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Abstract

Prior studies demonstrated that deletion of the protein phosphatase Phipp1 in Ctsk-Cre
expressing cells enhances bone mass, characterized by diminished osteoclast activity and
increased coupling to bone formation. Due to non-specific expression of Ctsk-Cre, the defin-
itive mechanism for this observation was unclear. To further define the role of bone resorb-
ing osteoclasts, we performed ovariectomy (Ovx) and Sham surgeries on Phlpp1 cKOcsk
and WT mice. Micro-CT analyses confirmed enhanced bone mass of Phlpp1 cKO¢ix Sham
females. In contrast, Ovx induced bone loss in both groups, with no difference between
Phlpp1 cKOcisx and WT mice. Histomorphometry demonstrated that Ovx mice lacked differ-
ences in osteoclasts per bone surface, suggesting that estradiol (E2) is required for Phipp1
deficiency to have an effect. We performed high throughput unbiased transcriptional profil-
ing of Phlpp1 cKOc4sk Osteoclasts and identified 290 differentially expressed genes. By
cross-referencing these differentially expressed genes with all estrogen response element
(ERE) containing genes, we identified IGFBP4 as potential estrogen-dependent target of
Phlpp1. E2 induced PHLPP1 expression, but reduced IGFBP4 levels. Moreover, genetic
deletion or chemical inhibition of Phipp1 was correlated with IGFBP4 levels. We then
assessed IGFBP4 expression by osteoclasts in vivo within intact 12-week-old females.
Modest IGFBP4 immunohistochemical staining of TRAP* osteoclasts within WT females
was observed. In contrast, TRAP* bone lining cells within intact Phlpp1 cKOg;sx females
robustly expressed IGFBP4, but levels were diminished within TRAP* bone lining cells fol-
lowing Ovx. These results demonstrate that effects of Phlpp1 conditional deficiency are lost
following Ovx, potentially due to estrogen-dependent regulation of IGFBP4.

Introduction

Bone loss is a natural phenomenon of the aging process. As both men and women age, there is
a relative imbalance in bone resorption as compared to formation which leads to negative
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bone balance. Osteoporosis is a bone disorder marked by low bone mass and low bone quality.
This leads to compromised bone strength, hence increased ease of fracture. Osteoporotic frac-
tures are prevalent around the world and are a major cause of morbidity and mortality in the
elderly [1]. The underlying causes of osteoporosis are subjective and multifactorial, influenced
by diet, physical activities, hormonal status, cytokines, and overall health status such as diabe-
tes mellitus and glucocorticoid treatment. Regardless of the etiology, osteoporosis is character-
ized by both structural and cellular changes to cancellous bone and endocortical surface. For
women, bone loss is accentuated during the perimenopausal and postmenopausal periods,
punctuated by rapid decline in endogenous estrogen. Estrogen deficiency is strongly correlated
with the acceleration of cancellous bone loss and the decrease of cortical bone in women [2].
Moreover, estrogen deficiency enhances bone resorption. In contrast, hormone replacement
therapy in pre-clinical ovariectomy models or menopausal women has been shown to reduce
bone loss and risk of fractures in the vertebrae as well as in non-vertebral sites including the
hip, adding to evidence that estrogen is critical to maintaining bone mass [3].

The process of bone remodeling is carried out by the coupled activity of bone resorbing
osteoclasts and bone forming osteoblasts. There are three phases of the bone remodeling pro-
cess: resorption, reversal and formation. In a balanced system, the amount of bone removed
by osteoclasts exactly matches the amount laid down by the osteoblast. However, age-related
decline disrupts the reversal phase, leading to uncoupling of bone resorption and bone forma-
tion phases. This creates an imbalance between the amount of bone resorbed compared to that
formed with each remodeling cycle. The compounded effects of this whole process are exacer-
bated by an increase in the frequency with which new remodeling cycles are activated after the
menopause. This leads to postmenopausal acceleration of bone loss [4].

Phlpp1 (PH domain and leucine rich protein phosphatase 1) belongs to a class of metal-
dependent phosphatases [5]. Phlpp1 limits the activity of anabolic kinases including Akt2, Raf,
and typical and atypical PKC isoforms [5]. We previously demonstrated that germline deletion
of protein phosphatase Phlpp1 limits bone mass [6], but we could not discern the cell type spe-
cific functions within this model. Conversely, conditional deletion of Phlpp1 in Cathepsin K
(Ctsk)-Cre-expressing cells resulted in enhancement of bone mass characterized by dimin-
ished osteoclast activity and enhanced coupling to bone formation [7]. Due to the limitations
of the Ctsk-Cre driver, including expression within mesenchymal lineage cells [8-12], we fur-
ther explored the functions of Phlppl in a model of enhanced bone resorption. In this study,
we determined if Phlppl cKOc mice were protected from bone loss as a result of ovariec-
tomy in this study. We find that Phlpp1 cKOc mice are not protected from ovariectomy
induced bone loss. Furthermore, this study demonstrates that Phlpp1 limits expression of
Ifgbp4, known to be required for optimal bone mass attainment in females [13], and that this
repression is lost following ovariectomy.

Methods
Generation of Phlpp1 conditional knockout mice

We previously described generation of mice harboring the Phlpp1 floxed allele [7] used in this
study. Ctsk-Cre driver mice used in this study were obtained from R. A. Davey and were previ-
ously described [8] Phlpp1™* mice were mated with mice expressing Cre-recombinase under
the control of the Ctsk promoter [7, 8]. Mice were genotyped for Cre [14] or the Phlpp1-floxed
allele using the following primers: forward: 5'~CAGTGGATATCTGGATAATC-3/, reverse: 5'—
GATGAGTGTTTTCATGAGGA-3'. Conditional knockout animals from these crossings are
denoted as Phlppl cKOcy mice and are on the C57Bl/6 background. Cre" control littermates
from crossings were used as controls as appropriate. Animals were housed in an accredited
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facility under a 12-h light/dark cycle and provided water and food ad libitum. Ovariectomy
surgeries were performed on 12-week-old Phlppl cKOcyq. females (n = 4) or their control
Cre" littermates (n = 5) as previously described [15]. Sham surgeries were also performed on
12-week-old Phlpp1 cKOc¢y females (n = 10) or Cre" littermates (n = 9) for a total of n = 29
mice. Mice were anesthetized using 1-2% isoflurane delivered via inhalation prior to surgery.
Warm saline was administered subcutaneously immediately after surgery. Animals were
observed for one hour following surgery before being returned to housing. Following return to
housing, animals were observed once per day for three days and then once per week for the
duration of 4 weeks post-surgery. The incision site was monitored for signs of infection. Mice
were also be monitored for pain following surgeries using body condition scoring. All animal
research was conducted according to guidelines provided by the National Institute of Health
and the Institute of Laboratory Animal Resources, National Research Council. The University
of Minnesota Institutional Animal Care and Use Committee approved all animal studies Mice
were euthanized by CO2 asphyxiation, using cervical dislocation as a secondary measure of
euthanasia.

Micro-computed tomography

Femora from ovariectomized mice were collected 4 weeks post-ovariectomy surgery and fixed
in 10% neutral buffered formalin for 48 h, then stored in 70% ethanol. Blinded study staff per-
formed scanning at 70 kV, 221 ms with a 10.5-um voxel size using a Scanco Viva40 micro-CT.
For cortical bone analyses, a region of interest was defined at 10% of total femur length begin-
ning at the femoral midpoint; defining the outer cortical shell and running a midshaft analysis
with 260-threshold air filling correction analyzed samples. For trabecular measurements, a
region of interest was defined at 10% of total femur length starting immediately proximal to
the growth plate; samples were analyzed using a 220-threshold air filling correction.

Histomorphometry and immunohistochemistry

Tibiae were collected from ovariectomized mice 4 weeks post-surgery and fixed formalin for
48 h, then stored in 70% ethanol. Tibiae were then decalcified in 15% EDTA for 14 days. Tis-
sues were paraffin embedded and 7-micron sections were generated and TRAP/fast green
stained [7]. Standardized histomorphometry was performed as previously described [7]. IHC
staining was performed with antibodies directed to Insulin-like growth factor binding protein
4 (Igtbp4) (Millipore, #06-109) or with an isotype control IgG. Detection was accomplished
using the Mouse and Rabbit Specific HRP (ABC) Detection IHC Kit (Abcam, #ab64264) using
the substrate 3,3'-diaminobenzidine (Sigma Aldrich, St. Louis, MO). Sections were co-stained
with TRAP/Fast Green stain as previously described [7].

Osteoclast differentiation

Hind limbs were dissected and bone marrow macrophages were collected from female 6 to
8-week-old Control, Phlppl cKO¢y or Phlppl'/ " mice as previously described [16]. Briefly,
cells were flushed, pelleted and red blood cells were lysed (RBC Lysis Buffer, #00-4333-57, Invi-
trogen, Carlsbad, CA). Cells were pelleted and cultured overnight in phenol red-free alpha
MEM, 10% FBS and 1% antibiotic/antimycotic supplemented with 35 ng/mL M-CSF
(#416-ML, R&D, Minneapolis, MN). Non-adherent cells were then placed in culture medium
supplemented with 35 ng/mL M-CSF, and 90 ng/mL RANKL (#315-11, Prepro Tech, Rocky
Hill, NJ). Cultures were fed on day 3 with culture medium plus 35 ng/ml M-CSF, and 90 ng/mL
RANKL and treated as described within the text and figures. Each value shown is determined in
triplicate and repeated three times. Shown is the average.
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TRAP staining

TRAP staining was performed as previously described [7]. Briefly, cells were fixed on cover
glass with 10% neutral buffered formalin for 10 minutes and then washed 3 times with phos-
phate-buffered saline (PBS) [7]. Fixed cells were TRAP stained using the Acid Phosphatase,
Leukocyte (TRAP) Kit (#387A-1KT, Sigma-Aldrich) and mounted to slides using Vectashield
with DAPI (#H-1200, Vector Laboratories, Burlingame, CA) [7]. For osteoclastogenesis exper-
iments, three cover glasses were used per experimental condition. For each cover glass, three
fields were imaged using a 10X objective [7]. Images were digitally photographed. Osteoclasts
were defined as TRAP™ cells with 3 or more nuclei [7]. Each experiment was repeated indepen-
dently, each three times. Shown is the average.

RNA-sequencing and bioinformatics analyses

Bone marrow macrophages were collected from 6-week-old female Phlppl cKO¢ mice
or their wild type littermates and placed in osteoclastogenic conditions as previously
described [7]. Primary osteoclasts were then lysed in TRIzol (Invitrogen) and total RNA
was collected. High-throughput RNA-Sequencing was performed using RNA from day 4
Phlpp1 cKOc or wild type osteoclasts as previously reported [17-19]. Briefly, after read
alignment, paired-end reads are aligned by TopHat 2.0.6 against the mm10 genome using
the bowtiel aligner option [19, 20]. RPKM values for gene lists were filtered for anything
>0.1 and a fold change >2, excluding microRNAs and small nuclear RNAs. Data are
deposited in the Array Express public database (accession #489556). The resulting gene
lists (290 differentially expressed genes) were cross-referenced with all ERE-containing
genes within the within the database defined by Bourdeau et al. [21] to obtain a list of 67
potential estrogen-dependent targets of Phlpp1.

Western blotting

Cells were placed on ice, rinsed twice with PBS and lysed in a buffered SDS solution (0.1%
glycerol, 0.01% SDS, 0.1 M Tris, pH 6.8). The BioRad Dc assay was performed, and 40 micro-
grams of total protein from each sample were resolved by SDS-PAGE. Proteins were trans-
ferred to polyvinylidene difluoride membrane which was subsequently blocked with 5% non-
fat milk in TBS+0.1% Tween. Western blotting was performed with antibodies (1:1000) for
Phlppl (Millipore, #07-1341), Igfbp4 (Millipore, #06-109), phospho-Ser473 Akt (Cell Signal-
ing Technology, #4332), Akt (Cell Signaling Technology, #2920), Histone 3 (Abcam,
#ab176840) or Tubulin (Developmental Studies Hybridoma Bank, E7) and corresponding sec-
ondary antibodies conjugated to horseradish peroxidase (Cell Signaling Technology, #7074
and #7076). Antibody binding was detected with the Supersignal West Femto Chemilumines-
cent Substrate (#34096, Pierce Biotechnology, Rockford, IL). Resulting bands were collected
via radiography and digitally scanned. Each experiment was repeated at least three times
reflecting the average of these experiments.

Statistics

Data shown are the mean + standard deviation. A Student’s t test was performed when
one experimental comparison was made. For experiments requiring multiple compari-
sons, a one-way analysis of variance was performed. Differences with a p < 0.05 were
considered statistically significant. All analyses were performed using GraphPad Prism 8
software.
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Results

Phlpp1 deletion within Ctsk-expressing cells does not protect against
ovariectomy-induced bone loss

Conditional deletion of Phlpp1 in Ctsk-Cre expressing cells increases osteoclastogenesis, but
enhances bone mass [7]. Elevated bone mass within this model was attributed to decreased
osteoclast activity and increased coupling to bone formation. Because Ctsk-Cre is expressed by
both bone resorbing osteoclasts, as well as mesenchymal lineage cells [8-12], the effects of
Phlpp1 conditional deficiency could be attributed to either or both cell lineages. To understand
the role of Phlppl in a model of enhanced bone resorption, we assessed the effects of Phlppl
conditional deletion using the Ctsk-Cre driver in an ovariectomy model. Ovariectomy or
Sham surgeries were performed on 12-week-old Phlppl cKOcq females or the sex-matched
control Cre+ littermates. Micro-CT analyses demonstrated that Sham operated Phlppl
cKOcsk females exhibited increased bone parameters, including BV/TV, trabecular number,
trabecular thickness and diminished trabecular spacing four weeks post-surgery (Fig 1). While
both control and Phlpp1 cKOc mice lost bone in response to ovariectomy, no significant dif-
ference was detected between these two groups (Fig 1). Bone histomorphometric analyses con-
firmed that control and Phlppl cKO mice subjected to ovariectomy surgeries do not have
statistically significant differences in BV/TV or osteoclasts per bone surface (Fig 2A). More-
over, the percent change in bone mass when comparing Sham to ovariectomized mice of each
genotype was unaltered (Table 1). In contrast, Phlppl cKO¢ females demonstrated a greater
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Fig 1. Phlpp1 cKOc mice are not protected from ovariectomy-induced bone loss. (A-F) Ovariectomy or Sham
surgeries were performed on Phlppl cKOcy 12-week-old females and their wild-type littermates. Four weeks after
surgery, the right femora were collected for analyses. (A) Experimental overview. Femora were collected, scanned via
micro-CT and evaluated for (B) bone volume / total volume (BV/TV), (C) trabecular spacing (Tb. Sp.), (D) trabecular
thickness (Tb. Th.), (E) trabecular number (Tb. N.), and (F) connective density (Conn D). *p<0.05.

https://doi.org/10.1371/journal.pone.0251732.9001
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Fig 2. Phlpp1 cKOc mice are not protected from ovariectomy-induced changes in osteoclast number. (A, B)
Ovariectomy surgeries were performed on Phlppl cKOcy 12-week-old females and their wild-type littermates. Four
weeks after surgery, the right tibiae were collected for histomorphometric analyses. (A) Osteoclasts per bone perimeter
(Ocl/ B. Pm.), (B) osteoblasts per bone perimeter (Ob. Pm. / B. Pm.). Serum ELISAs for PINP (C) and CTX-1 (D)

were performed.

https://doi.org/10.1371/journal.pone.0251732.9002

percent change in trabecular thickness and spacing (Table 1). Osteoblast number per bone
perimeter was also unchanged (Fig 2B). No changes in serum markers of bone resorption
(CTX, Fig 2C) or bone formation (PINP, Fig 2D) were noted. These results demonstrate that
Phlpp1 cKOc¢s mice do not retain enhanced bone production following ovariectomy.

Igfbp4 is an ERE containing gene that is upregulated by Phlpp1 deficient
cells

Since Phlppl conditional deficiency did not protect against ovariectomy-induced bone loss,
this suggests that intact estrogen status is required for the effects of Phlpp1 deficiency on bone
mass. We therefore, sought to identify the factor(s) that Phlppl may regulate in an estrogen-
dependent fashion. Osteoclasts were differentiated ex vivo using bone marrow macrophages
derived from 4-6-week-old Phlppl cKOc females or their control Cre+ littermates. Unbi-
ased, high throughput RNA sequencing was performed using total RNA derived from these

Table 1. Percent change in bone parameters between control and Phlpp1 cKOc mice following ovariectomy.

% Change, BV/TV % Change, Tb. Th. % Change, Tb. Sp. % Change, Tb. N. % Change, Conn. D.
WT 86.78 + 8.13 102.95 + 3.13 449.96 + 4.26 117.00 + 0.47 4.47 + 8.36
Phlpp1 cKOcysic 62.28 + 11.27 83.61 + 4.82 545.42 + 1.68 110.63 + 0.53 4.29 + 8.27
p Value 0.11 0.01* 3x107* 0.80 0.21

https://doi.org/10.1371/journal.pone.0251732.t001
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Fig 3. Identification of ERE-containing genes that are differentially expressed by Phlpp1 cKO ¢ osteoclasts.
RNA from female day 4 Phlpp1 cKOc, osteoclasts or wild type counterparts was collected and used for high-
throughput RNA sequencing. Listed genes were either (A) upregulated or (B) downregulated by two-fold or greater
with an FDR < 0.05. (C) Venn diagram illustrating Phlpp1 cKOcy differentially regulated genes that also contain an
ERE. (D) List of the top Phlpp1 cKOc differentially expressed ERE-containing genes.

https://doi.org/10.1371/journal.pone.0251732.9003

cultures and the top up-regulated (Fig 3A) and down-regulated (Fig 3B) genes were identified.
These 290 differentially expressed genes were cross-referenced with an ERE-containing gene
database [21] and 67 overlapping genes were identified (Fig 3C). The top differentially
expressed ERE-containing genes are listed in Fig 3D. One of the top ERE-containing differen-
tially regulated genes was Igfbp4, a gene previously identified to control bone mass in a sex-
specific manner [13].

Phlpp1 deficiency alters Igfbp4 in an estrogen-dependent fashion

Igfbp4 germline deficiency reduces bone mass in females; thus, we hypothesized that Phlppl
represses expression of Igfbp4 in an estrogen-dependent fashion. We collected osteoclast pro-
genitor cells from 4-6-week-old female Phlppl cKOc mice or their sex-matched littermates.
Reduced PHLPP1 levels were correlated with enhanced Akt phosphorylation and levels of
IGFBP4 (Fig 4A). We next assessed the effects of PHLPP1 inhibition using the small molecule
inhibitor NSC 117079. Osteoclast progenitor cells were collected from wild type 4-6-week-old
female mice and exposed to 5 uM NSC 117079 or vehicle for 24 hours. Enhanced Akt phos-
phorylation was accompanied by elevated IGFBP4 levels (Fig 4B). We also determined how
estradiol affected PHLPP1 and IGFBP4 expression. Osteoclast progenitor cells were collected
from wild type or Phlpp1™~ 4-6-week-old female mice and treated with 2 nM estradiol as
shown in Fig 4C. While estradiol induced PHLPP1 levels within the time course, IGFBP4 levels
diminished (Fig 4C). Although IGFBP4 levels were elevated, estradiol did not reduce IGFBP4
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Fig 4. Estrogen induces Phlpp1 expression, but represses Igfbp4 expression. (A) Osteoclasts progenitors were collected from 4-
6-week-old Phlppl cKOcs females or their littermate controls. Western blotting was performed. (B) Osteoclast progenitors were
collected from C57Bl/6 mice and cultured in the presence of the Phlpp inhibitor NSC 117079 (5uM) or vehicle control for 24 hours.
Western blotting was performed. (C) Osteoclast progenitors were collected from control or Phlpp1”~ female mice were treated with 2
ng/ml estradiol (E2) for the indicated times and western blotting was performed. (D) Tibiae were collected from 12-week-old Phlpp1
cKOctsk females of the control littermates. Immunohistochemical staining for Igfbp4 was performed, followed by counter staining
with TRAP and fast green. (E) Tibiae were collected from 16-week-old Phlppl cKOc¢g females of the control littermates following
ovariectomy. Immunohistochemical staining for Igfbp4 was performed, followed by counter staining with TRAP and fast green.

https://doi.org/10.1371/journal.pone.0251732.9004

levels within Phlpp1™ osteoclast progenitors (Fig 4C). We next assessed IGFBP4 expression by
osteoclasts within intact 12-week-old female mice. IHC was performed using an antibody
directed towards IGFBP4 and sections were then TRAP and fast green stained. While modest
immunostaining was observed within wild type females, robust staining was observed by
TRAP positive bone lining cells within Phlppl cKOc¢ female mice (Fig 4D). This robust
expression of IGFBP4 by Phlppl cKOc¢ osteoclasts was markedly diminished following
ovariectomy (Fig 4E).

Enhanced ex vivo osteoclastogenesis by Phlpp1 deficiency is limited by
Igfbp4 inhibition

To determine if altered osteoclastogenesis could be restored by limiting IGFBP4 levels, we uti-
lized the Igfbp4 protease PAPP-A [22]. Bone marrow progenitors were collected from 4-
6-week-old Phlppl cKO¢ female mice or their control littermates. On days 0 and 3 of osteo-
clastogenesis assays, cells were treated with 20 ng/ml rPAPP-A or vehicle (Fig 5). Phlpp1 defi-
ciency enhanced osteoclast numbers in vitro, but this was attenuated by addition of PAPP-A
(Fig 5A). Western blotting confirmed that increased IGFBP4 levels within Phlpp1 deficient
osteoclasts were suppressed by PAPP-A (Fig 5B).

Discussion

In this study we evaluated the functions of Phlpp1 within Ctsk-expressing cells in a model of
enhanced bone resorption. We found that despite elevated bone mass in intact females,
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Fig 5. Igfbp4 degradation attenuates enhanced osteoclast numbers induced by Phlpp1 deficiency in vitro. (A, B)
Osteoclasts were generated from 4-6-week-old female Phlpp1 cKOc mice or their control littermates. Cultures were
treated with 20 ng/ml rPAPP-A or PBS on days 0 and 3. (A) TRAP staining was performed and (B) the number of
osteoclasts in each condition was evaluated. *p<0.05.

https://doi.org/10.1371/journal.pone.0251732.9005

Phlpp1 cKOc¢ mice lose an equivalent amount of bone to their control littermates following
ovariectomy. Moreover, we observed no differences in osteoclast number following ovariec-
tomy. While this observation does not exclusively rule out the contributions of Ctsk-Cre
expressing mesenchymal lineage cells, it supports that the effects are partially due to altered
osteoclast activity. Ovariectomy also enhances osteoblast formation due to enhanced coupling
of resorption to formation [23], but elevated osteoclast-mediated resorption outpaces this
causing a net loss of bone mass. We did not see a change in osteoblast number or markers of
bone formation following ovariectomy due to Phlppl ablation. Enhanced osteocyte apoptosis
also occurs following ovariectomy, leading to enhanced bone resorption [24, 25], which could
also be contributing to the phenotype. Future work is needed to further define the role of
Phlpp1 in early osteoclast progenitor cells as well as osteoblast lineage cells.

In our study design, we estimated that we would need 7 mice in each group to detect
changes in each group to provide 90% power to detect a 50% change in BV/TV (a. = 0.05), and
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we were able to see significant declines in bone mass following ovariectomy. In contrast, the
differences between ovariectomized Phlppl cKOc and Cre* littermates were slight. Given
these differences, we would need significantly more mice (n = 26) within this group; thus, we
conclude that bone mass following ovariectomy is not influenced by Phlppl expression within
Ctsk-expressing cells.

In our work we focused on the effects of estrogen loss associated with ovariectomy. We
show that Phlppl and Igfbp4 are inversely regulated by estradiol; thus, Phlppl may control
Igfbp4 expression in an estrogen-dependent fashion. This is supported by the work of Farr
et al. demonstrating that PHLPP1 levels were significantly diminished in specimens obtained
from old women as compared to young women [26]. This decline in PHLPP1 expression
observed with age was slightly restored by short-term estrogen therapy [26]. Prior work dem-
onstrated that Igfbp4 null female mice had low bone mass and increased osteoclast numbers
compared to their control littermates [13, 27]. Moreover, Igfbp4 null females were resistant to
ovariectomy-induced bone loss [13, 27]. Given this, Igfbp4 was a prime candidate as it regu-
lated bone mass in a sex-dependent fashion that was inverse to that of Phlppl. Indeed, we find
that limiting Igtbp4 levels mitigates enhanced osteoclast numbers of Phlppl cKO¢g cultures.
Because of these data and prior publications, it is interesting to postulate a role for Igfbp4 as an
estrogen-dependent coupling factor. In our analyses, we also identified other differentially
expressed genes that contained ERE sites. These may also be regulated by Phlpp1 in an estro-
gen-dependent fashion and warrant future study.

Estradiol can elicit both genomic and non-genomic signaling, with the non-genomic path-
way leading to activation of kinases including Akt and MEK/ERK [28]. We tested the ability of
Phlppl to modulate activation of Akt and ERK1/2 in response to estradiol, but did not observe
an effect of Phlppl deficiency. As this was the case, we focused on the genomic estradiol signal-
ing and identified 67 potential targets that were differentially regulated by Phlpp1 deficiency
osteoclasts that also contained ERE consensus sequences.

Ovariectomy reduces levels of estrogen, but it also imparts many other systemic changes.
While our data demonstrate that Phlppl is regulated by estradiol, the effects observed follow-
ing ovariectomy could be via alternate mechanisms. Future experiments will be aimed at test-
ing the requirement of estradiol genomic responses to alter Igfbp4 expression and to
determine if restoring estrogen status following ovariectomy reconstitutes the phenotype of
Phlppl cKO¢ females.
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