xenografted with 0.56106 human A549-

luc cells/20 ml PBS into the right lung [20]. Treatment started 7

days after surgery to allow tumor development and mimic clinical

behavior. Experiments were carried out according to two different

treatment protocols, as described in Results. Animals were

sacrificed when they showed important symptoms of dyspnoea,

fatigue, inability to reach food and water, emaciation and

excessive decrease in weight loss. Each animal underwent autopsy

to confirm the presence, characteristics and extent of tumor

development.

Bioluminescence imaging (BLI) was carried out weekly by the In

Vivo Imaging System (IVIS) technology (Caliper Life Sciences,

Paris, France) which measures luciferase activity. Mice were

injected i.p. with 200 ml Luciferin at 15 mg/ml (Promega

Madison, Wisconsin, USA) 10 min before imaging and anesthe-

tized by isoflurane. Thereafter, animals were put in the light-

protected chamber of the IVIS imaging system, and photons

emitted were measured over 3 min. Regions of interest (ROI) were

drawn over the area of photon emission and quantified using the

‘‘Living Image’’ software.

Supporting Information

Figure S1 a7 NAchR expression in A549 and A549-luc
cells treated with a–neurotoxins. Cell lines were treated with

0.001, 0.003 and 0.009 mM a–cobratoxin and the expression of

the a7 receptor was measured by qPCR utilizing as calibrator the

RNA of untreated A549 or A549-luc and ß2 Microglobulin as

reference gene. A: A549 a–cobratoxin, B: A549-luc a–cobratoxin;

C: A549-luc a–cobrotoxin. N.D.: Not Determined.

(TIF)
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