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Abstract: In this work, a block-coupled algorithm is presented, which can compute laminar, incom-
pressible, non-isothermal, viscoelastic flow problems based on the log-conformation tensor approach.
The inter-equation coupling of the incompressible Cauchy linear momentum and mass conservation
equations is obtained in a procedure based on the Rhie–Chow interpolation. The divergence of the
log-conformation tensor term in the linear momentum equations is implicitly discretized in this work.
In addition, the velocity field is considered implicitly in the log-conformation tensor constitutive
equations by expanding the advection, rotation and the rate of deformation terms with a Taylor series
expansion truncated at the second-order error term. Finally, the advection and diffusion terms in
the energy equation are also implicitly discretized. The mass, linear momentum, log-conformation
tensor constitutive model and energy-discretized linear equations are joined into a block-matrix
following a monolithic framework. Validation of the newly developed algorithm is performed for
the non-isothermal viscoelastic matrix-based Oldroyd-B fluid flow in the axisymmetric 4:1 planar
sudden contraction benchmark problem.

Keywords: fully implicit coupled solver; viscoelastic flow; log-conformation tensor approach; non-
isothermal effects; finite volume method; OpenFOAM

1. Introduction

The polymers’ processing techniques are predominantly non-isothermal, such as
injection molding [1–3], heat exchange problems [4,5], or in plastication, including heating
and cooling sequences [6,7]. The thermal conductivity and heat transfer are usually low in
this processes; however, due to the heating or cooling of the machine’s operations, large
temperature gradients arise in the fluid [4,8]. In addition, the viscoelastic behavior of
polymers acts on the temperature field as well as on the fluid deformation [4,8]. Therefore,
flow properties are strongly dependent on both rheology and temperature; and, thus, it
is essential to understand and make predictions regarding non-isothermal viscoelastic
fluid flows.

The temperature dependence of linear viscoelastic properties (such as the relaxation
time λ) can be included in constitutive equations using the time-temperature superposition
principle [9]. In this way, the material properties can be defined through a function of the
temperature, the so-called shift factor [10]. Two empirical correlations of the shift factor
are widely employed: the William–Landel-Ferry (WLF) [11] and Arrhenius [12] models.
Thus, the temperature is considered an independent variable in the constitutive equations
employed to compute the components of the polymeric stress tensor (see the work of
Peters and Baaijens [13] for a detailed discussion on this topic). In addition, when solving
non-isothermal viscoelastic flows, the internal energy of the fluid is not only a function
of the temperature [13]. The conversion mechanisms of internal energy need to be taken
into account for non-isothermal viscoelastic flows; specifically, the thermal energy is partly
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dissipated and partly stored in the fluid. Therefore, the energy equation should predict
which part of the mechanical power is dissipated and which part is accumulated as elastic
energy [4,8]. For that purpose, an additional term is needed in the energy equation [14].
Peters and Baaijens [13] developed an internal energy equation for multiple rate-type fluids
based on a constant weighting factor that characterizes the ratio of entropy to energy
elasticity [15]. Several numerical studies have also used this concept [16–18] and we will
employ this in the current work.

Numerical simulations can describe these complex flow mechanisms and help to gain
a better understanding of, and improvements in, the processes where they occur. For that
purpose, Computational Fluid Dynamics (CFD) are used to guide the theoretical researchers
and practitioner engineers, through the use of both open-source [3–5,7,19] and proprietary
software [20]. In the last decade, a significant effort has been made in research on the non-
isothermal flows of viscoelastic fluids. A survey of the scientific literature finds different
works that describe the non-isothermal viscoelastic fluid flows based on iterative numerical
algorithms. For example, Shahbani-Zahiri et al. [21] studied the recirculation and thermal
regions of viscoelastic flow in the symmetric planar problem for different expansion angles.
Kunisch and Marduel [22] employed the finite element (FE) method to study the optimal
control of non-isothermal viscoelastic fluids to minimize vortices and control the heat flux.
Spanjaards et al. [23] performed a 3D transient non-isothermal simulation to predict the
extrudate shape of viscoelastic fluids emerging from an asymmetric keyhole-shaped die.
However, the current state-of-the-art codes depend on iterative algorithms, such as the
Semi-Implicit Method for Pressure Linked Equations (SIMPLE) procedure [24], which are
known to delay the convergence of the problem of interest when compared to monolithic or
coupled algorithms [25–30]. The iterative algorithms, also known as segregated algorithms,
are characterized to provide a separate solution of the linear momentum, mass, viscoelastic
polymer stress tensor and energy conservation equations, which are then iterated until
convergence. Recently, with the increase in computational resources and due to scalability
problems in the segregated algorithms, the monolithic approach has been used, with
the advantage of decreasing the computational wall time of the simulation, particularly
for finer meshes, as shown by Fernandes et al. [28]. Thus, a methodology based on the
monolithic approach for the simulation of non-isothermal viscoelastic flows would be of
major importance.

In addition, the benchmark problems of both planar and axisymmetric contraction
flows are also extensively studied to evaluate the stability of newly developed numerical
algorithms [31–33]. These benchmark problems are especially important because, near
the contraction, complex flow profiles are generated, and thus large stress gradients are
developed, which can cause numerical difficulties, leading to the overall failure of the
algorithms. Bearing this in mind, we will revisit the axisymmetric sudden contraction
benchmark flow to validate the newly developed, fully implicit, coupled solver for non-
isothermal viscoelastic fluid flows.

The rheological data available in the literature for the validation of non-isothermal
viscoelastic fluids are scarse due to the complex fluid behaviour, which generally requires
several modes to capture the full range of operating conditions. In this work, we will
employ the highly elastic, polyisobutylene-based polymer solution (PIB-Boger fluid), which
is typically described by the quasi-linear Oldroyd-B viscoelastic fluid model. Another
important issue to consider when solving viscoelastic fluid flows is the elastic effects,
specifically, the flow at high Weissenberg numbers [34]. It is well known that numerical
simulations tend to become unstable at increased Weissenberg numbers, the so-called High
Weissenberg Number Problem (HWNP). The seminal work of Fattal and Kupferman [35]
proposed a reformulation of the viscoelastic stress-tensor-based formulation to solve the
HWNP, where the logarithm of the conformation tensor is used as the main variable in the
constitutive transport equation. Different methods have been also used to solve the HWNP,
such as the square root of the conformation tensor [36]. A detailed discussion of this topic
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can be found in Afonso et al. [37]. In this work, we will employ the log-conformation tensor
approach to handle the HWNP.

In this manuscript, a new numerical code is developed in the context of the Finite
Volume Method (FVM), following a monolithic framework to compute the non-isothermal
flow of viscoelastic fluids. To the author’s knowledge, the other CFD codes, which provide a
fully implicit block-coupled solution for a discretized, log-conformation, viscoelastic, fluid-
flow system, were developed by Knechtges [38] using the Finite Element Method (FEM) and
Spahn [39] using FVM; however, these studies did not consider the non-isothermal effects.
In this work, the solution to the enlarged system of equations, composed of continuity,
linear momentum, log-conformation tensor constitutive equation and energy, is obtained
using a Bi-Conjugate Gradient Stabilized solver. The validation of the fully implicit, block-
coupled, non-isothermal, viscoelastic, log-conformation tensor-based solver is performed
for the Oldroyd-B fluid flow in the axisymmetric 4:1 planar sudden-contraction benchmark
problem. For assessment purposes, the results obtained with the newly-developed code
are compared with numerical results found in the scientific literature. We study flows at a
high Weissenberg number and we investigate the limits of pure energy elasticity and pure
entropy elasticity. Lastly, we also analyzed the effect of the jump in wall temperature near
the contraction for positive and negative increments.

The remaining sections of the manuscript are organized as follows. In Section 2, the
governing equations for the stress tensor and log-conformation tensor-based formulations
of non-isothermal viscoelastic flows are presented. Subsequently, in Section 3, the numer-
ical procedure of the block-coupled algorithm will be described in detail, including the
finite-volume discretization process for all the implicit terms considered in the governing
equations. In Section 4, the validation of the newly-developed numerical algorithm is
performed, and in Section 5 the main conclusions of the work are addressed.

2. Governing Equations

In this section, the equations that involve non-isothermal viscoelastic fluid flow prob-
lems are presented for both stress-tensor- and log-conformation tensor-based formulations.

2.1. Stress-Tensor-Based Formulation

The governing equations for laminar, incompressible, non-isothermal viscoelastic
flows are the conservation of mass and linear momentum, together with a constitutive
equation modeling the polymer stress behavior and the energy equation to account for
thermodynamical effects.

The conservation of mass and linear momentum equations read as follows:

∂ui
∂xi

= 0, (1)

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
+

∂p
∂xi
−

∂τij

∂xj
= 0, (2)

where Einstein’s summation convention applies, ui are the velocity components along
the Cartesian co-ordinates xi, ρ is the fluid density, t is the time, p is the pressure and τij
are the components of the total extra-stress tensor (i, j = 1, 2 for 2D flows), which is split
into Newtonian (solvent), (τN)ij, and elastic (polymeric), (τE)ij, contributions, such that
τij = (τN)ij + (τE)ij.

The calculation of the stress terms is completed using the following relations:

(τN)ij = 2ηN(T)Dij = ηN(T)

(
∂ui
∂xj

+
∂uj

∂xi

)
, (3)



Polymers 2022, 14, 4099 4 of 27

1
ηE(T)

(
Iij + h((τE)ij)

)
(τE)ij +

λ(T)
ηE(T)

(
∂(τE)ij

∂t
+ uk

∂(τE)ij

∂xk

)
−
(

∂ui
∂xj

+
∂uj

∂xi

)
−

λ(T)
ηE(T)

(
(τE)ik

∂uj

∂xk
+ (τE)jk

∂ui
∂xk

)
= 0,

(4)

where ηN(T) and ηE(T) are the temperature-dependent solvent and polymeric viscosi-
ties, respectively, Dij is the strain rate tensor, which describes the rate of stretching and
shearing, λ(T) is the temperature-dependent polymer relaxation time, Iij is the identity
tensor and h((τE)ij) is a tensor that can be given by different expressions, related to the
constitutive equation chosen to model the viscoelastic fluid. For the Oldroyd-B model [40],
h((τE)ij) = 0. For the Giesekus model [41] h((τE)ij) = κλ

ηE
(τE)ij, where κ is a positive

constant, the so-called mobility factor, which is related to the elongational behavior of
the fluids. For the Phan–Thien–Tanner (PTT) model [42,43], the tensor h is of the form
h((τE)ij) = ελ

ηE
tr((τE)ij)Iij, where tr((τE)ij) = (τE)ii is the trace of the polymeric stress

tensor and ε is a material parameter called the extensibility factor, related to the fluid
behavior in extensional flow. In addition, the Giesekus and PTT models present one more
non-linearity, which is given by the product h((τE)ij)(τE)ij. This term is responsible for
the shear-thinning, the non-zero second normal stress coefficient and the stress overshoot
in transient shear flows of viscoelastic fluids. In this work, we will provide a preliminary
assessment of the merits of the fully implicit, block-coupled, non-isothermal, viscoelastic,
log-conformation tensor-based algorithm for calculations using the Oldroyd-B fluid model,
which is commonly used to validate newly-developed viscoelastic codes due to the stress
singular behavior near sharp corners or at stagnation points. For these models, a character-
istic (solvent) viscosity ratio can be defined by β = ηN/(ηN + ηE) = ηN/η0, known as the
retardation ratio, where η0 is the total viscosity in the limit of vanishing shear rate.

Following the work of Peters and Baaijens [13] the energy balance equation for the
case of viscoelastic flows is as follows:

ρCp

(
∂T
∂t

+ ui
∂T
∂xi

)
− k

∂2T
∂x2

i
= (τN)ijDji + α(τE)ijDji + (1− α)

(τE)ii

2λ̄(T)
, (5)

where k is the thermal conductivity of the fluid, without dependence on temperature T
and polymer orientation, Cp is the specific heat capacity, also without temperature and
polymer orientation dependence [44], and α is the energy partitioning coefficient. When
α = 1, all mechanical energy is dissipated as heat (pure entropy elasticity), and if α = 0, all
mechanical energy is stored as elastic energy (pure elastic material) [13,18]. Habla et al. [18]
concluded that the effect of the parameter α is negligible because, with a fully developed
shear flow, only stress work occurs, and the internal energy storage is absent. In addition,

λ̄(T) = λ(T)
(

1 + λ(T) ε (τE)ii
ηE(T)

)−1
for the PTT model and λ̄(T) = λ(T)

(
1 +

λ(T) κ (τE)ij
ηE(T)

)−1

for the Giesekus model. For the Oldroyd-B model calculations considered in the validation
section of this work (Section 4), λ̄(T) = λ(T). The temperature dependencies of the
relaxation time, λ(T), solvent and polymeric viscosities, ηN(T) and ηE(T), respectively, are
given by

λ(T) = aTλ(T0), (6)

ηN(T) = aTηN(T0), (7)

ηE(T) = aTηE(T0), (8)
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where T0 is a reference temperature and aT is a shift factor obeying the Williams–Landel–
Ferry (WLF) relation:

aT = exp
(
−C1(T − T0)

C2 + T − T0

)
, (9)

in which C1 and C2 are the WLF parameters and T0 is the reference temperature. Frequently
used sets of WLF parameters (C1, C2) are (5, 150) for temperatures relatively far from the
glass transition temperature Tg, enabling the thermorheological coupling, and (15, 50) for
temperatures near Tg [18].

2.2. Log-Conformation Tensor-Based Formulation

In this section, we write the viscoelastic stress tensor-based formulation in terms of
the log-conformation tensor variable, which was proposed by Fattal and Kupferman [35]
to address the HWNP. For that purpose, the polymeric stress tensor, (τE)ij, is related to the
conformation tensor, σij, by the following equation

(τE)ij =
ηE(T)
λ(T)

(σij − Iij). (10)

Subsequently, the conformation tensor σij is replaced by its matrix logarithmic Ψij = log(σij),
and Equations (2), (4) and (5) are substituted by

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
+

∂p
∂xi
− 2ηN(T)

∂Dij

∂xj
− ηE(T)

λ(T)

∂
(

eΨij − Iij

)
∂xj

= 0, (11)

1
λ(T)

[(
Iij + h(eΨij)

)
(eΨij − Iij)

]
+

∂eΨij

∂t
+ uk

∂eΨij

∂xk
− eΨik

∂uj

∂xk
− eΨjk

∂ui
∂xk

= 0, (12)

ρCp

(
∂T
∂t

+ ui
∂T
∂xi

)
− k

∂2T
∂x2

i
= (τN)ijDji +

ηE(T)
λ(T)

[
α(eΨij − Iij)Dji + (1− α)

(eΨ − I)ii

2λ̄(T)

]
, (13)

with λ̄(T) = λ(T)
(
1 + ε (eΨ − I)ii

)−1 for the PTT model, λ̄(T) = λ(T)
(
1 + κ (eΨ − I)ij

)−1

for the Giesekus model and λ̄(T) = λ(T) for the Oldroyd-B model. Here, eΨij is the matrix

exponential function, defined as eΨij =
d

∑
m=1

eξm Pm, with d as the dimension of the physical

space (d = 2 for the calculations performed in this work), ξm the eigenvalues of Ψij and
Pm is the projection matrix onto the corresponding eigenspace. Therefore, if êm is the
eigenvector corresponding to ξm, then Pm = êm ⊗ êm [38]. In addition, note that λ(T0)
and ηP(T0) are known values for the reference temperature T0, and, therefore, the quotient
ηE(T)
λ(T) in Equations (11) and (13) is a constant, considering that λ and ηE scale in the same

way [45].

3. Numerical Method

In this section, we will describe a finite volume numerical method to set up a block-coupled
solver procedure to simultaneously solve the continuity (Equation (1)), linear momentum
(Equation (11)), log-conformation tensor (Equation (12)) and energy (Equation (13)) equations.

Within the framework of the block-coupled solver developed in this work, the advec-
tion, pressure gradient, diffusion and log-conformation tensor terms in the conservation of
linear momentum equations are implicitly discretized (see Section 3.1). Subsequently, the
velocity field term in the conservation of mass equation is also treated in an implicit manner
(see Section 3.2). In addition, and as an extension to our previous work [28], where we
have discretized implicitly the advection term in the stress constitutive equation, here the
rotation and the rate of deformation terms are implicitly discretized (see Section 3.3). Lastly,
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the advection and diffusion terms in the energy equation are also implicitly discretized (see
Section 3.4). The rate of change term in all the equations is implicitly discretized using the
backward implicit Euler scheme.

3.1. Discretization of the Equations for Conservation of Linear Momentum

In the framework of the FVM, the discretization process starts by integrating the
conservation of linear momentum equations (Equation (11)) over a general control volume
(also called representative volume or cell) VP, where the subscript P refers to values of the
variables at cell with centroid P, as shown in Figure 1, to yield

ρ

(ˆ
VP

∂ui
∂t

dVP +

ˆ
VP

uj
∂ui
∂xj

dVP

)
+

ˆ
VP

∂p
∂xi

dVP −
ˆ

VP

(ηN(T) + η?)
∂2ui

∂x2
j

dVP−

−
ˆ

VP

ηE(T)
λ(T)

∂
(
eΨ − I

)
ij

∂xj
dVP = −

ˆ
VP

∂

∂xj

(
η? ∂ui

∂xj

)
dVP,

(14)

where the additional terms involving η? are related to the improved both-side diffusion
technique [46], which can solve the checkerboard pattern due to numerical instabilities

caused by a velocity–stress decoupling. Note that we also used the identity ∂
∂xj

(
∂uj
∂xi

)
= 0.

Figure 1. Schematic representation of the control volume VP with centroid P (owner), with distance
vector to the origin rP, and neighboring control volumes with centroids F, G, H and I. The face shared
by the control volumes with centroids P and F is represented by f , with area S f and face unit normal
vector n f . The distance vector between P and F is represented by dPF.

The following step of the discretization process is to apply the Gauss divergence
theorem to transform the volume integrals of the advection, pressure and diffusion terms
in Equation (14) into surface integrals as follows:

ρ

(ˆ
VP

∂ui
∂t

dVP +

˛
S

nj(ujui)dS
)
+

˛
S

ni p dS−
˛

S
nj

[
(ηN(T) + η?)

∂ui
∂xj

]
dS−

−
ˆ

VP

ηE(T)
λ(T)

∂
(
eΨ − I

)
ij

∂xj
dVP = −

˛
S

njη
? ∂ui

∂xj
dS,

(15)

where S is the boundary of control volume VP and ni are the components of the outward
pointing unit vector normal to S.
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Subsequently, a second-order integration scheme is employed to approximate the sur-
face integrals and the following linear momentum semi-discretized equations are obtained:

VPρP
(ui)P − (ui)

0
P

∆t
+ ∑

f=nb(P)
(sjρujui) f + ∑

f=nb(P)
(si p) f−

− ∑
f=nb(P)

[
sj(ηN(T) + η?)

∂ui
∂xj

]
f

−
ˆ

VP

ηE(T)
λ(T)

∂
(
eΨ − I

)
ij

∂xj
dVP

=− ∑
f=nb(P)

(
sjη

? ∂ui
∂xj

)
f

,

(16)

where ∆t is the time-step, the superscript 0 represents the previous time step value, nb
refers to values at the faces f , obtained by interpolation between P and its neighbors, and
si are the components of the area normal vector to face f .

Finally, the linear momentum semi-discretized equations are transformed into an
algebraic linear system of equations by expressing the variation in the dependent variable
and its derivatives in terms of the control volume P and its neighbors’ values at the
respective centroids, such as

auu
P uP + auv

P vP + aup
P pP + auΨxx

P (Ψxx)P + a
uΨxy
P (Ψxy)P+

+ ∑
F=NB(P)

auu
F uF + ∑

F=NB(P)
auv

F vF + ∑
F=NB(P)

aup
F pF+

+ ∑
F=NB(P)

auΨxx
F (Ψxx)F + ∑

F=NB(P)
a

uΨxy
F (Ψxy)F = bu

P,

avu
P uP + avv

P vP + avp
P pP + a

vΨxy
P (Ψxy)P + a

vΨyy
P (Ψyy)P+

+ ∑
F=NB(P)

avu
F uF + ∑

F=NB(P)
avv

F vF + ∑
F=NB(P)

avp
F pF+

∑
F=NB(P)

a
vΨxy
F (Ψxy)F + ∑

F=NB(P)
a

vΨyy
F (Ψyy)F = bv

P,

(17)

where auiφ
P and auiφ

F are the owner and neighbor coefficients in the discretized linear mo-
mentum equation representing the velocity component ui and the variable φ interactions,
respectively; bui

P is the source term, where NB(P) refers to the neighbors of the control-
volume with centroid P.

For the sake of conciseness, the contributions of the rate of change, advection, pressure
gradient, implicit diffusion and explicit diffusion terms shown in Equation (16) can be
found in Fernandes et al. [28]. Regarding the contribution of the log-conformation tensor

term,
∂(eΨ−I)ij

∂xj
, to the linear momentum equations, we will employ an implicit discretization

by considering the following Taylor approximation for the functional (eΨ − I)ij [28,39]

(eΨ − I)ij ≈ (eΨ − I)0
ij +

∂(eΨ − I)ij

∂Ψkl

∣∣∣∣
Ψ0

kl

(
Ψkl −Ψ0

kl

)
= (eΨ − I)0

ij +
d

∑
i,j

eλm/2eλn/2 sinh((λm − λn)/2)
(λm − λn)/2 ∑

k,l
pm

ik pn
lj

(
Ψkl −Ψ0

kl

)
,

(18)
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where the derivative of the functional (eΨ − I)ij in order to the log-conformation tensor
variable is substituted by the expression found in Knechtges [38] for the finite element
method, and pm

ik and pn
lj are the coefficients of the projector matrix belonging to the m-th

and n-th eigenvalues (λm, λn) of Ψ0
ij. Therefore, the divergence of the functional (eΨ − I)ij

can be written as:

ˆ
VP

(
ηE(T)
λ(T)

∂
(
eΨ − I

)
ij

∂xj

)
dVP

≈ηE(T)
λ(T)

ˆ
VP

(
∂
(
eΨ − I

)
ij

∂xj

)0

dVP +
ηE(T)
λ(T)

ˆ
VP

∂

(∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψkl

/∂xj dVP

− ηE(T)
λ(T)

ˆ
VP

∂

(∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψ0
kl

/∂xj dVP,

(19)

Subsequently, applying the Gauss divergence theorem we can transform the volume
integrals with derivatives into surface integrals

ˆ
VP

∂

(∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψkl

/∂xj dVP =

˛
S

nj

(
∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψkl dS, (20a)

ˆ
VP

∂

(∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψ0
kl

/∂xj dVP =

˛
S

nj

(
∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψ0
kl dS, (20b)

and obtain the discretized form for the divergence of the functional (eΨ − I)ij (i.e., the
log-conformation tensor term) in the linear momentum equations as follows:

ˆ
VP

(
ηE(T)
λ(T)

∂
(
eΨ − I

)
ij

∂xj

)
dVP

≈ηE(T)
λ(T)

(
∂
(
eΨ − I

)
ij

∂xj

)0

VP +
ηE(T)
λ(T) ∑

f=nb(P)

sj

(
∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψkl


f

− ηE(T)
λ(T) ∑

f=nb(P)

sj

(
∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψ0
kl


f

.

(21)

Lastly, the contributions of the divergence of the log-conformation (DLC) tensor term for
the linear momentum equations are given by

a
ujψkl
F,DLC = −ηE(T)

λ(T)

sj

(
∂
(
eΨ − I

)
ij

∂Ψkl

)0
f

(1− w f ), (22a)

a
ujψkl
P,DLC = −ηE(T)

λ(T) ∑
f=nb(P)

sj

(
∂
(
eΨ − I

)
ij

∂Ψkl

)0
f

w f , (22b)

b
uj
P,DLC = −ηE(T)

λ(T)

(∂
(
eΨ − I

)
ij

∂xj

)0

VP − ∑
f=nb(P)

sj

(
∂
(
eΨ − I

)
ij

∂Ψkl

)0

Ψ0
kl


f

, (22c)

where w f are the interpolation weights.
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It should be noted that the total contribution for the owner and neighbor coefficients
related to the linear momentum equations’ interactions is given by the sum of the rate of
change, advection, pressure gradient, implicit diffusion and divergence of log-conformation
tensor terms. In addition, the total contribution for the explicit coefficient related to the
linear momentum equations is given by the sum of the rate of change, explicit diffusion
and divergence of log-conformation tensor terms.

3.2. Discretization of the Equation for Conservation of Mass

Following the same steps as presented in Section 3.1, we begin the discretization of
the continuity equation, Equation (1), with the integration over the control volume VP
as follows:

ˆ
VP

∂ui
∂xi

dVP = 0. (23)

Subsequently, by employing the divergence theorem, the volume integral is trans-
formed into a surface integral as follows:

˛
S

niui dS = 0. (24)

Then, by applying a second-order integration scheme to approximate the surface
integral, we can write the semi-discretized form of the continuity equation as:

∑
f=nb(P)

(siui) f = 0. (25)

In a collocated framework, the velocity at the face is obtained by reconstructing a pseudo-
momentum equation at the face from the linear momentum equations of the straddling
cells P and F, known as the Rhie–Chow interpolation [47]. For the sake of conciseness, the
derivation of the discretized form for the equation of conservation of mass will not be given
in detail, but it can be found in our previous work [28], which reads as

∑
f=nb(P)

[
si

(
− ∂p

∂xi
Di

)]
f
+ ∑

f=nb(P)
(siui) f = ∑

f=nb(P)

[
si

(
− ∂p

∂xi
Di

)]
f

. (26)

Finally, we can write the mass conservation algebraic equation as:

app
P pP + apu

P uP + apv
P vP + ∑

F=NB(P)
app

F pF + ∑
F=NB(P)

apu
F uF + ∑

F=NB(P)
apv

F vF = bp
P, (27)

where apφ
P and apφ

F are the owner and neighbor coefficients in the discretized mass conser-
vation equation representing the pressure field and the variable φ interactions, respectively;
bp

P is the source term.
The implicit pressure gradient term is discretized (see page 86 of [48]) as follows:

[
si

(
− ∂p

∂xi
Di

)]
f
= −

[
si(siDi)

]
f

(dPF)i(si) f
(pF − pP), (28)
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where the coefficients of the implicit pressure gradient term for the mass conservation
equation are given by

app
F = −

[
si(siDi)

]
f

(dPF)i(si) f
, (29a)

app
P = − ∑

F=NB(P)
app

F . (29b)

The implicit coefficients for the second term in Equation (26) (corresponding to the
velocity contribution) are given by

apu
F = sx

f (1− w f ), apv
F = sy

f (1− w f ), (30a)

apu
P = ∑

f=nb(P)
sx

f w f , apv
P = ∑

f=nb(P)
sy

f w f . (30b)

Lastly, the coefficients of the explicit pressure gradient term contribution for the mass
conservation equation are given by

bp
P = ∑

f=nb(P)

[
si

(
− ∂p

∂xi
Di

)]
f

. (31)

3.3. Discretization of the Log-Conformation Tensor Constitutive Equations

The constitutive equations, Equation (4), can be written, without loss of generality, for
a Giesekus fluid model by (see Theorem A.42 in [38])

∂Ψij

∂t
+ uk

∂Ψij

∂xk
+ [Ψij, Ωij]− 2 f (ad(Ψij))Dij

=− 1
λ(T)

(
Iij + κ

(
eΨij − Iij

))(
eΨij − Iij

)
e−Ψij ,

(32)

where Ωij =
(

∂ui
∂xj
− ∂uj

∂xi

)
/2 is the vorticity tensor and [Ψij, Ωij] = ΨijΩij −ΩijΨij is the

commutator term. Following Knechtges [38], f (ad(Ψij)) is defined by the application of
the function f (x) = x/2

tanh(x/2) to the adjoint operator ad(Ψij), such as

f (ad(Ψij))y =
d

∑
m,n=1

f (λm − λn)PmyPn, (33)

where y is a symmetric matrix satisfying ad(Ψij)y = [Ψij, y], and y is continuously dif-
ferentiable (C1). Notice that, Equation (32) simplifies to the constitutive equation for an
Oldroyd-B fluid model when κ = 0.

The discretization of the log-conformation tensor constitutive equations, Equation (32),
starts with the integration over the control volume VP to yield

ˆ
VP

∂Ψij

∂t
dVP +

ˆ
VP

uk
∂Ψij

∂xk
dVP +

ˆ
VP

[Ψij, Ωij]dVP −
ˆ

VP

2 f (ad(Ψij))Dij dVP = (34)

−
ˆ

VP

1
λ(T)

(
Iij + κ

(
eΨij − Iij

))(
eΨij − Iij

)
e−Ψij dVP.
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This leads to the algebraic equation with the following form:

aΨxxΨxx
P (Ψxx)P + aΨxxu

P uP + aΨxxv
P vP + ∑

F=NB(P)
aΨxxΨxx

F (Ψxx)F+

+ ∑
F=NB(P)

aΨxxu
F uF + ∑

F=NB(P)
aΨxxv

F vF = bΨxx
P ,

a
ΨxyΨxy
P (Ψxy)P + a

Ψxyu
P uP + a

Ψxyv
P vP + ∑

F=NB(P)
a

ΨxyΨxy
F (Ψxy)F+

+ ∑
F=NB(P)

a
Ψxyu
F uF + ∑

F=NB(P)
a

Ψxyv
F vF = b

Ψxy
P ,

a
ΨyyΨyy
P (Ψyy)P + a

Ψyyu
P uP + a

Ψyyv
P vP + ∑

F=NB(P)
a

ΨyyΨyy
F (Ψyy)F+

+ ∑
F=NB(P)

a
Ψyyu
F uF + ∑

F=NB(P)
a

Ψyyv
F vF = b

Ψyy
P ,

(35)

where a
Ψijφ

P and a
Ψijφ

F are the owner and neighbor coefficients in the discretized log-
conformation tensor constitutive equations representing the tensor component Ψij and the

variable φ interactions, respectively, and bΨij
P is the source term.

Again, for the sake of conciseness, the discretization of the rate of change
∂Ψij
∂t and ad-

vective uk
∂(Ψij)

∂xk
terms in Equation (32) are not detailed here because similar discretizations

were performed for the polymeric stress-tensor (τE)ij (see previous work [28]).
Regarding the commutator term [Ψij, Ωij], we can write the following expanded form:

[Ψij, Ωij] =
1
2

(
Ψik

∂uk
∂xj
−Ψik

∂uj

∂xk
− ∂ui

∂xk
Ψkj +

∂uk
∂xi

Ψkj

)
, (36)

and, subsequently, we can use Taylor approximations such as

− 1
2

(
Ψik

∂uj

∂xk
+

∂ui
∂xk

Ψkj

)
≈+

1
2

[
Ψ0

ik

(
∂uj

∂xk

)0

+

(
∂ui
∂xk

)0
Ψ0

kj

]
− 1

2

[
Ψik

(
∂uj

∂xk

)0

+

(
∂ui
∂xk

)0
Ψkj

]

− 1
2

[
Ψ0

ik
∂uj

∂xk
+

∂ui
∂xk

Ψ0
kj

]
,

(37)

and

+
1
2

(
Ψik

∂uk
∂xj

+
∂uk
∂xi

Ψkj

)

≈− 1
2

Ψ0
ik

(
∂uk
∂xj

)0

+

(
∂uk
∂xi

)0
Ψ0

kj

+
1
2

Ψik

(
∂uk
∂xj

)0

+

(
∂uk
∂xi

)0
Ψkj


+

1
2

[
Ψ0

ik
∂uk
∂xj

+
∂uk
∂xi

Ψ0
kj

]
.

(38)



Polymers 2022, 14, 4099 12 of 27

Starting with the terms in Equation (37), the negative commutator terms, the first contribu-
tion is explicit, being given by

(b
Ψij
P )neg = −1

2
VP

[
Ψ0

ik

(
∂uj

∂xk

)0

+

(
∂ui
∂xk

)0
Ψ0

kj

]
. (39)

The second contribution is implicit in Ψij and explicit in ∂ui
∂xj

, being given by

(a
ΨijΨik
P )neg,1 = −1

2
VP

(
∂uj

∂xk

)0

, (40a)

(a
ΨijΨkj
P )neg,2 = −1

2
VP

(
∂ui
∂xk

)0
. (40b)

The third contribution is implicit in ∂ui
∂xj

and explicit in Ψij; therefore, we need an implicit
discretization of the gradient operator for velocity, which requires the integration by parts
of this term, such as:

ˆ
VP

(
Ψ0

ik
∂uj

∂xk
+

∂ui
∂xk

Ψ0
kj

)
dVP

=

˛
S

nk

(
Ψ0

ikuj + uiΨ0
kj

)
dS−

ˆ
VP

[(
∂Ψik
∂xk

)0
uj + ui

(
∂Ψkj

∂xk

)0
]

dVP.
(41)

Applying the Gauss divergence theorem, the discretized form of the terms on the right-hand
side of Equation (41) is

∑
f=nb(P)

[
sk

(
Ψ0

ikuj + uiΨ0
kj

)]
f
−VP

[(
∂Ψik
∂xk

)0
uj + ui

(
∂Ψkj

∂xk

)0
]

. (42)

Using linear weighted interpolation, we can write the contributions of the third term as:

(a
Ψijuj
F )neg,1 = −1

2
(skΨ0

ik) f (1− w f ), (43a)

(a
Ψijuj
P )neg,1 = −1

2

 ∑
f=nb(P)

(skΨ0
ik) f w f −VP

(
∂Ψik
∂xk

)0
, (43b)

(a
Ψijui
F )neg,2 = −1

2
(Ψ0

kbsk) f (1− w f ), (43c)

(a
Ψijui
P )neg,2 = −1

2

 ∑
f=nb(P)

(skΨ0
kj) f w f −VP

(
∂Ψkj

∂xk

)0
. (43d)

Following the same reasoning as given above, the terms in Equation (38), the positive
commutator terms, generate the following coefficients:

(b
Ψij
P )pos =

1
2

VP

Ψ0
ik

(
∂uk
∂xj

)0

+

(
∂uk
∂xi

)0
Ψ0

kj

, (44)
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(a
ΨijΨik
P )pos,1 =

1
2

VP

(
∂uk
∂xj

)0

, (45a)

(a
ΨijΨkj
P )pos,2 =

1
2

VP

(
∂uk
∂xi

)0
, (45b)

(a
Ψijuk
F )pos,1 =

1
2
(sjΨ0

ik) f (1− w f ), (46a)

(a
Ψijuk
P )pos,1 =

1
2

 ∑
f=nb(P)

(sjΨ0
ik) f w f −VP

(
∂Ψik
∂xj

)0
, (46b)

(a
Ψijuk
F )pos,2 =

1
2
(siΨ0

kj) f (1− w f ), (46c)

(a
Ψijuk
P )pos,2 =

1
2

 ∑
f=nb(P)

(siΨ0
kj) f w f −VP

(
∂Ψkj

∂xi

)0
. (46d)

Lastly, we implicitly discretize the adjoint operator f (ad(Ψ))ijklDkl by considering the
following Taylor approximation [39]

f (ad(Ψ))ijklDkl

≈ f (ad(Ψ0))ijklD
0
kl + ∑

kl

∂
(

f (ad(Ψ0))iqrjD0
qr

)
∂Ψkl

(Ψkl −Ψ0
kl)

+ ∑
kl

∂
(

f (ad(Ψ0))iqrjD0
qr

)
∂Dkl

(Dkl −D0
kl),

(47)

where
∂( f (ad(Ψ0))iqrjD0

qr)
∂Dkl

is the derivative of the adjoint operator with respect to Dkl , given
by [38]

∂
(

f (ad(Ψ0))iqrjDqr
)

∂Dkl

= f (ad(Ψ0))ijkl

=
d

∑
m,n=1

f (λm − λn)pm
ik pn

lj,

(48)

and
∂( f (ad(Ψ0))iqrjD0

qr)
∂Ψkl

is the derivative of the adjoint operator with respect to Ψkl , given
by [49]

∂
(

f (ad(Ψ0))iqrjD0
qr

)
∂Ψkl

=
d

∑
m,n,o=1

f (λm − λo)− f (λn − λo)

λm − λn

(
pm

ik pn
lqDqr po

rj + po
iqDqr pn

rk pm
lj

)
.

(49)

Note that, if λm is equal to λn, then the denominator of Equation (49) needs to be replaced
by f ′(λm − λn) [38].

Subsequently, we integrate the adjoint term over a control volume VP as follows:
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ˆ
VP

2 f (ad(Ψ))ijklDkl dVP

≈
ˆ

VP

2 f (ad(Ψ0))ijklD
0
kl dVP +

ˆ
VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

Ψkl dVP

−
ˆ

VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

Ψ0
kl dVP +

ˆ
VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

Dkl dVP

−
ˆ

VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

D0
kl dVP,

(50)

and substituting Dkl =
1
2

(
∂uk
∂xl

+ ∂ul
∂xk

)
in Equation (50), we obtain

ˆ
VP

2 f (ad(Ψ))ijklDkl dVP

≈
ˆ

VP

2 f (ad(Ψ0))ijklD
0
kl dVP +

ˆ
VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

Ψkl dVP

−
ˆ

VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

Ψ0
kl dVP

+

ˆ
VP

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0(
∂uk
∂xl

+
∂ul
∂xk

)
dVP

−
ˆ

VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

D0
kl dVP.

(51)

As the fourth term on the right hand side of Equation (51) contains implicit velocity
gradients, we employ integration by parts to linearize them, obtaining

ˆ
VP

2 f (ad(Ψ))ijklDkl dVP

≈
ˆ

VP

2 f (ad(Ψ0))ijklD
0
kl dVP +

ˆ
VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

Ψkl dVP

−
ˆ

VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

Ψ0
kl dVP

+

˛
S

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

(uknl + ulnk)dS

−
ˆ

VP


∂

[
∂( f (ad(Ψ))iqrjDqr)

∂Dkl

]0

∂xl
uk +

∂

[
∂( f (ad(Ψ))iqrjDqr)

∂Dkl

]0

∂xk
ul

dVP

−
ˆ

VP

2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

D0
kl dVP.

(52)
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Thus, the discretized form of Equation (52) can then be written as:
ˆ

VP

2 f (ad(Ψ))ijklDkl dVP

≈2 f (ad(Ψ0))ijklD
0
klVP + 2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

ΨklVP

− 2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

Ψ0
klVP + ∑

f=nb(P)

[∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

(uksl + ulsk)


f

−


∂

[
∂( f (ad(Ψ))iqrjDqr)

∂Dkl

]0

∂xl
uk +

∂

[
∂( f (ad(Ψ))iqrjDqr)

∂Dkl

]0

∂xk
ul

VP

− 2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

D0
klVP.

(53)

The contributions of the adjoint term for the log-conformation tensor constitutive equations,
using linear weighted interpolation, read as

(a
ΨijΨkl
P )adj = 2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

VP, (54a)

(a
Ψijuk
F )adj =

[∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

sl


f

(1− w f ), (54b)

(a
Ψijuk
P )adj = ∑

f=nb(P)

[∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

sl


f

w f −
∂

[
∂( f (ad(Ψ))iqrjDqr)

∂Dkl

]0

∂xl
VP, (54c)

(a
Ψijul
F )adj =

[∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

sk


f

(1− w f ), (54d)

(a
Ψijul
P )adj = ∑

f=nb(P)

[∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

sk


f

w f −
∂

[
∂( f (ad(Ψ))iqrjDqr)

∂Dkl

]0

∂xk
VP, (54e)

(b
Ψij
P )adj = 2 f (ad(Ψ0))ijkl D0

klVP − 2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Ψkl

]0

Ψ0
klVP

− 2

[
∂
(

f (ad(Ψ))iqrjDqr
)

∂Dkl

]0

D0
klVP. (54f)

Again, it should be noted that the total contribution of the owner and neighbor
coefficients related to the log-conformation tensor components’ interactions is given by the
sum of the log-conformation tensor, rate of change, advection, commutator and adjoint
terms. In addition, the total contribution for the explicit coefficient related to the log-
conformation tensor constitutive equations is given by the sum of the rate of change,
commutator and adjoint terms.
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3.4. Discretization of the Equation for Conservation of Energy

The discretization starts by integrating the equation for the conservation of energy
(Equation (13)) over a general control volume VP, to yield

ρCp

(ˆ
VP

∂T
∂t

dVP +

ˆ
VP

ui
∂T
∂xi

dVP

)
−
ˆ

VP

k
∂2T
∂x2

i
dVP

=

ˆ
VP

[
(τN)ijDji +

ηE(T)
λ(T)

(
α(eΨ − I)ijDji + (1− α)

(eΨ − I)ii

2λ̄(T)

)]
dVP.

(55)

Using the Gauss divergence theorem, the volume integrals of the advection and
diffusion terms in Equation (55) are transformed into surface integrals as:

ρCp

(ˆ
VP

∂T
∂t

dVP +

˛
S

niuiT dS
)
−
˛

S
ni

(
k

∂T
∂xi

)
dS

=

ˆ
VP

[
(τN)ijDji +

ηE(T)
λ(T)

(
α(eΨ − I)ijDji + (1− α)

(eΨ − I)ii

2λ̄(T)

)]
dVP.

(56)

The semi-discretized equation for the conservation of energy is obtained by evaluating
the surface integrals using a second-order integration scheme and approximating the rate
of change term with a backward implicit Euler scheme, such as

VPρP(Cp)P
TP − T0

P
∆t

+ ∑
f=nb(P)

(siρCpuiT) f − ∑
f=nb(P)

(
sik

∂T
∂xi

)
f

=VP

[
(τN)ijDji +

ηE(T)
λ(T)

(
α(eΨ − I)ijDji + (1− α)

(eΨ − I)ii

2λ̄(T)

)]
.

(57)

This leads to the algebraic equation for the energy balance with the following form:

aTT
P TP + aTu

P uP + aTv
P vP + ∑

F=NB(P)
aTT

F TF + ∑
F=NB(P)

aTu
F uF + ∑

F=NB(P)
aTv

F vF = bT
P , (58)

where aTφ
P and aTφ

F are the owner and neighbor coefficients in the discretized conserva-
tion of energy equation, representing the temperature T and the variable φ interactions,
respectively, and bT

P is the source term.
The rate of change (rchg) term in Equation (57) (first term), contributes to both the

diagonal of the system of equations and to the explicit term as:

aTT
P,rchg =

VP ρP (Cp)P

∆t
, (59a)

bT
P,rchg =

VP ρP (Cp)PT0
P

∆t
. (59b)

Then, and in the framework of the FVM, the advection term in Equation (57) (second
term) is linearized by computing the mass flow rate at control-volume face f (ṁ f = (siρui) f )
using the previous iteration values. Here, we used the UDS differentiating scheme to ap-
proximate the advection term. However, many high-order schemes could be used, such as
the MINMOD or CUBISTA schemes. For the sake of readability, the discretization procedure
will be presented for the UDS scheme, but it is important to stress that the methodology
is independent of the adopted discretization scheme. In this way, the coefficients of the
advection (adv) term contribution for the conservation of energy equation are given by:

aTu
F,adv = aTv

F,adv = (Cp) f max(ṁ f , 0), (60a)

aTu
P,adv = − ∑

F=NB(P)
aTu

F,adv, aTv
P,adv = − ∑

F=NB(P)
aTv

F,adv, (60b)



Polymers 2022, 14, 4099 17 of 27

where the superscript Tφ means the influence of the φ variable in the T energy equation.
The term max(ṁ f , 0) represents the maximum of ṁ f and 0, where the mass flux is positive
if it goes from owner to neighbor cells, i.e., leaves the control-volume VP.

The implicit diffusion (idi f f ) contribution, third term of Equation (57), is discretized,
taking a linear profile (see page 86 of [48]) as(

sik
∂T
∂xi

)
f
= k f

(sisi) f

(dPF)i(si) f
(TF − TP), (61)

where (dPF)i is the vector joining the centroids P and F (see Figure 1). The coefficients of
the implicit diffusion term for the conservation of energy equation are given by

aTT
F,idi f f = −k f

(sisi) f

(dPF)i(si) f
, (62a)

aTT
P,idi f f = − ∑

F=NB(P)
aTT

F,idi f f . (62b)

Finally, the coefficients of the explicit term contribution (right-hand side of Equa-
tion (57)) for the conservation of energy equation are given by

bT
P,source = VP

[
(τN)ijDji +

ηE(T)
λ(T)

(
α(eΨ − I)ijDji + (1− α)

(eΨ − I)ii

2λ̄(T)

)]
. (63)

3.5. Block-Coupled Algorithm

Combining the discretized conservation of linear momentum (Equation (17)), conser-
vation of mass (Equation (27)), log-conformation tensor (Equation (35)) and conservation
of energy equations (Equation (58)), the following linear system of equations, written in
matrix form, is obtained for each control volume:

auu
P auv

P aup
P auΨxx

P auΨxy
P auΨyy

P auT
P

avu
P avv

P avp
P avΨxx

P avΨxy
P avΨyy

P avT
P

apu
P apv

P app
P apΨxx

P apΨxy
P apΨyy

P apT
P

aΨxxu
P aΨxxv

P aΨxx p
P aΨxxΨxx

P aΨxxΨxy
P aΨxxΨyy

P aΨxx T
P

aΨxyu
P aΨxyv

P aΨxy p
P aΨxyΨxx

P aΨxyΨxy
P aΨxyΨyy

P aΨxyT
P

aΨyyu
P aΨyyv

P aΨyy p
P aΨyyΨxx

P aΨyyΨxy
P aΨyyΨyy

P aΨyyT
P

aTu
P aTv

P aTp
P aTΨxx

P aTΨxy
P aTΨyy

P aTT
P





uP
vP
pP

(Ψxx)P
(Ψxy)P
(Ψyy)P

TP


+

+ ∑
F=nb(P)



auu
F auv

F aup
F auΨxx

F auΨxy
F auΨyy

F auT
F

avu
F avv

F avp
F avΨxx

F avΨxy
F avΨyy

F avT
F

apu
F apv

F app
F apΨxx

F apΨxy
F apΨyy

F apT
F

aΨxxu
F aΨxxv

F aΨxx p
F aΨxxΨxx

F aΨxxΨxy
F aΨxxΨyy

F aΨxx T
F

aΨxyu
F aΨxyv

F aΨxy p
F aΨxyΨxx

F aΨxyΨxy
F aΨxyΨyy

F aΨxyT
F

aΨyyu
F aΨyyv

F aΨyy p
F aΨyyΨxx

F aΨyyΨxy
F aΨyyΨyy

F aΨyyT
F

aTu
F aTv

F aTp
F aTΨxx

F aTΨxy
F aTΨyy

F aTT
F





uF
vF
pF

(Ψxx)F
(Ψxy)F
(Ψyy)F

TF


=



bu
P

bv
P

bp
P

bΨxx
P

bΨxy
P

bΨyy
P
bT

P



(64)

The linear systems (Equation (64)) obtained for each control volume of the compu-
tational domain are merged in a full system of equations, which can be written in the
form AΦ = b where all variables Φ = (ui, p, Ψij, T) are solved simultaneously. In this
procedure, all variables in the different equations are treated implicitly, which is expected
to be advantageous to the stability of the overall calculation process. The fully implicit
coupled algorithm can be summarized into the following steps:

1. Initialize the fluid variables with the latest known values (un
i , pn, Ψn

ij, Tn).



Polymers 2022, 14, 4099 18 of 27

2. Assemble the discretized equations for the conservation of linear momentum, conser-
vation of mass, log-conformation tensor and conservation of energy (see Equations (17),
(27), (35), (58)) and solve for ui, p, Ψij and T (Equation (64)).

3. Iterate until convergence.

For the solution of the global system of discretized algebraic equations, it is funda-
mental that an efficient linear solver is used to obtain the best overall convergence. In this
work, the iterative solver Bi-Conjugate Gradient Stabilized (BiCGStab) [50], combined with
an LU preconditioner, was used to retrieve the solution of the global system of discretized
algebraic equations (see detailed discussion in Pimenta and Alves [30]). The initial residual
for each iteration is evaluated based on the current values of the field, before solving the
block-coupled system. After each block solver linear iteration, the residual is re-evaluated
(final residual). When the maximum number of linear iterations (in this work defined
as 100) or the final residual falls below the solver absolute tolerance (set as 10−6), the
block-coupled system current iteration stops and advances in time. All computations are
performed on a computer with a 2.00-GHz 64 cores AMD EPYC 7662 CPU processor and
128 GB of RAM.

4. Results and Discussion

The validation of the newly-developed, fully implicit, block-coupled, non-isothermal,
viscoelastic, log-conformation tensor-based algorithm was performed for the laminar,
incompressible, non-isothermal viscoelastic flow of an Oldroyd-B fluid in an axisymmetric
4:1 sudden contraction geometry. For assessment purposes, the results computed with
the newly-developed code were compared with the available data from the scientific
literature [18].

4.1. Geometry, Meshes, and Initial and Boundary Conditions

An axisymmetric 4:1 sudden contraction with ratio of the radii R1/R2 = 4 was
chosen as test geometry (Figure 2a), because of the availability of numerical data in the
literature [18]. The upstream length was l1 = 80R2 and the downstream length was
l2 = 50R2. The downstream channel height was chosen as R2 = 0.0020604 m.

(a)

(b) (c)

Figure 2. (a) Schematic of the 4:1 planar sudden contraction cross-section used to simulate the
non-isothermal flow of a viscoelastic matrix fluid described by the Oldroyd-B constitutive model.
The upstream length was l1 and the downstream length was l2. The upstream channel height was R1
and the downstream channel height was R2. The temperature at the upstream wall is Tw,1, while,
for the downstream wall, the temperature was Tw,2. (b) The geometrical domain was divided into
five blocks for mesh discretization. (c) A detailed view of the contraction area with the minimum
normalized cell size at the corner (∆z)min = (∆r)min = 0.01R2.
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The flow had a rotational symmetry that was normal to the rz−plane and, to save
computational resources and reduce the CPU times, only half of the domain was considered.
The characteristics of the meshes used to discretize the geometrical domain are presented
in Table 1. The meshes employed in the current work (M1 and M2) resulted from a
mesh convergence analysis performed by Habla et al. [18], and had a similar refinement
level to the two most refined meshes (M3 and M4) therein. The expansion or contraction
geometrical factors were defined for each direction as the ratio of two consecutive cells
lengths ( fz = ∆zi+1/∆zi ,with ∆zi being the length of the cell i in the z-direction). In this
way, since fz > 1 in Block V (see Table 1), in the z direction, the cells expanded from left
to right. Figure 2c shows the details of the level of mesh refinement at the contraction
region for M2. The higher refinement that occurs near the walls and in the contraction
region allowed for the highest gradients of the computed flow variables in these locations
to be captured.

Table 1. Characteristics of the meshes employed to simulate the non-isothermal viscoelastic flow of
a viscoelastic matrix fluid described by the Oldroyd-B constitutive model in the axisymmetric 4:1
planar sudden contraction geometry.

Block
Mesh 1 (M1) Mesh 2 (M2)

Nz × Nr fz fr Nz × Nr fz fr

Block I 61× 20 0.9061 0.9206 122× 40 0.9519 0.9595
Block II 61× 25 0.9061 1.0996 122× 50 0.9519 1.0486
Block III 61× 8 0.9061 0.8593 122× 16 0.9519 0.9270
Block IV 40× 20 1.1036 0.9206 80× 40 1.0505 0.9595
Block V 13× 20 1.1740 0.9206 26× 40 1.0835 0.9595
NC 4293 17172
∆zmin = ∆rmin 0.02R2 ∆zmin = ∆rmin 0.01R2

Nz and Nr are number of cells along z and r directions, respectively, inside each block. fz and fr are the
expansion/contraction ratios inside each block. NC is the number of cells in the mesh. ∆zmin and ∆rmin are the
minimum cell size in each direction.

The following boundary and initial conditions were used for all the runs that were
performed:

• For velocity, no-slip at the walls, symmetry at the centerline, parabolic velocity profile
at the inlet (with average velocity Uz,1 = 0.00129 m/s), and a zero-gradient condition
at the outlet, i.e., assuming a fully developed flow;

• For pressure, the inlet and wall boundary conditions were set as zero-gradient and
the centerline as symmetry boundary condition. At the outlet Dirichlet boundary
condition was used, with a fixed value p = 0. Notice that, although the zero-pressure
gradient specified at the inlet did not match the fully developed Poiseuille flow with
the average velocity Uz,1, this inconsistency did not affect the results, because the
length of the upstream channel was sufficiently large to achieve fully developed
flow conditions;

• For the log-conformation tensor components, zero values were assumed at the inlet, a
symmetry boundary condition was used at the centerline, a linear extrapolation of
the tensor components to the boundary was used at the walls, and a zero-gradient
condition was imposed at the outlet;

• For the temperature, a Dirichlet condition was imposed at the inlet (Tinl = 462 K),
a symmetry boundary condition was used at the centerline, at the upstream wall,
(z < l1), Tw,1 = 462 K, while, for the downstream wall, (z ≥ l1) the temperature Tw,2
was chosen such as to give temperature jumps of ∆T = Tw,2 − Tw,1 = −30 K, 0 K, 30 K.
A zero-gradient condition was imposed at the outlet;

• All fields were set to zero at the initial time.
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4.2. Numerical Parameters

The dimensionless numbers governing the flow are the Reynolds number Re, the
Weissenberg number Wi, the Peclet number Pe and the retardation ratio β, defined as:

Re =
ρR2Uz,2

η0
(65)

Wi =
λUz,2

R2
(66)

Pe =
λR2Uz,2cP

k
(67)

where Uz,2 is the mean velocity in the axial direction in the downstream channel, and
λ is the relaxation time. In this case study, Re = 3.9× 10−5, corresponding to creeping
flow conditions. The retardation ratio was equal to β = ηS/η0 = 19/20, thus assuming
the solvent contribution to be negligibly small, which approximately recovered an Upper-
Convected-Maxwell model. The Peclet number was kept constant at Pe = 345 by setting
cP = 1500 J/kg K and k = 0.17 W/mK. The WLF parameters were C1 = 4.54 and
C2 = 150.36. The split coefficient varied between pure energy elasticity and entropy
elasticity, α = 0 or 1, respectively.

The use of a normalized time-step ∆t/(R2/Uz,2) of 10−4 allowed for converged so-
lutions to be obtained for all the runs performed. The maximum local Courant number
corresponding to the normalized time-step 10−4 obtained for the axisymmetric 4:1 sudden
contraction is 0.07.

4.3. Effects of the Energy Partitioning Parameter α

In Figure 3, the temperature profile on the line r = 0.97R2 (Figure 3a) and the tempera-
ture contour plots (Figure 3b) are shown as a function of the axial position z/R1 for α = 0
and α = 1 at Wi = 5 and ∆T = 0 K. As illustrated in Figure 3a, the temperature profile
computed by the newly-developed, fully implicit, block-coupled, non-isothermal, viscoelas-
tic, log-conformation tensor-based algorithm is in agreement with the results presented
by Habla et al. [18]. Due to the increase in the deformation rate near the contraction, the
dissipation also increases, which leads to a temperature rise shortly before the contraction.
At the contraction, the fluid moves to the wall with the imposed fixed wall temperature
Tw,2 = 462 K and, therefore, due to heat conduction towards the wall, a fast decrease in
temperature is observed. Note that this decrease is remarkably higher for entropy elasticity
(α = 1) due to its higher temperature, which promotes a larger heat conduction rate. Subse-
quently, just after the re-entrant corner, due to the larger normal stresses developed here
(see Figure 4), which lead to an increase of dissipation, the temperature rises again at the
steepest rate. Further along the downstream channel, the temperatures also increase, but
now at a smaller rate and, ultimately, the difference in the temperatures between energy
elasticity and entropy elasticity cases is small, because the energy is now more released
as pure energy elasticity (α = 0) [18]. The temperature contour plots shown in Figure 3b
are similar for both the energy and entropy elasticities, as expected from the marginal
differences shown in Figure 3a for the temperature profile at r = 0.97R2. In both cases,
we see the formation of a larger temperature-rising region for z/R1 > 1, which is also
extended through the downstream channel radial direction.
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(a) (b)

Figure 3. (a) Temperature profiles on the line r = 0.97R2 [18] and (b) temperature contours as a
function of the axial position z/R1 for α = 0 and α = 1 at Wi = 5 and ∆T = 0 K using M2.

In Figure 4, the axial normal stress profile on the line r = 0.97R2 (Figure 4a) and the
axial normal stress contour plots (Figure 4b) as a function of the axial position z/R1 for
α = 0 and α = 1 at Wi = 5 and ∆T = 0 K, are shown. As illustrated in Figure 4a, the
axial normal stress profile computed by the newly-developed, fully implicit, block-coupled,
non-isothermal, viscoelastic, log-conformation tensor-based algorithm and the isothermal
version is in agreement with the results presented by Habla et al. [18]. In the non-isothermal
cases, the axial normal stress is smaller than the one obtained for the isothermal calculation.
This behaviour can be attributed to the fact that increasing the temperature leads to a
reduction in the viscosity value (see Equation (9)), which decreases the stress values, and
also leads to a reduction in the relaxation time, resulting in a smaller local Weissenberg
number and, therefore, fewer elastic effects (i.e., decrease in stresses). In addition, just after
the re-entrant corner, we see an abrupt increase of the normal stresses due to the increase
in the fluid deformation in this region, followed by a fast relaxation, before it starts to
increase further down the downstream channel, but now at a smaller rate. The axial normal
stress contour plots shown in Figure 4b are again similar for both the energy and entropy
elasticities. In both cases, we see the formation of a thinner layer of normal stresses rising
region at 0 < z/R1 < 0.2, which then increases in width, but with smaller normal stress
values, at 0.2 < z/R1 < 1.

(a) (b)

Figure 4. (a) Axial normal stress profiles τP,zz/(η0Uz,2/R2) on the line r = 0.97R2 [18] and (b) axial
normal stress contours as a function of the axial position z/R1 for α = 0 and α = 1 at Wi = 5 and
∆T = 0 K using M2.
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Additionally, Figure 5 shows the contours of the first normal stress difference and
shear stress predicted on M2 at α = 0, Wi = 5 and ∆T = 0 K, for a zoomed region
around the re-entrant corner. The maximum first normal stress difference is located on
the downstream channel wall near the re-entrant corner (see Figure 5a). Moreover, at the
contraction vertical wall, the first normal stress difference is negative, which is responsible
for fluid re-circulation and the formation of the corner vortex. The maximum magnitude
of the shear stress component is also located on the downstream channel wall near the
re-entrant corner (see Figure 5b); however, in that case, the shear stress value is negative,
pushing the fluid towards the symmetry line at r/R1 = 0. Finally, at the contraction vertical
wall, the shear stress is positive, allowing for the extension of the corner vortex size.

(a)
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Figure 5. Contours of (a) first normal stress difference (τP,zz − τP,rr)/(η0Uz,2/R2) and (b) shear
stress τP,rz/(η0Uz,2/R2) for α = 0, Wi = 5 and ∆T = 0 K using M2.

In Figure 6, the axial velocity profile on the line r = 0.97R2 (Figure 6a) and the axial
velocity contour plots (Figure 6b) as a function of the axial position z/R1 for α = 0 and
α = 1 at Wi = 5 and ∆T = 0 K are shown. As illustrated in Figure 6a, the axial velocity
profiles computed by the newly-developed, fully implicit, block-coupled, non-isothermal,
viscoelastic, log-conformation tensor-based algorithm and with the isothermal version are
in agreement with the results presented by Habla et al. [18]. In addition, we can see that
the influence of temperature on the local velocity profile for both cases of entropy elasticity
and energy elasticity is negligible, being similar to the axial velocity of the isothermal case.
The axial velocity contour plots shown in Figure 6b are, again, similar for both the energy
and entropy elasticities, showing the accommodation of the fluid near the re-entrant corner,
i.e., the fluid is accelerated in the center while decelerating in the wall-near regions, and a
fully developed velocity profile at the downstream channel.

(a) (b)

Figure 6. (a) Axial velocity profiles Uz/Uz,2 on the line r = 0.97R2 [18] and (b) axial velocity contours
as a function of the axial position z/R1 for α = 0 and α = 1 at Wi = 5 and ∆T = 0 K using M2.
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In Table 2, we provide a summary of the number of iterations and execution time
of the segregated/iterative and coupled/monolithic approaches for the calculation of the
non-isothermal, viscoelastic matrix-based Oldroyd-B fluid flow in the two-dimensional,
axisymmetric 4:1 planar sudden-contraction geometry, using the two different meshes,
M1 and M2, with α = 0 at Wi = 5 and ∆T = 0 K. The ratio of the number of iterations
required by the segregated algorithm to that required by the coupled one increases from
432 to 524 for M1 and M2, respectively, with accompanying computational cost ratios of 17
and 19, respectively, which clearly shows the benefits obtained by using the fully implicit
coupled approach.

Table 2. Comparison of the number of iterations and CPU time required by the segregated (S) and
coupled (C) solvers for the calculation of the non-isothermal viscoelastic matrix-based Oldroyd-B
fluid flow in the two-dimensional axisymmetric 4:1 planar sudden-contraction geometry, using the
two different meshes M1 and M2, with α = 0 at Wi = 5 and ∆T = 0 K.

Mesh Number of Iterations Execution Time [s]

C S S/C C S S/C
M1 827 357,681 432 103 1760 17
M2 1484 778,344 524 689 13,102 19

M1: 4293 CV; M2: 17172 CV.

4.4. Effects of Wall Temperature Jumps

The temperature and axial velocity profiles at the outlet of the downstream section are
shown in Figure 7 for Wi = 5, α = 0 and temperature jumps ∆T = −30 K, ∆T = 0 K and
∆T = +30 K. The results for the case of energy elasticity at the outlet of the downstream
section, for all temperature jumps, did not present any differences [18]. As shown in
Figure 7a, the wall (r/R1 = 0.25) temperature changes by more than 60 K and the centerline
(r/R1 = 0) temperature varied less than 5 K from ∆T = −30 K to ∆T = +30 K, in
agreement with the results obtained by Habla et al. [18]. These temperature changes are
responsible for the limited effect of external heating or cooling in the thermal control of the
flow at the bulk region. In Figure 7b, the axial velocity profile at the centerline increases
with the decrease in temperature jump, due to the smaller viscosity in the near-wall region.

(a) (b)

Figure 7. (a) Temperature T and (b) axial velocity Uz/Uz,2 as a function of the radial distance r/R1

at the outlet, with Wi = 5, α = 0 and temperature jumps ∆T = −30 K, ∆T = 0 K and ∆T = +30 K
using M2 [18].

The temperature and axial velocity contours are shown in Figure 8 for Wi = 5,
α = 0 and temperature jumps ∆T = −30 K and ∆T = +30 K. For the cooling case, i.e.,
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∆T = −30 K (top figures in Figure 8), the reduction in temperature on the downstream
channel walls promotes an increase in fluid centerline velocity of approximately 3.1 times
more than the one obtained for the case ∆T = 0 K (see Figure 6). For the heating case, i.e.,
∆T = +30 K (bottom figures in Figure 8), the increase in temperature on the downstream
channel walls promotes an increase in fluid centerline velocity of approximately 2.3 times
more than the one obtained for the case ∆T = 0 K (see Figure 6). Notice that the increase in
centerline velocity for the heating case is approximately 75% smaller than the one obtained
for the cooling case.
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Figure 8. (a) Temperature T and (b) axial velocity Uz/Uz,2 contours at Wi = 5, α = 0 and temperature
jumps ∆T = −30 K and ∆T = +30 K using M2.

Additionally, Figure 9 shows the contours of the first normal stress difference and shear
stress predicted on M2 at α = 0, Wi = 5, ∆T = −30 K (top) and ∆T = +30 K (bottom),
for a zoomed region around the re-entrant corner. The maximum first normal stress
difference was found to decrease by 35% and increase by 30% for the cases ∆T = −30 K
and ∆T = +30 K, respectively, when compared to the case ∆T = 0 K. The minimum value
of the shear stress is found to both increase and decrease by 50% for the cases ∆T = −30 K
and ∆T = +30 K, respectively, when compared to the case ∆T = 0 K.
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Figure 9. Contours of (a) first normal stress difference (τP,zz − τP,rr)/(η0Uz,2/R2) and (b) shear
stress τP,rz/(η0Uz,2/R2) for α = 0, Wi = 5, ∆T = −30 K (top) and ∆T = +30 K (bottom) using M2.
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5. Conclusions

This paper presented a fully implicit coupled method (also known as a monolithic
approach) for the solution of laminar, incompressible, non-isothermal, viscoelastic flows
based on the log-conformation tensor framework for high Weissenberg number problems.
The fully implicit coupled solver is a pressure-based method in which the pressure equa-
tion is derived through the Rhie–Chow interpolation, allowing for coupling between the
pressure and velocity fields. In addition, the explicit diffusion term added by the improved
both-sides-diffusion (iBSD) technique to the linear momentum equations is discretized
with a special second-order derivative of the velocity field, allowing for coupling between
the velocity and log-conformation tensor fields. Subsequently, the divergence of the log-
conformation tensor term in the linear momentum equations is implicitly discretized,
and the velocity field is considered implicitly in the log-conformation tensor constitutive
equations by expanding the advection, rotation and the rate of deformation terms, all by
considering a Taylor series expansion truncated at the second-order error term. Finally, the
advection and diffusion terms in the energy equation are also implicitly discretized.

The validation of the newly-developed algorithm was performed for the non-isothermal
viscoelastic matrix-based Oldroyd-B fluid flow in the benchmark problem of a two-dimensional
axisymmetric 4:1 planar sudden-contraction geometry, and the results obtained by the fully
implicit coupled algorithm were shown to be in remarkable agreement with other results
found in the scientific literature (less than 5% error differences), which validated the present
implementation. The results were obtained at a high Weissenberg number, and allowed to
study the influence of the energy splitting factor at the limit of pure energy elasticity and pure
entropy elasticity, and the effect of the wall temperature jump near the contraction for positive
and negative temperature increments.

In future works, the algorithm will be further assessed by looking at 3D case studies
and employing non-linear viscoelastic fluid behaviors, such as the shear-thinning phe-
nomenon predicted by the Giesekus fluid model.
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