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Background: Researchers use a variety of population size estimation 
methods to determine the sizes of key populations at elevated risk of 
human immunodeficiency virus (HIV)/acquired immune deficiency 
syndrome (AIDS), an important step in quantifying epidemic impact, 
advocating for high-risk groups, and planning, implementing, and 
monitoring prevention, care, and treatment programs. Conventional 
procedures often use information about sample respondents’ social 
network contacts to estimate the sizes of key populations of interest. 
A recent study proposes a generalized network scale-up method that 
combines two samples—a traditional sample of the general popu-
lation and a link-tracing sample of the hidden population—and 
produces more accurate results with fewer assumptions than conven-
tional approaches.
Methods: We extended the generalized network scale-up method 
from link-tracing samples to samples collected with venue-based 
sampling designs popular in sampling key populations at risk of HIV. 
Our method obviates the need for a traditional sample of the general 
population, as long as the size of the venue-attending population is 

approximately known. We tested the venue-based generalized net-
work scale-up method in a comprehensive simulation evaluation 
framework.
Results: The venue-based generalized network scale-up method pro-
vided accurate and efficient estimates of key population sizes, even 
when few members of the key population were sampled, yielding 
average biases below ±6% except when false-positive reporting error 
is high. It relies on limited assumptions and, in our tests, was robust 
to numerous threats to inference.
Conclusions: Key population size estimation is vital to the success-
ful implementation of efforts to combat HIV/AIDS. Venue-based 
network scale-up approaches offer another tool that researchers and 
policymakers can apply to these problems.

Keywords: HIV/AIDS; Key populations; Network scale-up meth-
ods; Social networks; Venue-based sampling
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Many national and international organizations identify 
certain groups as key populations at elevated risk of 

HIV infection and transmission, including men who have 
sex with men, female sex workers, and people who inject 
drugs.1 Key populations are crucial for epidemic surveil-
lance and progress assessment.2–5 Likewise, deploying 
programs tailored to key populations improves response ef-
fectiveness and sustainability, but few countries have scaled 
up programs for these groups.6 Uncertainty over the sizes of 
key populations is one factor among several that impedes 
deployment of tailored responses, in part because key popu-
lations tend to be undercounted.7 Although quantifying ep-
idemic impact, advocating for resources, and implementing 
prevention, care, and treatment programs all rely on accurate 
knowledge of key population sizes,8 methods of key popula-
tion size estimation are underdeveloped. As such, new, valid, 
and deployable methods of estimating key population sizes 
are of broad interest.

A challenge in estimating key population sizes is that 
such groups are often “hidden populations” that cannot be 
surveyed with traditional approaches.8,9 Hidden populations 
lack a sampling frame, are rare in the general population, 
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and are frequently unwilling to participate in standard 
survey protocols because of stigma, low trust, and desired 
anonymity.10 The difficult but important task of collecting 
data on key populations has necessitated the use of nontra-
ditional survey methods,11 the most common of which are 
respondent-driven sampling and venue-based sampling.12–16 
Respondent-driven sampling draws on ideas from social net-
work analysis,17 which formally models groups of people 
and the direct and indirect ties between them through diverse 
relationships, including friendship, exchange, and acquaint-
ance,18 and uses social networks to obtain referrals to sample 
participants. By contrast, venue-based sampling leverages 
the tendency of hidden population members to gather in 
identifiable locations for sampling.

Many samples are collected with respondent-driven and 
venue-based sampling, making these methods a potentially 
valuable resource for key population size estimation. Unfortu-
nately, methods for doing so are limited. The primary aim of 
most applications of respondent-driven19–21 and venue-based 
sampling22–24 is surveillance-oriented—producing general-
izable estimates of HIV prevalence and risk behaviors—and 
most methodological research on these sampling methods 
focuses on prevalence estimation.25–32 Few studies have devel-
oped key population size estimators for such samples, and al-
most all of those have focused on respondent-driven sampling, 
where researchers have used network scale-up,33,34 capture–
recapture,35,36 and Bayesian approaches,37,38 drawing on tools 
of size estimation for traditional samples.39–42

Statistical work on population size estimation from 
venue-based samples is particularly limited. Most popu-
lation size estimation with venue-based samples uses pro-
portionate scaling approaches that rely on the sampled 
prevalence of respondents reporting key population-defin-
ing behaviors.43–45 For instance, one venue-based sampling 
method used for key population size estimates in more 
than a dozen countries is Priorities for Local AIDS Control 
Efforts (PLACE).46 PLACE constructs a sampling frame 
of venues in the study area where key population members 
like men who have sex with men gather, then sample them. 
Unlike respondent-driven sampling, which only samples 
key population members, PLACE’s protocols usually seek 
to over-sample—but not exclusively sample—key popula-
tion members. As such, PLACE studies often sample only 
a few key population members, which limits the quality of 
key population size estimates that can be made using propor-
tionate scaling approaches.

Given the challenges of key population size estimation 
in venue-based sampling, we asked whether size estimation 
methods currently used with respondent-driven sampling can 
be extended to these samples. To do this, we examined recent 
methods for hidden population size estimation with respon-
dent-driven sampling data,41,47 expanded them for use with 
venue-based sampling and tested our proposed methods in a 
simulation evaluation framework.

PREVIOUS RESEARCH
Traditional network scale-up approaches collect “aggre-

gate relational data” by asking respondents how many people 
they know in different groups, with one group including the 
hidden population of interest and others including populations 
with administratively known numbers, like people named 
Martha or police officers.33,48 Note, eAppendix A (http://links.
lww.com/EDE/B558) reviews key assumptions and notations. 
These approaches33,49 use an estimator that combines the total 
population size ( NU ) and, for each sample member, how 
many connections they report to members of the hidden pop-
ulation ( yiK ) and to members of the total population ( ŷiU ).
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The traditional network scale-up method is powerful because 
it can be applied to general population samples without no re-
quirement to survey key population members, who are likely 
to be hidden.33,40,41 This is possible because it makes several 
key but unrealistic assumptions that we review in eAppendix 
B; http://links.lww.com/EDE/B558.33,47,50–54

Recently, Feehan and Salganik33 introduced a new 
approach, the Generalized Network Scale-up Method, which 
replaces traditional network scale-up methods’ unrealistic 
assumptions with less stringent ones (see eAppendix B; http://
links.lww.com/EDE/B558). This method contains two innova-
tions. First, it uses a convenient identity in social networks: 
the total outgoing ties must equal the total incoming ties, a 
property that also holds for network subsets and means that 
the number of ties from any one group to any second group 
must equal the number of ties coming to the second group 
from the first. Figure 1 illustrates this identity in three panels. 
Panel A shows a hypothetical social network; panel B shows 
a different representation of the same network where each 
person is shown as both a sender (left) and receiver (right) of 
ties; and panel C shows the identity holds for network subsets.

To formally represent the ideas in Figure  1, we de-
fine a sampling frame F and make an important assumption 
that all key population members (K) are on the frame; that 
is, K F⊆  (K is a subset of F). In venue-based sampling, 
the frame is venue attenders and this assumption implies 
that all key members have nonzero probabilities of venue at-
tendance. Let yiK  be out-reports from the ith member of F 
to each member of K, and let v jF  be in-reports for the jth 
member of K from each member of F. Note that we assume 
v j KjF = ∀ ∉0  (in-reports are zero for all cases who are not 
key population members). In the generalized network scale-up 
method and our approach below, this is an assumption about 
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accurate self-reporting of key population membership, but it 
only applies in one direction. Specifically, it only assumes that 
those who are not members of the key population do not say 
they are; the much more likely converse situation, wherein key 
population members fail to identify as such owing to stigma or 
other reasons, is not assumed.33 It is a reasonable assumption 
for situations where key population membership is often stig-
matized, the case of interest, and because PLACE and other 
venue-based sampling protocols only condition sample partic-
ipation and any associated incentives on venue attendance, not 
key population membership. If we assume no false-positive 
or false-negative reports, that reported ties equal real ties and 
all real ties are reported, assumptions we relax below, then 
out-reports from frame members to key population members 
must equal in-reports to key population members from frame 
members, as shown in Equation (2).
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Because out-reports equal in-reports as per Equation (2), it 
must be the case that the total out-reports from the frame pop-
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Equation (3) highlights that, if the above assumptions are 
met, two quantities are needed to know the size of the key 
population: the total number of ties from frame members to 

key population members 
i F
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 and the mean number of 

ties from frame members to members of the key population 

FIGURE 1.  A schematic representation of the key features of the generalized network scale-up approach. Panel A shows a hypo-
thetical social network linking persons 1–5 through directed social network ties. Key population members are shown with shaded 
nodes, nonkey population members are shown with unshaded nodes. Panel B represents the persons and social networks ties in 
panel A as a function of outgoing ties (left side) and incoming ties (right side). At the population level, the number of outgoing ties 
must equal the number of incoming ties. Panel C limits the outgoing and incoming ties to those that are sent to and received by 

key population members. The sum of ties outgoing ties to key population members 
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/ . Even in complex sampling scenarios, the 

insights in Equation (3) still apply if we can accurately and 
efficiently estimate the two quantities of interest.

Feehan and Salganik’s33 second innovation is to propose 
conducting two separate samples: one to estimate outgoing ties 
from the frame population to the key population ( y i FiK ∀ ∈ , 
estimating yik  for all members of the sampling frame) and one 
to estimate incoming ties to the hidden population from the frame 
population ( v i KiF ∀ ∈ , estimating viF  for all members of the 
hidden population). In their approach, the first sample must be 
a standard sample, i.e., a conventional probability sample ( SF ), 
where each case is selected with potentially unequal but known 
inclusion probabilities from a known sampling frame that may 
or may not cover the total population. The second sample for the 
generalized network scale-up method can be focused on the hid-
den population and must only satisfy the criteria of being a “rela-
tive probability sample.”33 A sample SK  is a relative probability 
sample if it is selected from a potentially unknown but existing 
sampling frame FK  of key population members such that each 
person i  has an inclusion probability π i  where π i Ki F> ∀ ∈0  
(inclusion probabilities are positive for all members of the sam-
pling frame of key population members), but all that is observed 
for each sample member j  is their probability of inclusion rel-

ative to other sample members, ϕ
π

πj
j

k S kK

=
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 (see eAppen-

dix A; http://links.lww.com/EDE/B558). Relative probability 
samples do not require that researchers know each case’s sample 
inclusion probability; rather, researchers only need to know 
how each sample member’s inclusion probability compares to 
all other sample members’ inclusion probabilities. Feehan and 
Salganik33 argue that respondent-driven sampling meets the def-
inition of a relative probability sample.

THE GENERALIZED NETWORK SCALE-UP 
METHOD IN VENUE-BASED SAMPLING
There are two challenges to use generalized network 

scale-up method with venue-based sampling. First, individual 
sample inclusion probabilities are not known. Second, only 
one sample is obtained, and it is not a traditional probability 
sample; rather, it is a sample where inclusion probabilities 
are determined both by a multistage sampling approach and 
respondents’ frequency of attending venues. We develop an 
approach for using the generalized network scale-up method 
in venue-based sampling that addresses these issues.

Sample estimators for the generalized network scale-
up method use out-reports to estimate the total outgoing 
ties from frame members to members of the key population
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the Horvitz-Thompson estimator of the population total.33

Equation (4) weights each sample member’s out-reports to 
key population members by their known sample inclusion 
probability, π i . Feehan and Salganik33 use the relative prob-
ability sample collected with respondent-driven sampling or 
other link-tracing methods to estimate the average visibility of 
key population members. To do this, they estimate the mean 
number of incoming ties from frame members to key popula-

tion members 
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In Equation (5), ϕi  is the relative inclusion probability for the 
relative probability sample’s ith member.

Using the estimators proposed in Equations (4) and (5), 
the size of the hidden population can be estimated in the same 
fashion as achieved at the population level in Equation (3).
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The denominator of Equation (6) can be readily estimated 
in venue-based sampling if relative inclusion probabilities 
among key population members are known. Unfortunately, 
the complexity of venue-based sampling precludes estimation 
of the numerator in Equation (6), τ̂ FK , by the approach used 
in Equation (4) because, in this method, the sample inclusion 
probabilities of frame members, π i , are unknown.

We argue that venue-based sampling produces relative 
probability samples, because the sample of venue-attending 
frame members, SV , is determined by participants’ frequency 
of venue attendance. We can estimate relative inclusion prob-
abilities, ϕ j , by scaling sample participants’ frequencies of 
venue attendance relative to each other. The challenge, then, 
is estimating the number of outgoing ties from frame mem-
bers to members of the hidden population, τ̂ FK , using relative 
probability sampling. We propose here a method for estimat-
ing this quantity in a relative probability sample. Our proposed 
method requires that we know the number of frame population 
members that are not key population members, NV . Although 
this assumes that researchers know the number of venue 
attenders and that key population members are a small frac-
tion of them, we note that uncertainty about this number will 
affect results linearly such that an error of 10% in it will result 
in an approximate additional error of 10%. We use the same 
approach as described in Equation (5), but we estimate the 
population mean out-reports from members of V  to members 
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of K  multiplied by the number of people who attend venues 
but are not hidden population members, NV . This estimator is 
shown in Equation (7).
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The new approach to estimating total out-reports from frame 
members to key population members in Equation (7) is readily 
adaptable to producing venue based-generalized network 
scale-up method estimates as shown in Equation (8).
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Alternative approaches to estimating the total outgoing ties 
from frame members to key population members are possible 
and produce similar results (see eAppendix C; http://links.
lww.com/EDE/B558).

DATA REQUIRED FOR VENUE-BASED–
GENERALIZED NETWORK SCALE-UP METHOD

To implement the venue-based–generalized network 
scale-up method, we suggest that researchers using venue-
based sampling ask questions that enable estimation of the 
outgoing ties from frame members to key population mem-
bers and of the incoming ties to key population members from 
frame members. To take an example from a PLACE survey 
that focuses on sampling respondents at bars and clubs, for in-
stance, researchers interested in estimating the number of men 
who have sex with men could ask all respondents the follow-
ing two questions: (1) “Think of all the people you know in 
this district whom you have talked to in the past 4 weeks. You 
know them and they know you. Of those people you know, 
how many go out to bars and clubs?”, and (2) “Some men have 
sex with other men. Think of all the men who have sex with 
men whom you know in this district, those whom you have 
talked to in the past 4 weeks. You know these men and they 
know you. Of those men you know who have sex with other 
men, how many go out to bars and clubs?” Researchers should 
also ask respondents (3) their status in the key population of 
interest (whether they are men who have sex with men in this 
example), and (4) how frequently they attend venues and other 
weighting questions typically used in venue-based sampling 
studies.46 Subtracting responses to question 2 from responses 
to question 1 among those who are members of the key popu-
lation as a measure of v jV , and using responses to question 2 
among those who are not members of the key population as a 
measure of yiK , estimates of the size of the venue-attending 
population overall as a proxy for NV , and each respondents’ 
frequency of attending venues and other relevant weight-
ing variables to measure φi , researchers can calculate the 

venue-based–generalized network scale-up method estimate 
of key population size. Additional questions suggested in net-
work scale-up research33,34 can help to improve estimates of 
v jF  and yiK .

METHODS AND MEASURES
We tested the effectiveness of N̂K

VB GNSUM−  for estimat-
ing the sizes of key populations through a series of simula-
tions that selectively varied relevant features of the population 
and sampling. We aimed to assess the validity and efficiency 
of the venue-based–generalized network scale-up method 
under different situations that researchers might encounter 
in the field. The essence of our approach is that we generate 
synthetic populations with parameterized features—including 
size, composition, the social network linking its members 
together, each person’s frequency of venue attendance, and 
rates of falsely reporting ties to key population members—
then we simulate nonrandom samples of people from these 
populations in line with venue-based sampling protocols. 
We then apply the venue-based–generalized network scale-
up method to these samples to learn how different features 
of the population and sampling design might influence the 
quality of estimates produced by this method, assessing both 
their biasedness and their variability from sample to sample. 
Our simulations focused on estimator performance under four 
conditions that previous study has not explored: “Test A” as 
key population size varies; “Test B” as the sample size of key 
population members varies; “Test C” under different scenar-
ios governing the sampling probabilities of members of K  
and V ; “Test D” as more false-positive ties are reported. Full 
simulation details are available in eAppendix D; http://links.
lww.com/EDE/B558; code is available in eAppendix F; http://
links.lww.com/EDE/B557.

SIMULATION RESULTS
Figure 2 shows box and whisker plots of the results of 

tests A and B. In these tests, we varied key population size 
( NK ) and the number of key population members sampled 
( nK ); we held numbers of nonkey population members sam-
pled ( nV ) and on the sampling frame ( NV ) constant. The 
graph’s three panels are arranged in ascending order of key 
population size (test A), while each panel’s x axis is arranged 
in ascending order of the sample size of key population mem-
bers (test B). In general, N̂K

VB GNSUM−  produces adequate esti-
mates, as either NK or nK  varies.

Across the range of values of test A, we found that a measure 
of relative bias that allows for comparisons across the population 
sizes ( relativebias mean= × −( )−100 ˆ /N N NK

VB GNSUM
K K

) is generally low. For instance, when the sample size was 
nK = 15 , the 100,000 samples conducted at NK = 1000,  had 
an average relative bias of −0.6% (undercounting the total by 
approximately six people, on average). Table 1 shows relative 
bias for all combinations in tests A–D. The largest relative bias 
occurred when nK = 5  and NK = 2 500, , where N̂K

VB GNSUM−
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on average overcounted the key population size by 150 people 
( relativebias = 6 0. % ).

Regarding test B, the key finding was that the venue-
based–generalized network scale-up method yielded approx-
imately unbiased estimates with low variability even when 
few key population members were sampled. We measured the 
method’s variability from sample to sample in terms of relative 
standard error, which expresses the standard deviation of the dis-
tribution of mean estimates within a given combination of NK  
and nK  across the 100 simulated networks and 1,000 simulated 
samples per network as a percentage of the target population 

size: 

relative standard error

mean mean

=

× − (− −100 ˆ ˆN NK
VB GNSUM

K
VB GNSUM ))( )( )2

/ ).NK
 

Sampling additional key population members quickly yielded 
declining returns in relative standard errors. For instance, 
when Nk = 2 500, , the relative standard error declines from 
31.4% when nK = 5  to 17.8% when nK = 15  to 13.5% when 
nK = 45 ; behavior is comparable at other population sizes. 
Table 2 shows relative standard errors for N̂K

VB GNSUM−  in all 
tests. Although a larger sample is better, these findings suggest 
that the venue-based–generalized network scale-up method 
produces reliable size estimates even when samples contain 
few key population members (about 25 or so).

Figure  3 presents test C’s results, where we explored 
different distributions of sample inclusion probabilities while 
fixing key population size at NK = 1000,  and the size of the 
sample of key population members at nK = 25 . Y axis la-
beling is the same as in Figure 2 for comparability. The graph’s 
four panels show different distributions of sample inclusion 
probabilities for frame members who are not members of the 
key population (V ). Within each panel, four distributions of 
sample inclusion probabilities for key population members 
( K ) are arrayed along the x axis. Across all 16 combina-
tions, the results are encouraging. At no point did relative bias 
exceeds ±3.3%, and relative standard errors were all less than 
30.0%, although some combinations of sampling distributions 
led to lower standard errors than others. These results indicate 
that venue-based–generalized network scale-up method is ro-
bust to different distributions of sample inclusion probabili-
ties, as well as combinations of sample inclusion probabilities 
for members of either K  or V .

Test D assessed the robustness of the venue-based–
generalized network scale-up method to different rates of 
reporting error. The venue-based–generalized network scale-
up method is robust to false-negative reports,33 which occur 
when members of the frame population fail to report ties to 

FIGURE 2.  Box and whisker plots of results of 
test A, which varies the size of the key popula-
tion to be estimated ( NK ), and test B, which 
varies the size of the sample collected from key 
population members ( nK ). Note that outlier 
values are not shown.

TABLE 1.  Relative Bias for Venue-based Generalized 
Network Scale-up Method Estimator in Each Combined 
Scenario of Tests A–D, Which Vary the Size of the Key 
Population (Test A), the Sample Size (Test B), the Sampling 
Probabilities (Test C), and the Reporting Error (Test D)

Tests A and B: as key population size (test A) and sample size (test B) vary

 nK = 5 nK = 15 nK = 25 nK = 35 nK = 45

NK = 500 −0.1% −3.3% −4.1% −3.9% −4.3%

NK = 1000, 3.3% −0.6% −1.4% −1.7% −1.7%

NK = 2 500, 6.0% 1.9% 0.8% 0.4% 0.6%

Test C: under different scenarios governing sampling probabilities

 πK S= 1 πK S= 2 πK S= 3 πK S= 4  

πV S= 1 2.1% −1.3% −2.3% −2.1%  

πV S= 2 2.7% −0.4% −0.7% −1.1%  

πV S= 3 3.2% −0.5% −1.0% −1.0%  

πV S= 4 3.3% −0.2% −1.8% −0.7%  

Test D: as reporting error varies

 FPR = 0.00 FPR = 0.05 FPR = 0.10 FPR = 0.15 FPR = 0.20

NK = 500 −4.3% −4.0% −4.5% −1.5% 13.4%

NK = 1000, −1.3% −1.4% −0.8% 6.7% 25.2%

NK = 2 500, 0.6% 1.0% 5.7% 19.4% 31.3%

Scenarios are described in the text.
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members of the key population. To expand on the previous 
study,33 we tested robustness to false positives (operational-
ized as the false-positive rate, FPR, see eAppendix D; http://
links.lww.com/EDE/B558), which occur when frame popula-
tion members report knowing more key population members 
than they in fact do. False-positive reporting is a problem for 
the generalized network scale-up method.33

Figure 4 presents the test D’s results using the same 
organization as Figure 2 except that each panel’s x axis now 

indexes increases in false-positive reporting. The results 
highlight an interesting interaction between false-positive 
reporting and key population size. For small key popula-
tions, increases in false-positive reporting had little effect 
on estimate quality, but higher levels resulted in overes-
timation in large key populations. Nonetheless, at mod-
erate levels of false-positive reporting, such as those below 
10%, population size estimates were generally accurate in 
all three population size scenarios. As shown in Table  1, 
relative biases for the venue-based–generalized network 
scale-up method were lower than 6.0% and of comparable 
magnitude to the unbiased scenarios in all scenarios with 
low false-positive reporting, and only in the largest popu-
lation size scenarios did relative bias exceed 10% at any 
levels. These findings indicate that the venue-based–gen-
eralized network scale-up method is robust to moderate 
false-positive reporting.

DISCUSSION AND CONCLUSIONS
To hasten the end of the HIV/AIDS epidemic, UNAIDS 

has adopted the “90-90-90” cascade of care targets: 90% di-
agnosis rates among those living with HIV, 90% antiretro-
viral treatment rates among those diagnosed, and 90% viral 
suppression rates among those receiving antiretrovirals.55 No 
country has yet met these goals, although some are close, 
and diagnoses are the most pressing challenge. Global esti-
mates suggest diagnosis rates are at 54%, treatment rates are 
at 76%, and viral suppression rates are at 78%.56 Targeting 
outreach programs to key populations may increase diagnosis. 
Key population sizes vary substantially from place to place, 
however, and outreach resources are limited. These factors 
make key population size estimation a critical component of 
an effective HIV/AIDS response. Not knowing that, for in-
stance, a provincial hub has more key population members 
than a capital city might thwart optimized outreach and the 
alignment of resource deployment and demand. As such, new 

TABLE 2.  Relative Standard Errors for the Venue-based 
Generalized Network Scale-up Method Estimator in Each 
Combined Scenario of Tests A–D, Which Vary the Size of the 
Key Population (Test A), the Sample Size (Test B), the Sampling 
Probabilities (Test C), and the Reporting Error (Test D)

Tests A and B: as key population size (test A) and sample size (test B) vary

 nK = 5 nK = 15 nK = 25 nK = 35 nK = 45

NK = 500 39.4% 21.4% 22.3% 20.3% 19.2%

NK = 1000, 54.6% 22.1% 19.7% 15.7% 15.8%

NK = 2 500, 31.4% 17.8% 16.6% 13.5% 13.5%

Test C: under different scenarios governing sampling probabilities

 πK S= 1 πK S= 2 πK S= 3 πK S= 4  

πV S= 1 24.3% 28.0% 21.7% 18.9%  

πV S= 2 24.0% 26.2% 24.1% 19.2%  

πV S= 3 22.8% 24.2% 17.1% 15.0%  

πV S= 4 21.2% 23.6% 16.6% 13.0%  

Test D: as reporting error varies

 FPR = 0.00 FPR = 0.05 FPR = 0.10 FPR = 0.15 FPR = 0 20.

NK = 500 21.0% 20.7% 20.4% 24.3% 30.2%

NK = 1000, 16.9% 18.5% 18.1% 20.2% 26.3%

NK = 2 500, 16.1% 16.4% 17.2% 17.6% 22.1%

Scenarios are described in the text.

FIGURE 3.  Box and whisker plots of results of 
test C, which explores different distributions of 
sample inclusion probabilities both for mem-
bers of V and members of K. S1, S2, S3, and S4 
refer to the scenarios described in the section 
discussing test C. Note that outlier values are 
not shown.

http://links.lww.com/EDE/B558
http://links.lww.com/EDE/B558
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approaches for key population size estimation are of great in-
terest to public health.

We developed a new approach, the venue-based–gen-
eralized network scale-up method, for estimating the sizes of 
key populations that can be applied to a very popular hidden 
population sampling scheme, venue-based sampling. Our 
method builds on the previous study focused on estimating 
population sizes with respondent-driven sampling.33 We used a 
simulation evaluation framework to test the venue-based–gen-
eralized network scale-up method’s robustness to commonly 
experienced issues and found minimal biases and acceptable 
sampling variability. These results held across ranges of pop-
ulation size, even when surveying only a small number of key 
population members, and they were robust to different distri-
butions of sample inclusion probabilities among population 
members and moderate amounts of false-positive reporting. 
Further study could test different ways of aggregating dispa-
rate estimates of the assumed size of the overall venue-attend-
ing population and continue to refine methods for obtaining 
accurate estimates of that quantity. The development of var-
iance estimators for the venue-based–generalized network 
scale-up method, generalized network scale-up method, and 
traditional network scale-up methods is also a research area 
of high priority; there are substantial limitations to current 
variance estimation approaches in scale-up studies, including 
those using the generalized network scale-up method.33

By leveraging information on the social networks of 
key population members, the venue-based–generalized net-
work scale-up method arrives at its estimates from a different 
theoretical angle than other commonly used population size 
estimation approaches. Our results indicate that the method 
works in circumstances that are particularly problematic 
for proportionate scaling methods, such as when few key 

population members are sampled. In this way, it adds value 
to venue-based sampling studies where small samples of key 
population members might preclude reliable size estimation. 
The venue-based–generalized network scale-up method also 
allows for estimates even when members of the key popu-
lation infrequently attend venues (but, note its assumption 
that all key population members have nonzero probabilities 
of venue attendance). For some key populations in some 
contexts, venue-based sampling can be quite limited if most 
group members infrequently attend venues and only meet one 
another via. social media.

The venue-based–generalized network scale-up 
method should not supplant other key population size esti-
mation approaches. Rather, it provides alternate information 
that can complement and triangulate other data. For instance, 
researchers could combine the method with commonly used 
aggregation and proportionate scaling approaches, or with 
capture-mark-recapture approaches, and Bayesian tech-
niques could help combine across approaches.57 Expanding 
the toolkit of population size estimation procedures for key 
populations is an important step in the quest to achieve cas-
cade of care targets and hasten the end of the HIV/AIDS 
epidemic.
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