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Abstract: Nowadays, numerous biomedical studies performed on natural compounds and plant
extracts aim to obtain highly selective pharmacological activities without unwanted toxic effects. In
the big world of medicinal plants, Usnea barbata (L) F.H. Wigg (U. barbata) and usnic acid (UA) are
well-known for their therapeutical properties. One of the most studied properties is their cytotoxicity
on various tumor cells. This work aims to evaluate their cytotoxic potential on normal blood cells.
Three dry U. barbata extracts in various solvents: ethyl acetate (UBEA), acetone (UBA), and ethanol
(UBE) were prepared. From UBEA we isolated usnic acid with high purity by semipreparative
chromatography. Then, UA, UBA, and UBE dissolved in 1% dimethyl sulfoxide (DMSO) and diluted
in four concentrations were tested for their toxicity on human blood cells. The blood samples were
collected from a healthy non-smoker donor; the obtained blood cell cultures were treated with
the tested samples. After 24 h, the cytotoxic effect was analyzed through the mechanisms that
can cause cell death: early and late apoptosis, caspase 3/7 activity, nuclear apoptosis, autophagy,
reactive oxygen species (ROS) level and DNA damage. Generally, the cytotoxic effect was directly
proportional to the increase of concentrations, usnic acid inducing the most significant response.
At high concentrations, usnic acid and U. barbata extracts induced apoptosis and DNA damage in
human blood cells, increasing ROS levels. Our study reveals the importance of prior natural products
toxicity evaluation on normal cells to anticipate their limits and benefits as potential anticancer drugs.

Keywords: Usnea barbata; usnic acid; secondary metabolites; blood cells; DNA damage; apoptosis;
cytotoxic effect; oxidative stress
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1. Introduction

Natural products have a significant role in modern drug development, especially
as antitumor agents [1]. Since discovering that plant secondary metabolites have been
elaborated for adaptive reasons [2] within living systems [3], they are often understood
as exhibiting more drug-likeness and biological friendliness [4] than totally synthetic
molecules [5]. Complex biomedical studies performed on isolated natural compounds
and plant extracts aim to obtain high therapeutic activity to treat various diseases without
unwanted effects [6]. Especially in oncological pathology, in vitro and in vivo studies have
as their principal objective a selective cytotoxic action against tumor cells without affecting
the normal ones [7].

In the big world of medicinal plants, lichens are symbiotic organisms [8] between a
fungus and microalgae/cyanobacteria [9], known since ancient times for their biological
effects [10]. As an important representative of this plant group, Usnea barbata (L) F.H.
Wigg (U. barbata) is a fruticose thalli lichen with interesting therapeutic properties [11]; this
species has been used for thousands of years in traditional medicine worldwide to treat
various diseases [12]. The wide range of bio-activities (antioxidant [13], antimicrobial [14],
anti-inflammatory [15], anticancer [16], cytotoxic [17], pro-oxidant [18]) is due to the
content of active secondary metabolites [19] synthesized by the mycobiont (lichen-forming
fungus) [20]. The phytochemical profile of U. barbata is already known. The metabolomics
of this species belongs to different classes of chemical compounds: depsides (barbatic acid,
methyl-8-hydroxy-4-O-demethylbarbatate, baeomycesic acid, 8-hydroxybarbatic acid),
depsidones (connorstictic acid, fumarprotocetraric acid, hypoconstictic acid, lobaric acid),
lipids (polyhydroxylated lipids), and dibenzofurans (usnic acid, placodiolic acid) [21]. Of
all these lichen secondary metabolites, usnic acid [22] is by far the best known [23] and
responsible for most bio-activities [24] of the U. barbata and, at the same time, of all lichens
of the Usnea genus [25].

Usnic acid is an extensively studied lichen metabolite with controversial [26,27] results
related to its benefits in relationship with the extraction method and the lichen species [28].
It was used to induce human weight loss [29], although unwanted hepatotoxic effects
were also triggered [30]. In addition, UA highlights antimicrobial [31], insecticidal [32],
anticholinergic [33], antioxidant [34], pro-oxidant [35], antigenotoxic [36], genotoxic [37],
teratogenic [38], anti-inflammatory [39], analgesic and antipyretic [40], mutagenic and
carcinogenic [41], anticancer [42], and cytotoxic [43] activities. Numerous researchers have
shown the pharmacological actions of usnic acid and Usnea sp. extracts, especially cytotoxic
activity, on different types of tumor cells [44].

The most important event resulting from the cytotoxic activity is cell death, which
consists of morphological alterations [45]. Hence, the highly described mechanism in usnic
acid and Usnea sp. anticancer activity is apoptosis [46]. This programmed cell death (PCD)
is associated with DNA fragmentation and recognized by morphological characteristics as
well as cytoplasmic condensation, nuclear pyknosis, chromatin condensation, cell rounding,
membrane blebbing, and cytoskeletal collapse. In addition, membrane-bound apoptotic
bodies are formed; macrophages rapidly digest them without activating the immune
response [47]. In apoptosis, biochemical events through two distinct pathways (extrinsic
and intrinsic) are correlated with these morphological changes [48]. Thus, the common
extrinsic pathway (receptor-mediated) begins with receptor binding and activation of the
initiator caspase-8. The following step is caspase-3 activation by caspase-8 or Bid-a B-cell
lymphoma 2 (Bcl-2) pro-apoptotic protein-cleavage. Bid splitting brings mitochondrial
cytochrome c leakage and apoptosomes formation. The intrinsic (mitochondrial) apoptotic
pathway consists of cytochrome c release by Bcl-2 pro-apoptotic proteins action. Next,
cytochrome c interacts with Apaf-1, dATP, and procaspase 9, generating apoptosomes.
As a result, caspase-9 and -3 activation follows in both pathways. Moreover, various
cell apoptosis can occur through common or specific biochemical processes [48,49]; for
instance, a considerable diversity of molecular mechanisms involved in this PCD was
highlighted in the different blood cells types. Thereby, nucleus-free platelets exhibit
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increasing mitochondrial functions in ATP synthesis, energy metabolism, cells survival
and apoptosis activation [49]. Thereby, the major apoptotic pathway is the intrinsic one,
with overexpression of Bcl-2 pro-apoptotic proteins, depolarization of the mitochondrial
membrane potential, and cytochrome c release [50]. The extrinsic apoptotic pathway is
initiated by tumor necrosis factor (TNF) death ligands binding to platelets surface TNF
receptors. Finally, caspase-3 activation induces phosphatidylserine (PS) exposure and
platelet microparticles (PMPs) formation, generating thrombotic phenomena [51].

Otherwise, mammalian erythrocytes (red blood cells, RBCs) have been considered
unable to undergo apoptosis because they contain neither mitochondria nor nucleus.
However, RBCs contain procaspase-3 and procaspase-8 levels comparable with those
found in Jurkat cells [52]. They can express caspase-3 and caspase-8 [53], but they do
not display other elements of the apoptotic machinery, such as Apaf-1, cytochrome c,
and caspases-2, -6, -7 and -9 [54]. Klatt et al. (2018) reported that significant receptors
belonging to the tumor necrosis factors (TNF) family (CD95 [55] and Fas [56]) signaling
in RBCs are known to induce a particular type of programmed cell death, similar to the
apoptotic death of nucleated cells named eryptosis [57], by caspase-3 activation, leading
to cell shrinkage and cell membrane scrambling [58] with PS externalization [59]. The
major trigger of eryptosis is the increase of cytosolic Ca2+ activity resulting from Ca2+

entry through Ca2+-permeable unselective cation channels (permeable to both Na+ and
Ca2+) [60]. Instead, Ca2+ entry and Ca2+-dependent RBCs membrane scrambling do not
require caspases activation [61,62].

Leucocytes (white blood cells, WBCs) apoptosis displays morphological features like
in other nucleated cells; however, this PCD involves distinct molecular mechanisms in vari-
ous WBCs types. For instance, the extrinsic apoptosis pathway in monocytes is modulated
by CD95, Fas, and TNF-cell surface apoptosis-triggering receptors (TRAIL-R1 and TRAIL-
R2); it recruits cytoplasmic adaptor proteins, forming a death-inducing signaling complex
(DISC) [63]. Moreover, various apoptotic agents (including commonly used chemother-
apeutic drugs) induce the release of cytochrome c and the second mitochondria-derived
activator of caspase/direct inhibitor of apoptosis-binding protein (Smac/DIABLO) in the
intrinsic pathway; both proteins determine caspase-3 activation [63] in this WBCs type.

Therefore, we aim to explore cell death mechanisms in our study, analyzing the
cytotoxic effects of usnic acid and U. barbata extracts. Usnic acid can be obtained by organic
synthesis, but it can be isolated from various lichens extracts [64]. A previous report
has described UA extraction from U. barbata acetone extract [65]; however, this present
study proposes to show usnic acid isolation from UBEA. Because relatively few studies
are focused exclusively on proving their effects on normal cells [66], the cytotoxicity of
isolated UA and U. barbata dry extracts (UBA and UBE) on human blood cells cultures was
evaluated in our work. Consequently, our study aims to investigate cell death mechanisms,
analyzing cellular apoptosis, caspase 3/7 activity, nuclear shrinkage, lysosomal activity,
ROS levels, cell cycle, and DNA synthesis by flow cytometry techniques. Finally, we
suggest a relationship overview between UA, UBA, UBE concentrations, and cytotoxic
activity on human blood cells cultures.

2. Materials and Methods
2.1. Lichen Samples and Usnic Acid Isolation

U. barbata was harvested from the Călimani Mountains (900 m altitude, Suceava
County, Romania). Three dry extracts were obtained in different solvents: ethyl acetate
(Chemical Company S.A., Iasi, Romania), acetone and ethanol (Chimreactiv SRL Bucharest,
Romania) using a method described in detail in our previous study [13]. The dry extract
in ethyl acetate was used only for usnic acid isolation. Further, in vitro studies were
performed with isolated UA, UBA and UBE dissolved in 1% dimethyl sulfoxide (DMSO).
Therefore, we prepared sample solutions with different concentrations: UA of 25, 50, 75,
125 µg/mL and both UBA and UBE of 75, 125, 250, 500 µg/mL.
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2.1.1. Usnic Acid Isolation by Semi-Preparative Chromatography

This process consists of usnic acid extraction by ultra-high performance liquid chro-
matography (UHPLC) with photodiode array detector (PDA), followed by collecting the
separated fraction. A semi-preparative technique was adapted by our UHPLC analytical
method previously validated [13]. The PerkinElmer® Flexar® FX-15 UHPLC system was
equipped with a Flexar FX PDA-Plus photodiode array detector (PerkinElmer®Waltham,
MA, USA) and a Cosmosil 5-C18-AR-2 chromatographic column with a length of 150 mm
and an inner diameter of 20 mm (producer: Nacalai Tesque, Kyoto, Japan); in addition,
a Gilson FC 203B fraction collector (Gilson Co, Middleton, WI, USA) was used. More
detailed data can be found in the supplementary material. Working conditions con-
sisted of flow rate = 10 mL/min, column compartment temperature = 25 ◦C, injection
volume = 400 µL, analysis time = 18 min. The mobile phase was an isocratic system of
methanol/water/glacial acetic acid (80:15:5); the detection was performed at 282 nm and
254 nm. The samples were prepared at 3 mg/mL (282 nm), and 8 mg/mL (254 nm). The
retention time of the usnic acid is reported around 13 min, at a flow rate of 10 mL/min.

The usnic acid peak was collected manually between 12.5 and 13.5 min (on approx-
imately 15% of its height, preserving the peak purity) after four successive injections
(4 × 400 µL 8 mg/mL UBEA in DMSO) at 254 nm. Its identity was confirmed by com-
paring the retention time of the most significant peak of the sample solution with the
reference one [13]. Furthermore, the solution was collected in a previously weighed vial
(supplementary material, video sequence S1). The solvent was evaporated under a nitrogen
stream and the vial was placed in an oven for 30 min at 105 ◦C. After cooling in a desiccator
to remove the last solvent traces, a yellow solid matter was obtained. Finally, the isolated
usnic acid amount was calculated by subtracting the empty vial mass from the whole mass.
The isolated UA was dissolved in 1% DMSO (Sigma-Aldrich Chemie GmbH, Taufkirchen,
Germany) and used for in vitro analyses.

2.1.2. Determination of the Purity of Isolated Usnic Acid

The purity of previously isolated UA was determined using the UHPLC-PDA analyt-
ical method [13]. First, the sample resulting from drying was weighed and brought to a
final concentration of 160 µg/mL. Then, three standard usnic acid solutions were prepared
simultaneously (160 µg/mL). Finally, all solutions were injected in the same sequence. The
purity was calculated according to the following formula:

Ps% = As/Astd × Cstd/Cs × 100,

Cstd = Mstd/d × Pstd% × 1000,

Cs = Ms/d × 1000,

where, Ps% = sample purity %, As = area of the sample, Astd = area of the standard
solution, Cstd = standard solution concentration (µg/mL); Cs = sample solution concentra-
tion of the sample solution (µg/mL), Mstd = standard mass weighed (mg), d = dilution,
P% std = standard purity %, Ms = sample weighed mass (mg). The previously isolated
usnic acid was diluted with DMSO to a 160 µg/mL concentration. Then, this sample
solution was injected into the chromatographic system according to the method described
in our previous study [13]. The analyzed sequence was represented by the sample solution
in DMSO, and three standard solutions of 160 µg/mL (usnic acid in DMSO) considering
the average aria. Next, the precision of the area expressed in % relative standard deviation
(RSD) was determined. Following the calculation, the purity value (concerning an external
standard) and an RSD value = 0.66% was obtained. Finally, the identity of isolated usnic
acid was certified by the retention time [13] (supplementary material).



Antioxidants 2021, 10, 1171 5 of 27

2.2. In Vitro Analysis of the Biological Effects of UA, UBA, and UBE on Human Blood Cells
2.2.1. Human Blood Cell Cultures

Blood samples from non-smoker healthy donor (B Rh+ blood type) were collected into
heparin tubes and used throughout the experiment. The heparinized blood (1.0 mL) in 6.0 mL
of Dulbecco’s phosphate buffered saline with MgCl2 and CaCl2 medium (Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany) supplemented with 10% bovine fetal serum
(Sigma-Aldrich, Chemie GmbH, Taufkirchen, Germany), 1% L-glutamine (Merck, KGaA,
Darmstadt, Germany), and antibiotics mix solution (100 µL/mL, 10,000 U penicillin, 10 mg
streptomycin, 25 µg amphotericin B per 1 mL, Sigma-Aldrich, Chemie GmbH, Taufkirchen,
Germany) added in 6 wells untreated Nuncleon plates were incubated in a 37 ◦C incubator
with 5% CO2. After 72 h of incubation, blood cell cultures were treated with UA, UBA and
UBE dissolved in 1% DMSO. Human blood samples were treated with final concentrations
of 25, 50, 75, and 125 µg/mL of UA. Higher concentrations (75, 125, 250, and 500 µg/mL)
of both UBA and UBE were used to treat the human blood cell cultures. In addition, the
blood cells were treated with 1% DMSO as the negative control (solvent control).

2.2.2. Reagents and Equipment

Our study analyses used the flow cytometer (Attune, Acoustic focusing cytometer, Ap-
plied Biosystems, part of Life Technologies, Bedford, MA, USA). Before blood cells analysis,
the flow cytometer was first set by using fluorescent beads (Attune performance tracking
beads, labelling and detection, Life Technologies, Europe BV, Bleiswijk, Netherlands), with
standard size (four intensity levels of beads population), and the quantity was established
by enumerating cells below 1 µm [67]; 10,000 cells per sample for each analysis were gated
by Forward Scatter (FSC) and Side Scatter (SSC). Flow cytometry data were collected using
Attune Cytometric Software v.1.2.5, Applied Biosystems, 2010.

Annexin V-FITC/PI (Bender MedSystems GmbH, Vienna, Austria) was used to ob-
serve the apoptotic cells. Activating caspases 3/7 enzymes that determine a series of
reactions triggered in response to proapoptotic signals were observed with Red Magic
Methodology (MR-DEVD, Caspase-3/7 Assay Kit, Abcam, Shanghai, China). Nuclear
apoptosis and lysosomal activity, dual stain with Hoechst 33,342 and acridine orange from
MR-DEVD, Caspase-3/7 Assay Kit were analyzed. Total ROS level evaluation was per-
formed using ROS Assay Kit 520 nm (Life Technologies Europe BV, Bleiswijk, The Nether-
lands). Propidium iodide (PI) (1.0 mg/mL, Sigma-Aldrich, Chemie GmbH, Taufkirchen,
Germany) and RNase A (4 mg/mL, Promega, Madison, USA) were used in cell cycle analy-
sis. Cell proliferation assay was performed using EdU proliferation kit, iFluor 488 (Abcam,
Shanghai, China). Negative control was 1% DMSO (PanBiotech, Aidenbach, Germany).

2.2.3. Apoptosis Assay

After 24 h incubation, the treated blood cells with each tested solution reported to
the negative control were double-stained with Annexin V-FITC/PI. Next, blood cells were
incubated in flow cytometry tubes with 2 µL Annexin V-FITC and 2 µL PI (20 µg/mL) for
30 min, at room temperature, in darkness. After incubation, 1 mL of flow cytometry staining
buffer (FCB) (eBioscienceTM, Life Technologies Europe BV, Bleiswijk, The Netherlands)
was added. Viable cells, early apoptotic cells, late apoptotic cells, and necrotic cells were
examined at flow cytometer, using a 488 nm excitation, green emission for Annexin V-FITC
(BL1 channel), and orange emission for PI (BL2 channel).

2.2.4. Caspase 3/7 Assay

After 24 h incubation, 300 µL of blood cell culture was transferred to flow cytometry
tubes, 20 µL of MR-DEVD solution was added and mixed with the cells. Next, 20 µL of
PI was added. After incubation, was added 1 mL FCB. The early stages of cell apoptosis
by activating caspase 3/7 were analyzed by flow cytometry, using a 488 nm excitation,
red emission for MR-DVD (BL3 channel), and orange emission for PI (BL2 channel).2.2.5.
Nuclear Condensation and Lysosomal Activity Assay
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After 24 h of treatment with the tested solutions, 300 µL of blood cell culture was
introduced in flow cytometry tubes, 2 µL of Hoechst 33,342 stain was added, and blood
cells were mixed well. After this process, 50 µL of acridine orange (AO) 1.0 µM was added,
and the cells were incubated 30 min at room temperature into darkness. After incubation,
1 mL FCB was added; the cells were examined at flow cytometer. UV excitation and blue
emission for Hoechst 33,342 (VL2) at 488 nm, and green emission acridine orange (BL1
channel) were used for examination.

2.2.5. Total ROS Activity Assay

After 24 h treatments with the tested solutions, 100 µL of ROS Assay Stain solution
was added for each 1 mL of blood cell culture in flow cytometry tubes and mixed well.
Next, the cells were incubated for 60 min at 37 ◦C, in an incubator with 5% CO2. After
incubation, the blood cells were analyzed by flow cytometry, using a 488 nm excitation and
green emission for ROS (BL1 channel).

2.2.6. Cell Cycle Analysis

Blood cells were treated with UA (25–125 µg/mL), UBA and UBE (75–500 µg/mL)
and incubated for 24 h; 1 mL of each cell culture was washed in FCB, introduced in flow
cytometry tubes, and fixed with 50 µL ethanol for 10 min. After this process, the cells
were treated with PI (20 µg/mL) and RNase A (30 µg/mL) and incubated for 30 min at
room temperature, into darkness. After this time, 1 mL FCB was added, and the cell cycle
distribution was detected at flow cytometer, using a 488 nm excitation and orange emission
for PI (BL2 channel).

2.2.7. Cell Proliferation Assay

After 24 h of treatment, 1 mL of blood cell culture was incubated with 50 µM EdU
(500 µL), at 37 ◦C, for 2 h. Then, the cells were fixed (100 µL of 4% paraformaldehyde
in PBS) and permeabilized (100 µL of Triton X-100 1×). After washing in 3% BSA in
flow cytometry (2 mL) and centrifuging at 300× g for 5 min, at 4 ◦C, the blood cells were
incubated with a reaction mix (500 µL), 30 min at room temperature, into darkness. After
washing in permeabilization buffer (2 mL) and centrifuging (300× g, 5 min, at 4 ◦C), 1 mL
FCB was added. Finally, the blood cells were examined by flow cytometry, using a 488 nm
excitation and green emission for EdU-iFluor 488 (BL1).

2.2.8. Statistical Analysis

All analyses were performed in triplicate, and the obtained results were presented
as means values ± standard deviation (SD). Our results are presented as percent (%) of
cell and nuclear apoptosis, caspase 3/7 activity, autophagy, cell cycle, DNA synthesis, and
count (×104) of oxidative cellular stress after flow cytometry analyses were performed with
SPSS v. 23 software, IBM, 2015. The Levene test was analyzed for homogeneity of variances
of samples, while paired t-test, ANOVA [68], was used to establish the differences between
samples and controls, and p < 0.05 was considered statistically significant. Figures 2, 4, 6,
7, 9, 11 and 13 were made with Attune Cytometric Software v.1.2.5, Applied Biosystems,
2010 (Bedford, MA, USA). Figures 3, 5, 8, 10, 12 and 14 were made by the v. 14.8.1, 2014 of
MedCalc program (Ostend, Belgium).

3. Results
3.1. Usnea Barbata Dry Extracts and Usnic Acid Isolation

The obtained chromatograms in both UHPLC determinations from Sections 2.1.1 and 2.1.2
are presented in Figure 1. From 12.8 mg UBEA, 3.6 mg of isolated usnic acid (Figure 1d)
with 89.36% purity was obtained. The yield of this process was 28.15%.
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3.2. In Vitro Analysis of the Biological Effects of UA, UBA, and UBE on Human Blood Cells
3.2.1. Cell Apoptosis Assay

Cell apoptosis induced by UA, UBA, and UBE treatments was determined based on
morphology and cell membrane integrity in blood cell cultures. The obtained results are
illustrated in Figure 2A–C and Figure 3a–c (V-cell viability, EA-early apoptosis, LA-late
apoptosis, N-necrosis).

The influence of UA (25, 50, 75, 125 µg/mL) on blood cells viability and apoptosis is
presented in Figure 2A(b–e) and Figure 3a.

It can be noted that the viability of blood cells treated with 25 µg/mL of UA (Figure 2A(a,b))
insignificantly decreased in comparison with the solvent control: 96.45 ± 0.27% vs. 96.89 ± 0.14%
(p ≥ 0.05, Figure 3a). On the other hand, a concentration of 50 µg/mL of UA on blood
cell cultures (Figure 2A(a,c)) determined reduced cell viability reported to 1% DMSO:
95.75 ± 0.63% vs. 96.89 ±0.14% (p < 0.05, Figure 3a).

Likewise, these low concentrations of UA (25 and 50 µg/mL) induce insignificant dif-
ferences of early apoptosis (Figure 2A(a–c)) collated to control: 3.12 ± 0.26%; 3.69 ± 0.71%
vs. 2.72 ± 0.16% (p ≥ 0.05, Figure 3a).
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vs. 2.72 ± 0.16% (p ≥ 0.05, Figure 3a). 

Moreover, higher concentrations of UA (75 and 125 μg/mL) significantly influenced 
both parameters (Figure 2A(a,d,e)). They induced an evident decline of cell viability (71.34 
± 0.90%; 61.43 ± 0.88% vs. 96.89 ±0.14%, p < 0.001), and an augmentation of early apoptosis 
(27.27 ± 1.00%; 37.04 ± 0.66% vs. 2.72 ± 0.16%, p < 0.001, Figure 3a). 

Figure 2. Cell apoptosis models of usnic acid (UA), U. barbata acetone (UBA), and U. barbata ethanol (UBE) treatments in
normal blood cell cultures. Annexin V-FITC/PI patterns of 1% dimethyl sulfoxide (DMSO) Negative Control (A(a), B(a),
C(a)); A(b–e) UA 25, 50, 75, 125 µg/mL; B(b–e) UBA 75, 125, 250, 500 µg/mL; and C(b–e) UBE 75, 125, 250, 500 µg/mL.
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Moreover, higher concentrations of UA (75 and 125 µg/mL) significantly influenced
both parameters (Figure 2A(a,d,e)). They induced an evident decline of cell viability
(71.34 ± 0.90%; 61.43 ± 0.88% vs. 96.89 ±0.14%, p < 0.001), and an augmentation of early
apoptosis (27.27 ± 1.00%; 37.04 ± 0.66% vs. 2.72 ± 0.16%, p < 0.001, Figure 3a).

UBA activity (75, 125, 250, 500 µg/mL) on blood cells viability and apoptosis compared
with 1% DMSO is shown in Figure 2B(a–e) and Figure 3b.

The obtained data revealed that 75 µg/mL of UBA (Figure 2B(a,b)) determined a
diminution in cell viability: 80.16 ± 0.57% vs. 96.89 ± 0.14%, (p < 0.001); also, it induced an
increase of cell apoptosis: 19.45 ± 0.60% vs. 2.72 ± 0.16% (p < 0.001, Figure 3b).

Higher concentrations of UBA (125, 250, and 500 µg/mL) remarkably reduced blood
cells viability, triggering apoptosis (Figure 2B(c–e)). Hence, previously mentioned con-
centrations of UBA had a significant cytotoxic effect on blood cells, with diminishing
viability compared with solvent control: 66.93 ± 1.37%; 54.57 ± 0.65%; 52.15 ± 0.81%;
vs. 96.89 ± 0.14% (p < 0.001, Figure 3b). Moreover, these results indicated high rise of
early apoptosis: 32.18 ± 1.22%; 43.99 ± 0.66%; 45.98 ± 0.78% vs. 2.72 ± 0.16% (p < 0.001,
Figure 3b).

The flow cytometry results regarding UBE effects on the apoptosis process are indi-
cated in Figure 2C(b–e) and Figure 3c.
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It can be seen that 75 µg/mL of UBE (Figure 2C(a,b)) determined a diminution of
blood cell viability reported to 1% DMSO: 86.66 ± 0.45% vs. 96.89 ± 0.14%, p < 0.001;
therefore, it raised their apoptosis: 12.81 ± 0.66% vs. 2.72 ± 0.16% (p < 0.001, Figure 3c).

In addition, higher concentrations of UBE (125, 250, and 500 µg/mL) had a consid-
erable cytotoxic effect on blood cells (Figure 2C(a,c–e)); viability has substantial reduced
values, compared with the solvent control: 65.96 ± 0.68%; 57.91 ± 0.96%; 42.65 ± 0.32% vs.
96.89 ± 0.14% (p < 0.001, Figure 3c). In addition, our results indicate that UBE at the same
concentrations promoted significantly augmented levels of early apoptosis reported to 1%
DMSO: 30.19 ± 0.77%; 30.99 ± 0.77%; 45.52 ± 0.18% vs. 2.72 ± 0.16% (p < 0.001, Figure 3c).

Finally, Figure 2 indicates that insignificant late apoptosis and necrosis phenomena
occurred in blood cell cultures after 24 h treatment.

3.2.2. Caspase 3/7 Activity Assay

The apoptotic effects of UA, UBA, and UBE evaluated by measuring the caspase-3/7
activity compared with 1% DMSO, were registered in Figure 4A–C and Figure 5a–c.

We noted that the minimum concentration of UA (25 µg/mL) induces a low increase of
cell apoptosis (Figure 4A(a,b)) reported to control (3.75 ± 0.36% vs. 1.38 ± 0.03%, p < 0.01,
Figure 5a). Forwards, a remarkable increase of caspase-3/7 activation was registered
on blood cell cultures treated with 50, 75, and 125 µg/mL of UA (Figure 4A(a,c–e)) in
comparison with 1% DMSO: 6.81 ± 0.43%; 29.49 ± 1.96%; 44.74 ± 0.41% vs. 1.38 ± 0.03%
(p < 0.001, Figure 5a).

     
A.               (a)        (b)       (c)       (d)       (e) 

     
B.                (a)         (b)        (c)       (d)       (e) 

     
C.                (a)         (b)        (c)        (d)       (e) 

 
Figure 4. Caspase 3/7 activity status of UA, UBA, and UBE treatments in normal blood cell cultures. MR-DEVD/PI patterns
of 1% DMSO as Negative Control (A(a), B(a), C(a)); A(b–e) UA 25, 50, 75, 125 µg/mL; B(b–e) UBA 75, 125, 250, 500 µg/mL;
C(b–e) UBE 75, 125, 250, 500 µg/mL.
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Remarkably, the lowest UBA concentration (75 µg/mL, Figure 4B(a,b)) induces mild
apoptosis in blood cells cultures: 16.16 ± 0.93% vs. 1.38 ± 0.03% (p < 0.01, Figure 5b).
Furthermore, we aimed to confirm that 125, 250, and 500 µg/mL of UBA produce significant
blood cells apoptosis (Figure 4B(c–e)). Consequently, we evaluated the intracellular activity
of effector caspase 3/7, and we observed that the biochemical cascade of reactions implied
into pro-apoptotic signal has considerably increased more than 1% DMSO: 22.35 ± 1.58%;
32.53 ± 0.57%; 43.57 ± 0.73% vs. 1.38 ± 0.03%, (p < 0.001, Figure 5b).

Similarly, 75 µg/mL of UBE (Figure 4C(a,b)) induced a low apoptosis in blood cells
cultures: 11.25 ± 0.96% vs. 1.38 ± 0.03% (p < 0.01, Figure 5c). Higher UBE concentrations
(125, 250, and 500 µg/mL) triggered proapoptotic signal with considerable increased
values (Figure 4C(a,c–e)) compared with solvent control: 18.15 ± 0.52%; 30.18 ± 0.09%;
43.54 ± 0.72% vs. 1.38 ± 0.03% (p < 0.001, Figure 5c).

Our results indicate a similar trend to the previous assay in UA, UBA, and UBE activity
on blood cell cultures (Figure 2). The effect on caspase 3/7 activity is directly proportional
with the sample concentration, which registers significantly increased levels at high doses,
and decreases in the order of: usnic acid, U. barbata dry extract in acetone, and ethanol
(Figures 4 and 5).
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3.2.3. Nuclear Condensation and Lysosomal Activity Assay

Apoptosis is the mode of cell death that includes pyknosis; in this assay, pyknotic
nuclei were stained with Hoechst 33,342 on blood cell cultures. Another aimed objective
was an evaluation of lysosomal activity directly related to autophagy.

Therefore, blood cells were also colored with acridine orange (AO). The obtained
results were synthesized in Figures 6 and 7.

The lowest concentration of UA (25 µg/mL, Figure 6A(a,b)) induced an insignificant
increase of nuclear condensation: 1.36 ± 0.20% vs. 1.03 ± 0.03% (p ≥ 0.05, Figure 8a)
and a mild increase of lysosomal activity (Figure 7A(a,b)) reported to solvent control:
6.59 ± 0.33% vs. 1.04 ± 0.04% (p ≤ 0.01, Figure 8a).

The higher concentrations of UA (50, 75, and 125 µg/mL, Figure 6A(a,c–e)) continued
to have directly proportional effects on nuclear shrinkage: 1.49 ± 0.02%; 3.00 ± 0.10%;
3.19 ± 0.30% vs. 1.03 ± 0.03% (p ≤ 0.01; p < 0.001, Figure 8a). In addition, the same UA
concentrations (Figure 7A(a,c–e)) induced a substantial increase of the autophagy levels
compared with 1% DMSO: 12.97 ± 1.55%; 21.72 ± 0.38%; 27.05 ± 1.52% vs. 1.04 ± 0.04%
(p ≤ 0.01; p < 0.001, Figure 8a).

Nuclear shrinkage and autophagy were concomitantly examined to evaluate the
mechanism of UBA cytotoxicity on blood cells cultures. Thereby, it can be noted that
75 µg/mL of UBA had minimal effects on both processes (Figure 6B(a,b) and Figure 7B(a,b))
compared with 1% DMSO: nuclear condensation 1.41 ± 0.09% vs. 1.03 ± 0.03%, (p < 0.05,
Figure 8b), and autophagy 4.64 ± 0.38% vs. 1.04 ± 0.04% (p ≤ 0.01, Figure 8b).
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Antioxidants 2021, 10, 1171 14 of 27

On nuclear condensation, the following concentrations of UBA: 125, 250, and 500 µg/mL
(Figure 6B(a,c–e)) continued to show mild effects reported to control: 1.85 ± 0.10%;
2.36 ± 0.16%; 4.41 ± 0.32% vs. 1.03 ± 0.03% (p < 0.01, p ≤ 0.001, Figure 8b). In addition,
previously mentioned concentrations of UBA (Figure 7B(a,c–e)) significantly increased
autophagy: 13.49 ± 0.45%; 21.99 ± 0.57%; 42.32 ± 0.85% vs. 1.04 ± 0.04% (p ≤ 0.001,
Figure 8b).

Finally, 75 µg/mL UBE (Figure 6C(a,b)) showed a similar effect on nuclear contraction
with UBA (Figure 7B(a,b)) at the same concentration as the solvent control: 1.85 ± 0.03%
vs. 1.03 ± 0.03% (p ≤ 0.01, Figure 8c).

However, this effect considerably increases at the following UBE higher concentrations
(125, 250 and 500 µg/mL, Figure 6C(a,c–e)) reported to control: 4.29 ± 0.06%; 14.27 ± 0.93%;
18.64 ± 1.22% vs. 1.03 ± 0.03% (p ≤ 0.001, Figure 8c)

Besides, UBE acted slowly, inducing a moderate increase of the lysosomal activity
(Figure 7C(a–e)) from 75 µg/mL to 500 µg/mL reported to 1% DMSO: 2.87 ± 0.09%;
5.59 ± 0.44%; 11.08 ± 1.21%; 16.77 ± 0.69% vs. 1.04 ± 0.04% (p ≤ 0.01, p ≤ 0.001, Figure 8c).

3.2.4. Total ROS Activity Assay

The ranges 25–125 µg/mL UA and 75–500 µg/mL UBA and UBE were selected to
evaluate oxidative stress in blood cells by ROS level determination.

As shown in Figure 9A–C(a–e), except for 1% DMSO, all samples (UA, UBA, and UBE)
induced ROS generation, highlighted by the moving of the peaks to the right of the graph.
Hence, the lowest concentration of UA (25 µg/mL) slowly stimulated ROS production
(Figure 9A(a,b)) reported to 1% DMSO: 34.33 × 104 ± 4.04 vs. 10.40 × 104 ±1.00 (p < 0.01,
Figure 10a). A remarkable increase in ROS levels was observed in blood cells treated
with 50, 75, and 125 µg/mL of UA (Figure 9A(a,c–e)) compared with the negative control:
56.33 × 104 ± 1.52; 80.33 × 104 ± 0.57; 84.67 × 104 ± 0.57 vs. 10.40 × 104 ± 1.00 (p < 0.001,
Figure 10a).
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mained significant: 26.00 × 104 ± 1.00; 35.66 × 104 ± 1.15; 63.66 × 104 ± 3.21 vs. 10.40 × 104 ± 1.00 
(p < 0.001, Figure 10b). 

Likewise, 75, 125, 250, and 500 μg/mL UBE considerably stimulated ROS production 
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Our results showed that ROS levels in blood cells compared with the negative control 
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Figure 10. Statistical analysis of cellular oxidative stress: (a) UA; (b) UBA; (c) UBE. * p < 0.01 and ** p < 0.001 represent
significant statistical differences between the control and samples made by paired samples t-test.

The lowest concentration of UBA (75 µg/mL) slightly stimulated ROS production
(Figure 9B(a,b)) compared with 1% DMSO: 21.00 × 104 ± 1.00 vs. 10.40 × 104 ± 1.00
(p < 0.001, Figure 10b).

Subsequent higher concentrations of UBA (125, 250, and 500 µg/mL) continued to
increase ROS levels (Figure 9B(a,c–e)) and the differences reported to solvent control remained
significant: 26.00 × 104 ± 1.00; 35.66 × 104 ± 1.15; 63.66 × 104 ± 3.21 vs. 10.40 × 104 ± 1.00
(p < 0.001, Figure 10b).

Likewise, 75, 125, 250, and 500 µg/mL UBE considerably stimulated ROS production
in blood cells, directly proportional with the concentrations (Figure 9C(a–d)).

Our results showed that ROS levels in blood cells compared with the negative
control were as follows: 24.66 × 104 ± 0.57; 35.63 × 104 ± 0.57; 46.00 × 104 ± 1.00;
62.53 × 104 ± 2.50 vs. 10.40 × 104 ± 1.00 (p < 0.001, Figure 10c).
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3.2.5. Cell Cycle Analysis

To explore the effects of UA, UBA, and UBE on cell cycle distribution on blood cell
cultures, the DNA content was evaluated. Propidium iodide/RNase A staining was
performed using flow cytometry analyses for DNA content (Figure 11A–C).
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(Negative Control, A(a), B(a), C(a)).

As shown in Figure 11A(a–e) and Figure 12a, UA concentrations of 25, 50, 75, and
125 µg/mL induce a noteworthy cell cycle arrest in the G1/G0 phase: 64.13 ± 1.55%;
78.52 ± 0.87%; 81.91 ± 1.41%; 88.09 ± 0.98% vs. 39.29 ± 0.76%; p < 0.01, p < 0.001 compared
to solvent control. This activity is directly proportional to UA concentrations.

To understand whether the cell growth inhibition was due to cell cycle arrest, blood
cells were treated with UBA of 75–500 µg/mL concentrations (Figure 11B(a–e)). U. barbata
dry extracts exhibited a noticeable cell cycle arrest in G0/G1 phase reported to 1% DMSO:
65.13 ± 0.15%; 76.35 ± 0.94%; 78.93 ± 0.54%; 81.86 ± 1.11%; vs. 39.29 ± 0.76% (p < 0.01,
p < 0.001, Figure 12b).

Thereby, 75, 125, 250, and 500 µg/mL of UBE (Figure 11C(a–e)) induced cell cycle arrest
in G0/G1 phase reported to the negative control as follows: 68.16 ± 0.14%; 68.47 ± 0.58%;
76.06 ± 0.68%; 82.75 ± 0.55% vs. 39.29 ± 0.76% (p < 0.001, Figure 12c).

Finally, it can be observed that UA proved the highest effect on cell cycle arrest in
G0/G1, followed by UBA and UBE with similar activities.
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In this study, we observed that the lowest concentration (25 µg/mL) of UA determined
an increase of DNA synthesis (Figure 13A(a,b)) in comparison with 1% DMSO (17.25 ±
0.36% vs. 11.43 ± 1.04%, p < 0.05, Figure 14a).
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3.2.6. Cell Proliferation Assay

Flow cytometry analyses with EdU incorporation were used for examining DNA
synthesis in blood cells (Figure 13).

Instead, UA at 50, 75 and 125 µg/mL did not significantly alter DNA synthesis
(Figure 13A(a,c–e)) relative to the control (11.25 ± 0.83%; 10.32 ± 0.64%; 6.49 ± 1.25% vs.
11.43 ± 1.04%, p ≥ 0.05, Figure 14a).

The lowest concentration of UBA (75 µg/mL) did not significantly modify the DNA
synthesis (Figure 13B(a,b)) more than 1% DMSO: 12.78 ± 0.67% vs. 11.43 ± 1.04% (p ≥ 0.05,
Figure 14b).
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Regarding higher concentrations of UBA (125 and 250 µg/mL), a decrease of DNA
synthesis (Figure 13B(a,c,d)) was registered, compared with 1% DMSO, with moderate
differences: 3.12 ± 0.18%; 4.81 ± 0.15% vs. 11.43 ± 1.04% (p < 0.05, Figure 14b).

Finally, the highest UBA concentration (500 µg/mL) did not significantly affect DNA
synthesis (Figure 13B(a,e)) more than the solvent control: 10.77 ± 0.43% vs. 11.43 ± 1.04%
(p ≥ 0.05, Figure 14b).

In blood cells treated with 75 µg/mL UBE, an evident higher stimulation of DNA
synthesis reported to solvent control (19.05 ± 0.64% vs. 11.43 ± 1.04%, p < 0.01) was
registered (Figure 13C(a,b) and Figure 14c).

The treatment with 125 and 250 µg/mL of UBE (Figure 13a,d) did not significantly
alter DNA synthesis in comparison with 1% DMSO: 9.92 ± 0.43%; 10.60 ± 0.63% vs.
11.43 ± 1.04%, (p ≥ 0.05, Figure 14c).

Furthermore, 500 µg/mL of UBE produced a lower DNA synthesis stimulation
(Figure 13C(a,e)) than the negative control: 8.89 ± 0.30% vs. 11.43 ± 1.04% (p < 0.05,
Figure 14c).

4. Discussion

Our previous study analyzed five U. barbata dry extracts in different solvents [13]; we
calculated the yield and evaluated the usnic acid, total polyphenols, and tannins content of
each obtained extract. Therefore, we opted only for three lichen dry extracts for the present
study: in ethyl acetate, acetone, and ethanol.

The highest usnic acid content (376.73 µg/mg) was the reason for selecting UBEA in
the first phase of our study-usnic acid isolation. Then, isolated usnic acid was purified in
the sample matrix. As a result, we obtained usnic acid with 89.36% purity and a yield of
28.15%. Ranković et al. (2012) obtained 95 mg usnic acid with 98.6% purity from 500 mg
U. barbata dry acetone extract [59]. The purity value difference could be due to the solvents
used. We used only DMSO, while in the previously mentioned study, dry acetone extract
was dissolved in benzene and then, usnic acid was recrystallized using chloroform/ethanol.
We can state that our isolated usnic acid is (+)-UA because Usnea sp. tends to produce this
enantiomer exclusively; in addition, (+)-UA registers antiviral, insecticidal, and phytotoxic
activities significantly higher than (−)-UA [69].

Isolated UA and both UBA and UBE were used to evaluate their cytotoxic activity
on blood cells. We opted for UBA because it contains an appreciable usnic acid amount
(282.78 µg/mg) and other secondary metabolites. In addition, only 127.21 µg/mg of UA were
extracted in UBE and a wider lichen secondary metabolites variety. UBE also had the highest
extraction yield (12.52%) compared with UBA (6.36%) and UBEA (6.27%) [13]. Consequently,
the obtained biological effects could be correlated with the secondary metabolites content.

The present study proved that UA generally induced a significant cytotoxic effect on
normal blood cells, more intense than both U. barbata extracts, UBA, and UBE. Hence, in
early apoptosis events, the appearance of PS residues (commonly hidden within the plasma
membrane) on the surface of the cells can be used to detect and measure this PCD. In our
flow cytometry method, we opted for annexin V as staining to detect apoptotic cells due
to its ability of PS-binding [70]. Moreover, translocation of PS to the external cell surface
can occur during apoptosis and necrosis. The difference between these two forms of cell
death is that the cell membrane remains intact in early apoptosis; however, it loses integrity
and becomes permeable when necrosis is installed [71]. Shlomovitz et al. (2019) showed
that PS externalization is also available in necroptosis [72]. However, in RBCs, this process
corresponds to eryptosis (quasi-apoptosis) [73]. The intact cells membrane consists of the
bilayer with choline-containing phospholipids (phosphatidylcholine and sphingomyelin)
in the outer layer and amine-containing phospholipids (phosphatidylethanolamine and
PS) in the inner layer. This normal disposition is known as phospholipid asymmetry. Lipid
asymmetry is disturbed when the erythrocytes enter into eryptosis, and PS is exposed
on RBCs surface [74]. This process involves three ATP and Ca2+ -dependent transporters
activation (flippase [75], floppase [76], and scramblase [77]). In addition, spectrin [78,79]
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oxidation and increasing cytoplasmic Ca2+ [80] concentration lead to membrane proteins
denaturation [81]. Usnic acid oxidative stress-induced plays an essential role in all blood
cells PCD, triggering these various molecular mechanisms [35]. One of the prominent
protein families that regulate and execute programmed cell death is caspases; they cleave a
subset of essential cellular proteins to promote apoptotic cell death [82].

In all blood cells types PCD involves caspases [50,52,53,59,63,73,83–86]. In response
to apoptotic stress, the activated initiator caspases (caspase-2, 8, 9) cleave and activate the
effector caspases (caspase-3, 6, 7), which execute the death process [87]. They regulate
the extrinsic (receptor-mediated) apoptosis pathway involving receptor binding, followed
by activation of the initiator caspase, caspase-8, which activates caspase-3 or amplifies
caspase-3 activation cleaving BH3 Interacting Domain Death Agonist protein. Bid cleavage
induces mitochondrial cytochrome c release, forming a protein complex (apoptosome)
and activating caspase-9 [88]. During apoptosis, caspase-3 is also actively transported to
the nucleus through the nuclear pores, playing a significant role in its disintegration by
processing several nuclear substrates. Caspase-7 plays a significant role in cell viability
loss [89]. According to Sundquist et al. (2006), the late apoptotic events occur after
activating the effector caspases. Late apoptosis includes exposure of phosphatidylserine
on the external surface of the plasma membrane (which can be measured by annexin V
binding), cleavage of poly (ADP-ribose) polymerase (PARP), and internucleosomal DNA
fragmentation [48]. McComb et al. (2019) revealed that efficient apoptosis requires feedback
amplification of upstream apoptotic signals by effector caspase-3 or -7 [90]. For this reason,
we aimed to evaluate the influence of our tested samples on caspase 3/7 apoptosis pathway.
The obtained results showed that caspase 3/7 activity was significantly stimulated during
PCD process.

During apoptosis, caspase-3 is actively transported to the nucleus through the nuclear
pores, playing a significant role in its disintegration by processing several nuclear sub-
strates [89]. Nuclear apoptosis is characterized by chromatin condensation and progressive
DNA cleavage into high-molecular-weight fragments and oligo-nucleosomes [91]. We
analyzed the nuclear shrinkage to validate that UA, UBA, and UBE caused apoptosis;
this process occurs only in white blood cells [92], RBCs, and platelets being enucleate.
Chromatin condensation and fragmentation of nuclei are included in PCD [93]; exclusively,
UA at high concentrations showed an appreciable stimulatory effect compared with the
solvent control and UBA, and UBE samples.

Various studies have recently shown that lysosomes have been implicated in the
regulation of cell death. Increasing their membrane permeability, released hydrolytic
enzymes can contact cytosolic targets and contribute to apoptotic cell death [94]. Further-
more, lysosomal activity is directly associated with autophagy, another decisive process
for cell death [95]. Various studies from accessed scientific literature analyze autophagy in
platelets [96,97] and different WBCs [98–100].

Moreover, according to numerous studies, mitochondrial dysfunction consists of
structural alteration, membrane potential disruption, and electron transport reaction in-
stability. These events generate ROS overproduction, caspase cascades activation, and
apoptosis pathway initiation [101]. The mitochondrial apoptotic pathway is available only
at platelets [102,103], and WBCs [104].

In addition, low ROS concentration can promote cell proliferation, whereas excessive
ROS levels cause DNA oxidative damage, consequently inducing cell death [105]. ROS
levels are implicated in all blood cell lines death: platelets [106,107], RBCs [108,109], and
WBCs [110,111].

It is known that the cell cycle consists of few successive phases in mammals: synthesis
(S) with DNA replication and mitosis (M) with repartition of replicated DNA into two
daughter cells. Separation of DNA replication from mitosis is performed by two gap phases
(G1 and G2). In G1, the cell increasing size, RNA, and protein synthesis occurs, while in
G2, after DNA synthesis, the cell grows and synthesizes proteins. Only in RBCs cell cycle
arrest occurs in G1 [112]. After division, the cell enters the resting phase, known as the G0
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gap phase [113]. Thus, cell cycle arrest represents the first response to DNA damage and
one of the first steps in cell apoptosis. However, nucleate WBCs proliferation is a tightly
controlled process, and DNA replication is essential [114].

According to the obtained results, the high ROS levels produced by 75 and 125 µg/mL
of UA in blood cells triggers a series of consecutive events: cell apoptosis, effector caspases
3/7 activation, pyknosis, autophagy, and cell-cycle arrest in the G0/G1 phase. Furthermore,
many studies on numerous cell types proved apoptosis induction by ROS [115].

We have also shown that 125, 250, and 500 µg/mL concentrations of UBA and UBE
triggered blood cells apoptosis by caspase 3/7 pathway, oxidative stress, and accumulation
of cells in G0/G1. Moreover, altered cell-cycle checkpoints and cell apoptosis parameters
conformed with references [116].

Our results proved that UA and UBE at the lowest concentrations stimulated DNA
replication (S-phase of the cell cycle). At higher concentrations, they highlighted inhibitory
activity on blood cell proliferation. In great measure, these opposite effects manifested
at low and high concentrations and can be associated with ROS levels, as previously
mentioned. Similar data are mentioned by Damiano et al. (2019), revealing ROS dual
function in skeletal muscle: at low levels, they improve muscle force and adaptation to
exercise, while at high levels, they decrease muscle performance [117].

However, relatively few studies from the accessed scientific literature are focused exclu-
sively on proving the effects of Usnea sp. extracts and usnic acid on normal cells [60,118]. A few
years ago, dietary supplements containing usnic acid used for weight loss (Lipokinetix, [119])
reported severe hepatotoxic effects [120–122]. Fujimoto et al. (2010) reported that in vitro
usnic acid hepatotoxicity involves oxidative stress, mitochondrial toxicant depletion of
glycogen [123], and potential ATP biosynthesis inhibition mediated by mitochondrial
electron transport chain [124], triggering necrotic death of hepatocytes. The structural
properties of usnic acid can explain these molecular mechanisms. Thus, usnic acid is a
lipophilic compound that can easily pass the mitochondrial membranes into the matrix,
releasing a proton. Next, usniate anion diffuses into the intermembrane space to bind to a
proton to restore usnic acid. The resulting cycle causes a proton leak that could dissipate
the proton grad across the membrane, altering ATP levels and changing mitochondrial
membrane potential [125]. Usnic acid can induce structural changes in intracellular glu-
tathione molecules, decreasing its reduced form (GSH) [126]. In the same mode, usnic acid
can perform spectrin oxidation with cell membrane shrinkage and PS exposure during
apoptosis. Thus, usnic acid prooxidant potential can induce oxidative stress and liver cell
death signaling. Concomitantly, using natural or synthetic antioxidants to neutralize the
prooxidative activity of UA might also be a cell-protecting measure. Due to high hepato-
toxicity induced by usnic acid, FDA released a Safety Alerts for Human Medical Products
about Lipokinetix [119]. This notification is also current and supports the necessity for
identification of natural or synthetic compounds to ensure the safe use of AU as potential
anticancer drug.

Instead, the most numerous researchers pointed out these activities on various tumor
cell lines [127]. For instance, Ozturk et al. (2019) reported several extract types of different
Usnea sp. which determine cell apoptosis and DNA damage on cancer cells [128]. In
addition, methanol extracts of U. barbata induced cell apoptosis, as evidenced by the
increasing Annexin V expression and pan-caspase activation in human breast and lung
cancer cells [16]. Additionally, Disoma et al. (2018) mentioned caspase 3/7 activation
as an apoptotic mechanism on colon cancer cells proved by U. filipendula extracts [129].
In their study, Koparal et al. (2006) examined usnic acid effects on two types of lung
cells (normal and tumor cells). They described usnic acid cytotoxic activity on both cell
types and highlighted that cancer cells are more sensitive than normal cells [130]. Geng
et al. (2018) reported that usnic acid induces cycle arrest, apoptosis, and autophagy in
gastric cancer cells types in vitro and in vivo [131]. In another study, Wang et al. (2019)
proved antileukemia action of (+) usnic acid derivatives, inhibiting pan-Pim kinases [116].
Besides, Rabelo et al. (2012) suggested that usnic acid displays variable redox-active
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properties, acting as an antioxidant and prooxidant agent, according to different system
conditions and cellular environment [27]. High cytotoxic effects on cancer cells and minimal
unwanted effects on normal cells represent the essential quality of an antitumor agent.
High cytotoxicity levels on cancer cells and low damage on normal cells represent the
meaningful purpose in antitumor activity. Finally, Tram et al. (2020) evidenced the highly
different cytotoxicity of the same compound against tumor and normal cells [23].

Our study highlights the relationship between concentration and biological effect on
normal blood cells. Thereby, usnic acid at a minimal concentration (25 µg/mL) shows low
cytotoxicity on human blood cells, slowly inducing cell apoptosis, caspases 3/7 activation,
mild ROS level and stimulating DNA synthesis. On the other hand, higher concentrations
(50–125 µg/mL) of UA progressively display significant cytotoxic effects: increasing cell
apoptosis, effector caspases 3/7 proapoptotic signal, nuclear condensation, autophagy,
oxidative stress, and causing cell-cycle arrest in G1/G0 phase.

U. barbata dry extracts in acetone and ethanol, at low concentration (75 µg/mL), exhibit
minor cytotoxicity, inducing cell and nuclear apoptosis, autophagy, and increased DNA
synthesis. In contrast, higher concentrations (125–500 µg/mL) of UBA and UBE report
directly proportional significant toxic effects on blood cells, enhancing cell and nuclear
apoptosis, autophagy, ROS levels and promoting cell-cycle arrest G1/G0 phase.

5. Conclusions

The novelty of our study consists of analyzing U. barbata and usnic acid cytotoxic
effects on human normal blood cells cultures. The principal points of this complex activity
have been highlighted, exploring the cell and nuclear apoptosis, caspase 3/7 activity,
autophagy, oxidative cellular stress, cell cycle, and DNA synthesis.

High cytotoxicity levels on cancer cells and relatively lower damage to the normal
blood cells represent the meaningful purpose in antitumor activity. Based on this state-
ment, our study can offer essential data to target the previously mentioned objective by
evaluating the blood cells sensitivity to various concentrations of U. barbata dry extracts
and usnic acid. The obtained results suggest that future researches may select several
concentration domains to evaluate their various pharmacological activities. Moreover,
exploring anticancer potential, we can select which extracts highlight optimal and exclusive
cytotoxicity on a broad domain of cancer cells, also displaying minimal or no side effects
on normal cells.
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