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Abstract Computational models that simulate individuals’
movements in pursuit-tracking tasks have been used to eluci-
date mechanisms of human motor control. Whilst there is
evidence that individuals demonstrate idiosyncratic control-
tracking strategies, it remains unclear whether models can be
sensitive to these idiosyncrasies. Perceptual control theory
(PCT) provides a unique model architecture with an internally
set reference value parameter, and can be optimized to fit an
individual’s tracking behavior. The current study investigated
whether PCT models could show temporal stability and indi-
vidual specificity over time. Twenty adults completed three
blocks of 15 1-min, pursuit-tracking trials. Two blocks
(training and post-training) were completed in one session
and the third was completed after 1 week (follow-up). The
target moved in a one-dimensional, pseudorandom pattern.
PCT models were optimized to the training data using a
least-mean-squares algorithm, and validated with data from
post-training and follow-up. We found significant inter-

individual variability (partial η2: .464–.697) and intra-
individual consistency (Cronbach’s α: .880–.976) in parame-
ter estimates. Polynomial regression revealed that all model
parameters, including the reference value parameter, contrib-
ute to simulation accuracy. Participants’ tracking perfor-
mances were significantly more accurately simulated by
models developed from their own tracking data than by
models developed from other participants’ data. We conclude
that PCT models can be optimized to simulate the perfor-
mance of an individual and that the test-retest reliability of
individual models is a necessary criterion for evaluating com-
putational models of human performance.
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The ability to control visual and proprioceptive variables un-
derpins all human manual skills. Tracking tasks, in which an
end-effector (joystick or handle) is used to keep a cursor
aligned with a target that changes position over time
(Poulton, 1952a, b; Poulton, 1974), have thus featured prom-
inently in research studies of motor control and human-
computer interaction. System identification approaches, ap-
plied to tracking behavior, have led to the development of
general computational models of the human operator
(Levison, Baron, & Kleinman, 1969; McRuer & Jex, 1967).
However, it has been established that humans display idiosyn-
cratic invariants in some movement parameters (Morasso,
1981). These characteristic individual Btraits^ should be evi-
dent between individuals’manual tracking behavior and show
temporal stability within individuals. Below we review the
evidence for such idiosyncrasies in individual tracking perfor-
mance, and outline a model derived from the perceptual con-
trol theory (PCT; Powers, 1973) that is capable of capturing
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these idiosyncrasies. The current study explores the potential
for this computational model to individually characterize 20
individuals’ control strategies and differentially simulate their
performance.

Time-series and frequency analysis of individual perfor-
mance in pursuit tracking indicates that manual tracking per-
formance is dependent on a number of factors. In the first
instance, tracking strategies are partly determined by task con-
straints, such as the frequency of the target signal (Neilson,
Neilson, & O’Dwyer, 1993) and the motion pattern of the
target, for instance whether targets move in sinusoidal or pseu-
dorandom patterns (Notterman & Tufano, 1980; P Viviani &
Mounoud, 1990). Individuals also demonstrate large individ-
ual differences in tracking strategies and performance due to
user-related factors, including the volume of task practice
(Notterman & Tufano, 1980), previous joystick experience
(Joseph & Willingham, 2000), and age (Jagacinski, Liao, &
Fayyad, 1995; Liao, Jagacinski, & Greenberg, 1997).
Differences are even more evident in the tracking behavior
of individuals with motor deficits, such as the characteristic
impairments of people with Parkinson’s disease. Individuals
with Parkinson’s disease tend to undershoot the target peaks
and demonstrate increased pursuit latencies relative to control
participants (Aiman Abdel-Malek, Markham, Marmarelis, &
Marmarelis, 1988; Flowers, 1978). The construction of dy-
namic models of pursuit-tracking performance in healthy
and atypical populations has helped to elucidate the nature
of individual differences in tracking.

In healthy populations, dynamic models optimized to the
data of individual participants demonstrate that idiosyncrasies
in tracking performance can be reflected in estimated model
gains and time constants (delays) (Abdel-Malek &
Marmarelis, 1988; Viviani, Campadelli, & Mounoud, 1987;
Viviani & Mounoud, 1990). Computational models of pursuit
performance in people with Parkinson’s disease have shown
that patterns of parameter estimates reflect their specific im-
pairments in motor planning and execution. The characteristic
target undershoot is quantified in the model by overdamped
output relative to control participants (Aiman Abdel-Malek
et al., 1988; Au, Lei, Oishi, & McKeown, 2010). Timing
issues are evident in delays and velocity control gains
(Viviani, Burkhard, Chiuvé, Dell’Acqua, & Vindras, 2009).
Analysis of these parameters (gains, delays and damping con-
stants, optimized to individual performance) enable discrimi-
nation between samples of people with Parkinson’s in receipt
of medication, those who are non-medicated, and controls,
despite the absence of a difference in overall task accuracy
between the groups (Au et al., 2010; Oishi, Ashoori, &
McKeown, 2010). Whilst many studies found that models
accurately simulated the tracking behavior of individuals in
model validation tests in both typical samples (Abdel-Malek
& Marmarelis, 1988; Aiman Abdel-Malek & Marmarelis,
1990; Marken, 1991; Powers, 1978; Viviani et al., 1987;

Viviani & Mounoud, 1990) and Parkinson’s disease samples
(Aiman Abdel-Malek et al., 1988; Au et al., 2010; Oishi et al.,
2010; Oishi, Talebifard, & McKeown, 2011; Viviani et al.,
2009), there is a paucity of research studies that validate
models with data collected at a later time point. This is prob-
lematic because the accuracy, and therefore usefulness, of a
model must be dependent on the individual’s control strategy
remaining stable over time in a well-practiced individual.
Whilst this has not been specifically modelled in tracking
studies, there is some indication from studies of motor perfor-
mance that control strategies might show temporal stability.

It has been established that movement parameters exist that
are invariant over repeated movement performances within
participants, despite overall variability in produced move-
ments and individual differences between participants. These
include velocity profiles and hand tangential velocity in
reaching movements (Morasso, 1981), and movement trajec-
tories in pointing and joint angle-velocity ratios in pointing
(Soechting & Lacquaniti, 1981). However, there have been
few studies testing whether this is the case in tracking exper-
iments over repeated occasions. In one study, participants
tracked a sinusoidal signal at a single frequency over 10 days.
The variability in their pursuit velocity profiles reduced as the
variability in their error decreased, assessed by the correlation
coefficient between trials each day (Franks, Wilberg, &
Fishburne, 1982), indicating that participants learned a partic-
ular control strategy. Another study showed that participants
produced, and could be differentiated by, individual character-
istic direction-velocity distribution Bensembles^ in the track-
ing of two-dimensional sinusoidal targets, which persisted
over a range of target frequencies (Miyake, Loslever, &
Hancock, 2001). While these studies suggest that intra-
individual consistencies in tracking strategies may exist, we
found only two studies that explicitly optimized models to
participants’ behavior at one time point, and validated the
model with data collected at a second time point (Bourbon,
1996; Bourbon, Copeland, Dyer, Harman, & Mosley, 1990).
These studies found strong correlations (r = .98) between the
model-simulated tracking movements and the participants
own pursuit movements. These studies had small sample
sizes: five participants over 1 year (Bourbon et al., 1990)
and a single case (the author) over 5 years (Bourbon, 1996).
Whilst models accurately simulated the participant from
which they were developed over this time period, the authors
did not measure intra-individual consistency or individual dif-
ferences in parameter estimates over the repeated testing ses-
sions. The aforementioned studies used a computational ar-
chitecture derived from perceptual control theory (Powers,
1973), which purports to have the potential to differentially
simulate individual performance in healthy participants
(Bourbon, 1996).

Perceptual control theory (Powers, 1973) is derived from
conceptual principles, and therefore the functions of model
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parameters (on which individuals should differ) are pre-spec-
ified, and relate to specific aspects of the individual’s control
strategy. This is in contrast to other models identified via sys-
tem identification. The tracking model comprises the gains,
delays, and damping parameters common to other theories, in
addition to another, unique parameter – the reference value.
This parameter represents the goal specification for the control
system, and in PCT is set within the controlling system rather
than from outside it (Mansell & Marken, 2015). Hence PCT
provides a model of a purposeful system (Powers, 1978).
Whilst other theories would assume this goal specification
would be zero within the constraints of the tracking task (as
participants are instructed to keep the cursor and
target aligned), this is not the case when models including a
reference value parameter are optimized to individual perfor-
mance (Mansell &Marken, 2015). In fact, estimated reference
parameters frequently hold a non-zero value (Powers, 1978,
1989). The addition of this control parameter may improve the
simulation accuracy of models to individuals’ validation data
and allow discrimination between individuals as their specific
goal specification must be a core feature of their control strat-
egy. Whilst PCT models have been frequently demonstrated
to simulate individual performance to a high degree of accu-
racy in well-practiced participants (Bourbon, 1996; Bourbon
et al., 1990; Powers, 1978, 1989), the nature of the relation-
ship between PCT parameters and performance remains
unknown. Moreover, whilst the findings of Bourbon et al.
(1996, 1990) suggest that well-practiced individuals might
demonstrate idiosyncratic patterns of control parameters that
remain consistent over time (so long as task demands and
constraints remain fairly stable), this has not been directly
tested to date. It remains to be demonstrated whether PCT
can be used to differentially simulate individual performance.

The current study aimed to examine the estimated control
parameters of a PCT model optimized to individual’s perfor-
mance over 1 week, and elucidate the relationship between
individual parameters and model simulation accuracy. We
trained a PCT model on each participant’s pursuit movements
during a tracking task, and examined several factors: the reli-
ability of estimated parameter values for each participant, in-
dividual differences between participants’ models over 1
week, and the nature of the relationship between estimated
control parameter values and model accuracy. To determine
whether models were individual-specific, we additionally test-
ed whether these models could make idiographic predictions
of participants’ own pursuit movements after 1 week (valida-
tion), and whether these Bself^ simulations were superior in
accuracy to the predictions of a general aggregate Bother^
model (that had not been optimized to the participant’s data).
We hypothesized that: (1) parameter estimates of an individ-
ual’s computational model will remain stable over time (1
week); (2) there will be differences in parameter estimates
between individuals; (3) estimated parameters are suspected

to hold a quadratic relationship with model simulation error,
as the participants are presumed to converge on optimal pa-
rameters in the task. The reference value parameter will in-
crease the variance explained by the regression model when
added to the model consisting of the other parameters; (4) the
models generated from an individual’s parameter estimates
during training will accurately simulate an individual’s track-
ing movements even after 1 week has elapsed; and (5) a par-
ticipant’s tracking data will be more accurately simulated by
the participant’s own model than by other participants’
models. We expect that the difference will be small but con-
sistent given that participants are hypothesized to converge on
an optimal control strategy for this task.

Method

Design

The experiment required 20 participants to complete Bruns^ of a
pursuit-tracking task (Fig. 2, panel b). For each Brun^ the partic-
ipant continuously tracked a target moving in a pseudorandom
pattern for 1 min. Target and cursor positions were recorded
every 16.7 ms. Participants completed three blocks of pursuit-
tracking runs over two sessions, separated by 1 week (Fig. 1).
The first session consisted of a difficulty titration procedure (ex-
plained in full in the procedure section below), followed by the
first block of 15 Btraining runs^ (from which the model was
derived), and the second block of 15 Bpost-training runs^ (which
were the benchmark for model validation). In the second session,
which took place at least 1 week after the first, participants com-
pleted the third block of 15 Bfollow-up runs^ (second validation).

Each participant’s training runs were used to generate an in-
dividual model. Each model simulated that participant’s cursor
movements during the post-training and follow-up runs (Fig. 1).
The participants’ tracking accuracy was assessed by root mean
square error (RMSE) between the target and cursor movements
over the 1-min run, expressed as a percentage of the total target
excursion range (track RMSE). A second RMSE value quanti-
fied the accuracy of the fit of the model-simulated cursor move-
ments to the participant’s actual cursor movements for each run;
this was also expressed as a percentage of total target excursion
range (model RMSE).

Participants

Twenty healthy volunteers were recruited through the
University of Manchester volunteer database. Participants
were excluded if they had impaired, uncorrected vision or
any diagnosis of a neurological problem of motor control.
Participants were financially reimbursed or awarded course
credits for their participation. Ethical approval was granted
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by the University Research Ethics Committee (UREC) at the
University of Manchester (UREC Reference: 15247).

We could identify only one study with a comparable analysis
to ours. They confirmed the individual differences in parameter
estimates of amodel in a sample of ten participants (Viviani et al.,
1987). This article did not provide sufficient methodological de-
tail for a power analysis. More recent studies of idiosyncrasies in
pursuit tracking used 12 participants (Miyake et al., 2001) or
groups of 20 or fewer participants (Oishi et al., 2010; Viviani
et al., 2009), but did not conduct a similar analysis. As our
primary aim in this article was to determine whether parameter
estimates and simulation accuracy were temporally stable within
individuals, it was crucial that we collect enough data from each
participant. Therefore we selected a sample size of 20 partici-
pants based on previous studies of this kind, and collected track-
ing data from 45 runs for each participant over two sessions,
although participants completed 62 runs in total.

Apparatus

TrackAnalyze The pursuit-tracking task used was the
TrackAnalyze program, part of the Living Control Systems
III: The Fact of Control suite (Powers, 2008). In the task, the
participant uses a Microsoft Sidewinder Force Feedback 2
joystick (J) to keep a cursor (C) aligned with a moving target
(T) in one dimension (Fig. 2b). The cursor is a green

horizontal bar (black in figure) and the target marks are two
red horizontal bars (grey in figure). The participant was asked
to keep the green cursor positioned between the red bars. Both
the target and cursor could move only in the vertical dimen-
sion. The joystick positions were sampled and scaled such that
joystick position and cursor position had a directly proportion-
al relationship (C proportional to J). A computer algorithm
used a pseudo-random number generator and smoothing rou-
tine to produce the pseudorandom target time series. The al-
gorithm generates values in the time series by multiplying a
random number (rectangular distribution with mean 0 and
range ±0.5), by 20,000 yielding a number between ±10,000.
Each number is divided by one of five smoothing factors (64,
32, 16, 8, and 4, respectively), and added to the previous
value. Thus each successive value is a weighted sum of all
previous values. The resultant time series is smoothed a fur-
ther two times using the same smoothing factor. Finally, target
time series were rescaled to the excursion permitted for the
target in screen pixels. The five smoothing factors determined
the rate of change of the target time-series; targets with a
higher rate of change were more difficult to track, and there-
fore as smoothing factor value decreased (64, 32, 16, 8, 4), the
assigned difficulty level of a run increased (1, 2, 3, 4, 5). The
values of the smoothing factor were derived through results
from an experimental pilot in which these values gave a large
range of error rates centered on 3% error. This error threshold

Fig. 1 Flow diagram of the experiment design
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was chosen to be low because high tracking performance is
desirable for model fitting, but the task should not be so easy
that participants reach a performance ceiling. Each run com-
pleted by each participant used a new pseudorandom time-
series generated at the difficulty level specified by the
experimenter.

The position control model used in this program is
adapted from PCT (Powers, 1973; Powers, Clark, &
McFardland, 1960; Powers, Clark, & Mcfarland, 1960).
PCT is a biologically plausible theory of behavior, with
roots in control systems theory. It states that organisms
control their perceptions at referent goal states by varying
their motor behavior. This is implemented by a negative-
feedback architecture comprising the organism, the envi-
ronmental variable that it desires to control (the controlled
variable), and the feedback path (Marken, 2014). These
are encapsulated in the four functions of the control ar-
chitecture: the input function, the comparator function, the
output function, and the environment (feedback) function.

These functions have associated parameters, such as de-
lays and gains, which are pre-specified in PCT.

These parameters are the key to individual differences as pa-
rameter values are optimized as an individual learns. One param-
eter, the reference value, represents the desired state of the con-
trolled variable, which is compared to the current perception of
the controlled variable. These parameters, embedded in func-
tions, determine the dynamic relationship between input and out-
put, and due to feedback, the effect of this output on system input.
Thus motor output is a purposeful effort to reduce any difference
between the perceived current state of the controlled environ-
mental variable (such as the distance between a held cup of tea
and one’s mouth when drinking), and the desired perceptual state
of that variable (the cup to one’s lips) (Powers, 1973). In pursuit
tracking a participant senses the discrepancy between the cursor
and the target, and compares this difference to a desired percep-
tual relationship (target-cursor alignment), acting to eliminate this
error through varying joystick movements.

In the PCT model of the participant in the tracking task
(Fig. 2a) the input function (i) senses the controlled variable

Fig. 2 a The experimental setup with the computer model and screen.
The computer model takes feedback from the cursor-target positional
error as an input and compares this distance to the desired reference
distance (r) between target (T) and cursor (C). b The experimental
setup from the viewpoint of the participant. The joystick position is

altered to move the cursor (C) in the vertical dimension and the target
marks (T) move according to a pseudorandom pattern. c The results of a
typical 1-min run completed by a participant. Target (T): grey line, cursor
(C): black dotted line
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(target-cursor distance) and translates this to a perceptual sig-
nal (p; the perceived difference between the target (T) and
cursor (C); see Eq. 1 below:

p ¼ C−T ð1Þ

The comparator function (co) compares this perceptual sig-
nal (p) to the reference signal (r), the desired state of the
controlled variable, and results in an error signal (e); see Eq. 2:

e ¼ r−p ð2Þ

The error signal (e) drives the output at the output function
(o). This output, in the model, is the simulated joystick posi-
tion, which determines the cursor position. Calculation of the
new output o(t) of the control unit is determined in the pro-
gram by the following formula, which contains a leaky inte-
grator to counteract the accumulation of output over succes-
sive iterations (Eq. 3):

o tð Þ ¼ o t−1ð Þ þ Ko � e t−τð Þ−Kd � o t−1ð Þð Þ �Δt ð3Þ

WhereΔt is the time increment on each iteration (16.7ms),
o(t-1) is the value of the output at the previous iteration, and e(t
– τ) is the error with input delay (τ) samples. The model has
four alterable parameters: the reference value (r), input delay
(τ), output gain (Ko), and damping constant (Kd). The reference
value specifies the desired distance between the cursor and the
target that the model is aiming to achieve. It is a positive or
negative integer, expressed in pixels. The input delay parame-
ter is an estimate of the lag, in samples, of the cursor behind the
target over the run. The output gain is a constant that propor-
tionally amplifies the output, estimated from the velocity at
which e is cancelled. The damping constant sets the leakage
rate of the leaky integrator. It is therefore a constant that mul-
tiplies the previous output reduce its effect in the calculation of
the current output, damping the response of the model. Whilst
in the organic controller the input function (i), output function
(o), and environment function ( f ) would also have associated
gains, the model simplifies these by setting both input and
environment function gains to the integer 1. Thus, the output
gain represents the total loop gain for the system, and the
equation for the environment function is:

C tð Þ ¼ o tð Þ
.
1 ð4Þ

A simulation of a PCT model with adaptable gains for all
three functions can be found in Living Control Systems III:
The fact of control (Powers, 2008).

Parameters are estimated via an optimization routine in
which each parameter in turn is varied recursively to increase
the goodness of fit between model-simulated cursor and actual
cursor positions, assessed by a least-squares procedure

repeated 20 times or until a minimum root-mean-square error
(RMSE) change is achieved. Parameters are each fitted in this
way in the order: output gain (Ko), reference value (r), input
delay (τ), then damping constant (Kd). This order is replicated
five times with the latest estimations for each parameter used
as initial values for the next recursive loop. The order in which
the parameters are fitted was arrived at empirically (Powers,
2008). Further details of the PCT model and TrackAnalyze
program can be found in the appendices of Living Control
Systems III: The Fact of Control (Powers, 2008).

Edinburgh handedness inventory For completeness in char-
acterizing the demographics of our sample, we collected data
on the handedness of participants. For this the Edinburgh
Handedness Inventory short form (Veale, 2014) was used. It
is a four-item questionnaire in which participants indicate
which hand they would usually use to complete everyday
activities on a five-point Likert-type scale ranging from al-
ways left to always right. A global score indicates whether
the individual is left-handed, mixed-handed or right-handed.

Procedure

In the first session, participants read the instruction sheet
explaining the pursuit-tracking task, and gave informed con-
sent to take part. They completed the Edinburgh Handedness
Inventory and performed two practice runs to familiarize
themselves with the pursuit-tracking task. Participants com-
pleted a difficulty titration procedure, the purpose of which
was to ensure that each participant was well practiced at the
task, and to standardize the tracking error rate across the sam-
ple of participants. The latter was necessary because the accu-
racy in the fit of the simulated cursor movements to the actual
cursor movements (model RMSE) was affected by the accu-
racy of the fit in actual cursor movements to the target pattern
(tracking RMSE) for the run being modelled. Thus the vari-
ability in task performance was reduced by standardizing the
error rate, which enabled greater comparability of model sim-
ulation accuracy between individuals. Participants completed
sets of three runs over the five different target difficulty levels
(determined by the smoothing factors). The highest difficulty
level at which the participant produced a tracking RMSE error
below 3%on all three runs was selected for the duration of that
participant’s experiment. This procedure ensured that the task
was equally difficult for each participant despite individual
differences in participants’ performances. The threshold 3%
scaled tracking RMSE was decided on as this was a typical
error rate in pursuit tracking (Powers, 1978, 2008).

Following difficulty titration, participants started the 15
training runs, and after these, the 15 post-training runs. One
week later, at the start of Session 2, participants received task
instructions again and completed 15 follow-up runs. The de-
sign is summarized in Fig. 1. For each run in each of the three
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blocks a new pseudorandom target time-series was generated.
Participants were thus administered different target time series
from one another. No participant completed the same target
time series more than once.

Analyses

Prior to analysis, outliers were excluded from the dataset. This
was necessary to control for tracking error as model fitting
accuracy is extremely sensitive to participants’ initial tracking
errors. A priori, we planned to exclude participants if the mean
tracking error for each participant was higher than three stan-
dard deviations above the mean tracking error of the partici-
pant sample. All analyses were conducted using data analysis
package IBM SPSS 22.

Analyses of intra-individual consistency and inter-
individual differences We conducted Cronbach’s alpha tests
(Cronbach, 1951) for each parameter to determine whether
participants’ parameter estimates were stable trial-to-trial,
and over 1 week. Parameter estimates were generated for each
run in all three blocks, totaling 45 estimates of each parameter
for each participant. In addition, a mean measurement, abso-
lute-agreement, two-way mixed effects model was used to
calculate the intra-class correlation coefficient for each param-
eter. The analysis was replicated in the subgroup of 13 partic-
ipants that completed the task at difficulty level 2.

We conducted a factorial ANOVA for each of the four pa-
rameters (τ, Ko, Kd, r) to determine whether the parameter
estimates differed between participants, replicating a previous
analysis that tested the individual differences in parameter es-
timates of amodel in a sample of ten participants (Viviani et al.,
1987). In our factorial design, participant was an independent
group factor with 20 levels (as there were 20 participants).
Block was a repeated measures factor with three levels; train-
ing, post-training and follow-up. To determine whether any
inter-individual differences in parameters were due to partici-
pants tracking targets at different difficulty levels (due to the
difficulty titration procedure) we conducted a subgroup analy-
sis on the data from the participants that completed the task at
the most common difficulty level (difficulty 2, n = 13).

Contribution of parameters to model accuracy To investi-
gate the nature of the relationship between the estimated pa-
rameter values and the accuracy of that model in simulating
the participant’s movements (across runs, blocks, and individ-
uals), we conducted a polynomial regression analysis with
each of the model parameters as the predictor variables and
model RMSE as the outcome variable. This stepwise analysis
aimed to reveal whether the relationship followed a linear,
quadratic, or cubic pattern. Themost appropriate model would
be indicated by whether the R2 change significantly improved
as the polynomial order increased.

Following selection of an appropriate regression model or-
der (quadratic), a second stepwise regression was conducted to
determine the contribution of each parameter to the quadratic
model. Parameters were added in a stepwise fashion; parame-
ters were added in descending order of occurrence in tracking
control models: output gain, input delay, damping constant,
and finally reference value. We opted to add the reference
value last because we intended to test whether this parameter
is essential to accurate model performance. In PCT (and con-
trasting with other theories) this parameter is set from within
the system and can take non-zero values (Mansell & Marken,
2015). Adding this parameter to the regression model last
would determine whether it contributed significantly to model
accuracy after all other parameters had been added, and there-
fore whether this parameter improved the control model.

It was thought that as participants completed the task at
different difficulty levels this might confound the regressions
as the different task constraints may influence parameter op-
tima and show different distributions. Consequently we re-
peated the above analyses within the subgroup.

Accuracy of individual computational models An individ-
ual model was developed for each participant by taking the
mean of the estimates for each parameter across the 15 runs of
the training block. To test whether these individual models
accurately simulated the participant’s tracking movements at
post-training and follow-up (validation), we compared each
participant’s cursor positions as simulated by the model during
the post-training and follow-up runs to the same participant’s
actual cursor positions during these blocks; the model RMSE.

Individual specificity of the computational models We
aimed to test the hypothesis that a participant’s tracking data
would be more accurately simulated by the participant’s indi-
vidual model than by other participants’ models. For simplic-
ity, the analysis procedure is outlined for the tracking data
from participant 1 (P1). This procedure would be repeated
for each of the 20 participants.

The model generated from P1’s training data was fit to P1’s
15 tracking runs in the post-training and follow-up blocks.
Averaging the accuracy across the 15 runs of each block
yielded the P1 Bself^ model RMSE value for each block. To
generate the Bother^ model RMSE, the other 19 models (de-
rived from P2-P20 training data) simulated each of the 15
tracking runs in P1’s post-training, and follow-up blocks.
This yielded 19 model RMSE means and standard deviations
of the error around these means in each block (one for each
model fit to the 15 P1 runs). A weighted mean of these 19
model means was calculated, resulting in a single aggregate
Bother^ model RMSE for each block.

The mean RMSE fit for each of the 19 Bother^ models to
P1’s data was weighted according to the reciprocal of its as-
sociated standard deviation. Thus larger standard deviations in
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model fits were assigned smaller weights. This measure was
taken to control for large standard deviations in simulation
error relative to the mean error rate across the 15 runs. The
weighted averages were calculated with the following Eq. 5:

xweighted ¼
X n

i¼1
xi � wið Þ

X n

i¼1
wi

ð5Þ

Where xweighted is the aggregate RMSE to each individual’s
tracking runs in each block, x is the mean RMSE when each
model simulated the 15 tracking runs in that block, and w is
the weight allocated to eachmean as a function of the standard
deviation around the mean RMSE within each block. This
procedure was repeated for each participant’s tracking data
such that it yielded 20 Bself^ model fits and 20 aggregate
Bother^ model fits.

To compare the simulation accuracy of self and other
models, we conducted a 2×2 repeated measures ANOVA.
The first repeated factor was model type: self versus other.
The second repeated measures factor was block and had two
levels: post-training and follow-up.

The same analysis was conducted with the sample subgroup
that included only participants tested on the most common diffi-
culty level (difficulty 2, 13 participants) to determine whether
any differences between Bself^ and Bother^ model fits were an
artefact of the participants tracking at different difficulty levels.

Results

Complete data were collected from 20 participants. Five par-
ticipants were male and 15 were female. Sixteen participants
were right-handed, four were mixed-handed. Mean age was
23.8 years (SD = 6.59 years).

There were no outliers among participant data; all partici-
pants’ data were included in the analysis. Tracking and model
RMSE were positively skewed. Following a log transforma-
tion a normal distribution was observed in participant tracking
and model RMSE. The number of participants that completed
the experiment at each difficulty level was as follows:

Difficulty 1, four participants; Difficulty 2, 13 participants;
Difficulty 3, three participants.

Analyses of intra-individual consistency
and inter-individual differences

Cronbach’s alpha coefficients for consistency in estimated pa-
rameter values were 0.921 (subgroup: 0.858) for input delay,
0.976 (subgroup 0.886) for output gain, 0.880 (subgroup
0.852) for damping constant, and 0.920 (subgroup 0.810) for
reference value, indicating that all parameter estimates were
highly consistent within individuals over the course of the
experiment. Results of the intra-class correlations can be
found in Table 1. Examination of lower bounds of the confi-
dence interval for each parameter, following the interpretation
guidelines of McGraw and Wong (McGraw & Wong, 1996),
indicated output gain showed good reliability, whilst input
delay, damping constant and reference value showed moder-
ate reliability. The same pattern of results was observed in the
subgroup intra-class correlation analysis.

The ANOVAs indicated significant differences in all param-
eters between participants across blocks. In the sub-analysis this
was also found to be the case. Interactions between the factors of
participant and block were also significant (Table 2). Post-hoc
one-way ANOVAswithin each block revealed individual differ-
ences in parameter estimates between participants within each
block for all parameters. Inspection of the effect sizes in Table 2
revealed that the largest individual differences between partici-
pants were in estimates of output gain (Ko). Figure 3 shows four
graphs, each showing the mean and 95% confidence interval of
parameter estimates of the input delay (τ) and output gain (Ko),
damping constant (Kd), and reference value (r) for each partic-
ipant. Both inter-individual variability and intra-individual con-
sistency can be observed. This pattern is pronounced in the
output gain condition where both intra-individual consistency
and inter-individual variability are highest.

Contributions of parameters to model accuracy

Stepwise regressions were conducted to determine whether a
linear, quadratic, or cubic model best fit the available data. The

Table 1 Intra-class correlation coefficients for each of the parameter values using average-rating, absolute-agreement, and two-way mixed-effects
model

Average measures Intraclass correlation 95% confidence interval F test with true value 0

Lower bound Upper bound F Df1 Df2 P

Input delay .881 .751 .949 8.34 19 38 <.001

Output gain .914 .820 .963 11.75 19 38 <.001

Damping constant .866 .717 .943 8.34 19 38 <.001

Reference value .824 .628 .925 5.50 19 38 <.001
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results of the model fit can be found in Table 3. Examination of
the R2 change values associated with the models revealed that
the quadratic equation accounted for a significantly more of the
variance in accuracy than did the linear model. The cubic

equation also made a significant contribution to the regression
fit. However the R2 change was very small and the F value was
reduced relative to the quadratic model. Inspection of the data
plots (not reproduced in this article) showed that the third-order
curves did not deviate from the general path of the second-order
curves.We therefore opted to use a quadratic model for the
stepwise regression to determine parameter contributions.

Investigation of the contribution of each parameter to the
quadratic model revealed that the addition of each parameter
as a predictor of model performance increased the R2 fit signif-
icantly (Table 4). This was also found when we conducted the
analysis as a cubic regression. Tests of multicollinearity revealed
that parameters fell within the acceptable range, with guidelines
stating a variance inflation factor (VIF) threshold of 5–10 as a
cut-off (Craney & Surles, 2002). VIF: Output gain, 1.081; Input
delay, 1.086; Damping constant, 1.087; Reference value 1.099.

Both analyseswere repeated in the subgroup of 13 individuals
that completed the experiment at difficulty level 2. This yielded
the same pattern of findings: significant R2 change for cubic over
quadratic over linear models, and parameters contributed signif-
icantly to regressionmodel accuracy for both quadratic and cubic
models.

Accuracy of individual computational models

The average simulation error (model RMSE) when the 20
models generated from data at training simulated the cursor
movements of the participant from which they were derived
(Bself^) at post-training was 2.05% (SD = 0.37), 95% CI
(1.88–2.22) and 1.82% (SD = 0.38), 95% CI (1.64–1.99) at
follow-up. These values were in the same range as the error
rate as that when models simulated the tracking runs on which
the models were trained; the mean model RMSE when train-
ing models simulated training data was 1.85% (SD = 0.48%).

Individual specificity of the computational models

We hypothesized that models would be individual-specific, that
is, a model of a participant’s performance would simulate that
participant’s tracking movements more accurately than models
generated from other participant’s tracking. The mean model
RMSE of aggregate Bother^models to participants actual track-
ing data at post-training was 2.11% (SD = 0.35), 95%CI (1.94–
2.27) and 1.91% (SD = 0.42), 95%CI (1.71–2.11) at follow-up.

The 2×2 repeatedmeasures ANOVA revealed that the main
effect of model was significant F(1, 19) = 5.76, p = .027, partial
η2 = .232; Bself^ model fits were more accurate than the
aggregate Bother^ model fits. The main effect of block was
also significant F(1, 19) = 8.45, p = .009, partial η2 = .308.
Models generated during training more accurately fit the
follow-up data than the post-training data. There was no inter-
action between model and block.

Table 2 Results of the 2×3 factorial analyses and associated post-hoc
ANOVAs for each parameter

Factor df1 df2 F p Partial η2

Input delay (τ)

Participant 19 277 12.62 < .001* .464

Block 2 554 1.29 .277 .005

Interaction 38 554 1.98 < .001* .120

Post-hoc: training

Participant 19 299 8.77 <.001*

Post-hoc: post-training

Participant 19 298 3.46 <.001*

Post-hoc: follow-up

Participant 19 297 7.75 <.001*

Output gain (Ko)

Participant 19 277 33.60 < .001* .697

Block 2 554 5.63 .004* .020

Interaction 38 554 4.18 <.001* .223

Post-hoc: training

Participant 19 299 18.47 <.001*

Post-hoc: post-training

Participant 19 298 11.75 <.001*

Post-hoc: follow-up

Participant 19 297 20.15 <.001*

Damping constant (Kd)

Participant 19 277 21.39 < .001* .595

Block 2 554 6.26 .002* .022

Interaction 38 554 1.48 .036* .092

Post-hoc: training

Participant 19 299 5.30 <.001*

Post-hoc: post-training

Participant 19 298 5.86 <.001*

Post-hoc: follow-up

Participant 19 297 7.90 <.001*

Reference value (r)

Participant 19 277 15.71 < .001* .519

Block 2 554 0.44 .645 .002

Interaction 38 554 2.85 <.001* .163

Post-hoc: training

Participant 19 299 8.99 <.001*

Post-hoc: post-training

Participant 19 298 6.06 <.001*

Post-hoc: follow-up

Participant 19 297 6.61 <.001*

Atten Percept Psychophys (2017) 79:2523–2537 2531



Within the subgroup who completed a task of identical
difficulty, the mean simulation accuracy when 13 models fit
to self tracking data was 1.92% (SD = 0.29), 95% CI (1.76–
2.10) at post-training and 1.71% (SD = 0.25), 95% CI (1.55–
1.87) at follow-up. The mean accuracy when the aggregate
other models fit tracking data was 2.01% (SD = 0.30), 95%
CI (1.82–2.19) at post-training and 1.77% (SD = 0.23), 95%
CI (1.62–1.91) at follow-up. The subgroup 2× repeated mea-
sures ANOVA (13 participants) resulted in the same pattern of

findings; firstly, a significant main effect of model F(1,12) =
25.59, p < .001, partial η2 = .681, self models showed reduced
error relative to other models. The effect of block was also
significant F(1,12) = 11.19, p = .006, partial η2 = .483. Models
more accurately fit follow-up than post-training data. There
was no interaction between model and block.

Discussion

We found that when model parameters were estimated directly
from participant pursuit tracking of pseudorandom targets, these
estimated parameter values were consistent over time within in-
dividuals, but varied between individuals. These parameters
accounted for a large proportion of the variance in model simu-
lation accuracy and shared a curvilinear relationship. Moreover,
when models generated from a participant’s pursuit tracking data
at one time point simulated their performance at a later time point
(model validation), these simulations were highly accurate, even
after 1 week. Finally we demonstrated that a model produced
from an individual’s performance more accurately simulated the

Fig. 3 Error bar plots showing the mean value and standard deviations of parameter estimates across all trials for each participant. a Input delay (τ), b
Output gain (Ko), c Damping constant (Kd), and d Reference value (r)

Table 3 Comparison of polynomial regression models where
parameters predict model accuracy

Model F p R R2 Change statistics

R2 change p

1 Linear 44.18 0.000 0.407 0.165 - -

2 Quadratic 75.11 0.000 0.635 0.404 0.238 0.000

3 Cubic 51.75 0.000 0.642 0.413 0.009 0.009

Model Predictors: Output gain, Input delay, Damping constant, Reference
value (all models)
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cursor movements of that participant than did other individuals’
models.

Analyses of intra-individual consistency
and inter-individual differences

The results support our hypothesis that parameter estimates
would be consistent over timewithin participants. This was dem-
onstrated by the high internal consistency in parameter estimates
over the training, post-training, and follow-up blocks within par-
ticipants according to Cronbach’s alpha coefficients, and moder-
ate to high intra-class correlation coefficients. This indicated that
control parameters remained stable over 1 week for each partic-
ipant. Factorial analyses conducted in this study found individual
differences in parameter estimates. These findings support simi-
lar findings of individual differences in estimated model param-
eters between individuals (Viviani et al., 1987) that constitute
robust idiosyncratic pursuit tracking strategies (Franks et al.,
1982; Miyake et al., 2001). The current study demonstrated that
such differences persisted even when data were collected over 1
week, which is evidence that control parameters remain stable
over time within an individual. A model architecture was suc-
cessfully parameterized to characterize individuals’ strategies in
the pursuit-tracking task, even though themovements required to
track the pseudorandom target varied between trials.
Interestingly, output gain was the most variable parameter be-
tween individuals, and had the highest consistency within indi-
viduals. Consequently, it had the most discriminatory power and
was the strongest indicator of an individual’s control strategy. It is
unclear from this experiment alone whether this is a task-specific
parameter or alternatively whether a higher estimated output gain
in tracking tasks would be associated with a higher output gain in
other task paradigms.

Contribution of parameters to model accuracy

We hypothesized that estimated parameters for each run would
share a quadratic relationship with the model simulation error
when those parameters were used to fit the tracking data.
Investigation of the nature of the relationship revealed that the
parameters did share a curvilinear relationship with model sim-
ulation error. Both the addition of quadratic (second-order), and

cubic (third-order) regression parameters improved the fit to the
data significantly. The second-order regression model resulted
in a large improvement over the fit of the linear regression
model and a third-order regression model only negligibly
(though significantly) increased in fit to the data over the
second-order regression model. The presence of such curvilin-
ear peaks in simulation accuracy for each parameter indicates
that there may be an optimal control strategy in the task on
which skilled trackers are converging. Therefore these optima
in parameter space are identified by the reorganization algo-
rithm when control models are optimized to the tracking data.

When each parameter was added in a stepwise fashion to
determine their individual contribution to performance, each
addition improved the fit of the model to tracking perfor-
mance. The addition of damping constant provided the largest
improvement to model fit. The addition of the reference value
parameter to the regression model (after all other parameters
had been entered) yielded a significant increase in the propor-
tion of variance in simulation accuracy explained by the re-
gression model. This indicates that the unique PCT reference
parameter made an individual contribution to explaining the
variance in performance. The reference value might be as-
sumed to be zero, as the task requires participants to minimize
position error between the target and cursor. Yet it remained a
key parameter in the control model, and demonstrates that
referent perceptual goals are fundamental in motor perfor-
mance and should be included within control models.

Accuracy of individual computational models

Model simulation error was very low at both post-training and
follow-up. In fact, simulation error was lower when models
simulated follow-up data than post-training data, despite the
temporal proximity of training and post-training data collection.
Participant tracking error was also increased at post-training
relative to follow-up.We suggest that this increase in error might
be due to participant fatigue, as they had to complete more than
30 1-min runs in succession, and that this increased tracking
error reduced the model simulation accuracy as a consequence.
One might reasonably expect that the model would more accu-
rately simulate the tracking data on which it was trained than the
new targets in the post-training and follow-up blocks. However,

Table 4 Stepwise regression to determine parameter contribution to model accuracy

Model predictors F p R R2 Change Statistics

R2 change p

Output gain 23.91 <.001 .273 .074 - -

Output gain, input delay 34.87 <.001 .436 .190 .116 <.001

Output gain, input delay, damping constant 56.53 <.001 .604 .365 .174 <.001

Output gain, input delay, damping constant, reference value 51.75 <.001 .642 .413 .048 <.001
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in this study the simulation error rate across training, post-train-
ing, and follow-upwere virtually the same. This would appear to
provide strong evidence that the parameters are trait-like features
of the individual independent of target movements. This sup-
ports the hypothesis that models generated from an individual’s
performance during training highly accurately simulated their
later tracking movements. These findings are consistent with
previous reports that dynamic models accurately simulate hu-
man control movements in pursuit-tracking tasks (Abdel-Malek
& Marmarelis, 1988; Powers, 1978, 1989; Viviani et al., 1987),
even when models are validated with data from a later testing
session (Bourbon, 1996; Bourbon et al., 1990).

Tests of individual specificity of the models

To establish whether models were individual-specific, we tested
each model’s simulation accuracy to participants own data and
the data of other individuals. We found that although the differ-
ence was small in magnitude, participants’ own models consis-
tently simulated their own data more accurately than did other
participants’models. This difference wasmaintained and in fact
increased when the analysis was repeated in the subgroup of
participants who completed the task at the same difficulty level,
indicating that the difference in simulation accuracy by self and
other models was not as a result of participants tracking under
different task constraints. Thus model parameters optimized
from participants’ data at one time point can be used to simulate
that individual’s performance 1 week later, with higher accura-
cy than a model not optimized to that individual. This is a
remarkable finding when considering the robustness of the
model to differences in human tracking and is, to our knowl-
edge, the first formal test of individual model specificity.

Whilst previous studies have highlighted the individual
differences between control strategies utilized by individuals
in tracking tasks, the current study demonstrates that models
optimized to individual tracking data can characterize these
idiosyncratic strategies that persist over time in individuals
practiced in such tasks. Tests of replicability within an indi-
vidual should be a benchmark validity criterion when evalu-
ating models of human behavior (Smith & Conrey, 2007), as it
is in other fields of psychology in which trait-level constructs
are measured. In such cases, it is recognized that in order for
hypothesized task- and individual-specific factors to be valid,
they must demonstrate test-retest reliability (Chaplin, John, &
Goldberg, 1988; Oppenheim & Oppenheim, 1992).

Individual models of pursuit tracking performance may be
effective tools in the assessment and treatment of motor deficits
following neurologic injury. The pioneering research in analy-
sis of estimated model parameters for people with Parkinson’s
(Aiman Abdel-Malek et al., 1988; Au et al., 2010; Oishi et al.,
2010, 2011) indicates that models might be used to assess bra-
dykinesia and other deficits in this group (Allen et al., 2007). In
therapeutic settings, upper-limb assistive robotic devices

provide force assistance in upper limbmovements to those with
neurological motor impairments, often during virtual-reality
pursuit-tracking tasks (Maciejasz, Eschweiler, Gerlach-Hahn,
Jansen-Troy, & Leonhardt, 2014). Whilst assistive robotics of-
ten collect kinematic data which may help to assess symptom
severity, individual models may be critical for delivering idio-
syncratic rehabilitation regimes to people with neurological
conditions. These individuals exhibit heterogeneous symptoms
and outcomes (Kwakkel, Kollen, & Lindeman, 2004;
Reinkensmeyer, Emken, & Cramer, 2004) and may use differ-
ent motor strategies at different points in the recovery process
(Fitts, 1964). Individual models may be useful to identify and
treat specific deficits through tailored assistance or resistance
control regimes (Marchal-Crespo & Reinkensmeyer, 2009).

Strengths and limitations

This first formal test of individual-specificity over time has
found that position control models could provide idiographic
simulations of human behavior in pursuit-tracking tasks.
However, the magnitude of the difference between idiographic
and general models was small. The most likely explanation for
this is that the parameter estimates are affected by the task con-
straints, and so participants converged on an optimum strategy
in this task. This is supported by the finding that different target
motion patterns and different target frequencies elicit character-
istic tracking profiles and estimated model parameters in partic-
ipants (Abdel-Malek & Marmarelis, 1988; Poulton, 1952b; P
Viviani&Mounoud, 1990). This highlights an important caveat.
Whilst we were able to detect the consistencies in control pa-
rameters and tracking strategies over time in this experiment,
this was enabled by experimental control of the task constraints
and demands, apparatus, and goal. If task demands were to vary
suddenly in the experiment this would likely introduce variabil-
ity in the control parameter estimates and performance. With
repeated practice on the new task, performance and parameters
would become more consistent as the individual learns a new
control strategy (Franks et al., 1982). Themodel, as a model of a
well-practiced participant, would require further optimization to
performwell within the new task constraints. Exactly howmuch
the task could be changed before the model fails to accurately
simulate performance is uncertain.

We used a limited range of low target velocities in this ex-
periment, and this resulted in participants achieving a near-
ceiling performance. Higher velocity target movements would
be necessary to comprehensively test individuals’ transient dy-
namics (Abdel-Malek & Marmarelis, 1990), which might ex-
pose further individual differences. The frequency content of
targets could be controlled in future experiments by summation
of sinusoids of different frequencies to ensure a sufficiently wide
bandwidth within each pursuit run (Roth, Zhuang, Stamper,
Fortune, & Cowan, 2011). In the current study, we manipulated
the rate of change of the target to be tracked between different
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participants. This was in order to ensure that the difference be-
tween model simulation performances was not a result of their
different levels of ability, and therefore tracking accuracy.
However, this introduced a potential confound; participants
completing the task under different task constraints (difficulty
levels) could account for differences in parameter estimates, as
has been reported in previous studies (Neilson et al., 1993;
Notterman & Tufano, 1980; Viviani & Mounoud, 1990). We
therefore repeated our analyses with a subgroup of 13 partici-
pants who completed tracking runs at a similar accuracy level to
one another and under the same task constraints (Difficulty level
2). All main hypotheses were confirmed in the analyses of sub-
group data, providing evidence that the pattern of results attained
was not a consequence of either potential confound.

The model architecture used in this study was a simple first-
order position control model with state delay, representing a sin-
gle PCTcontrol unit (Powers, 1973, 1978, 2008). This was cho-
sen because it had been previously shown to accurately simulate
perceptuo-motor behavior during a tracking task (Bourbon,
1996; Bourbon et al., 1990; Marken, 1991; Powers, 1978,
1989, 2008) and had a biologically feasible conceptual founda-
tion (Powers, 1973). However, it is by no means a comprehen-
sive model of human motor control. Rather it attempts to dem-
onstrate that parameterization of such control architectures is
useful to discriminate and simulate individual performance, re-
gardless of whether they accurately specify how this would be
achieved within human sensory and motor systems. It therefore
follows that other model architectures may be more appropriate
or accurate in simulating both neurologically atypical and healthy
individuals. System identification can be used to find the best-
fitting model, for example (Neilson et al., 1993; Oishi et al.,
2010, 2011). In addition, there are known relationships between
the non-independent parameters of the PCT control loop. For
example, input delay and output gain are negatively correlated
and therefore at high values of delay, a high output gain produces
an oscillatory response. The damping constant and output gain
parameters share a positive relationship; higher output gains re-
quire higher damping constants to avoid oscillatory behavior.
Whilst beyond the focus of this article, these relationships have
implications for model fitting, as different optimization routines
(order and method, number of iterations) might affect the effi-
ciency of the search of the parameter space, and consequently
result in different parameter value combinations.

Critically, we investigated pursuit tracking in one-dimension,
and the application to assistive robotics for neurorehabilitation
would require extension to two- and three-dimensional tracking
tasks and different target movement patterns (Engel &
Soechting, 2000; Marken, 1991; Viviani et al., 1987; Viviani
& Mounoud, 1990). Moreover, control of other perceptual var-
iables may increase simulation accuracy, such as target-cursor
angle (Marken, 2014) or target-cursor velocity difference
(Johnson, Howe, & Chang, 2013; Proteau & Masson, 1997;
Viviani et al., 1987; Viviani & Mounoud, 1990). Future studies

should aim to elucidate individual control strategies under dif-
ferent task constraints, and their stability over time, particularly
in populations with neurological conditions.

Conclusions

In summary, we demonstrated that a negative-feedback compu-
tational model architecture can be optimized to characterize and
accurately simulate an individual’s tracking data over time.
Estimated control parameters were highly consistent over time,
whilst individual differences in control strategies were discrimi-
nated by the computational model. All model parameters con-
tributed to the accuracy of PCT models to fit human tracking
data. Moreover, even when the target patterns differ from trial to
trial, individual computational models very accurately simulate
the movements of the individual from which they were derived.
We argue that establishing the test-retest reliability in parameter
estimates and simulation accuracy should be an essential criterion
for computational models of human performance.
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