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Abstract: Inflammation is the body’s defense reaction in response to stimulations and is the basis of
various physiological and pathological processes. However, chronic inflammation is undesirable
and closely related to the occurrence and development of diseases. The ocean gives birth to unique
and diverse bioactive substances, which have gained special attention and been a focus for anti-
inflammatory drug development. So far, numerous promising bioactive substances have been
obtained from various marine organisms such as marine bacteria and fungi, sponges, algae, and coral.
This review covers 71 bioactive substances described during 2015–2020, including the structures
(65 of which), species sources, evaluation models and anti-inflammatory activities of these substances.
This review aims to provide some reference for the research progress of marine-organism-derived
anti-inflammatory metabolites and give more research impetus for their conversion to novel anti-
inflammatory drugs.

Keywords: anti-inflammatory activity; inflammatory pathways; natural product; marine bacteria
and fungi; marine algae; sponge; coral

1. Introduction

Inflammation is a kind of defensive response when the body is affected by various
inflammatory factors or local injuries, and it is an important protective mechanism of
the biological body [1]. Inflammation usually helps maintain the body’s normal function
and promotes repair of damaged tissue to reduce the effect of external stimuli on the
body [2,3]. However, an abnormal and excessive inflammatory response can also damage
the body’s health and even endanger life [4–6]. For instance, the recent SARS-CoV-2 can
stimulate the innate immune system, and cause cytokine storms and acute inflammatory
responses, which rapidly cause multiple organ failures [7,8]. Steroidal and nonsteroidal
anti-inflammatory drugs are clinically applied to cure inflammatory disorders, but long-
term use of them is often accompanied by significant side effects [9]. The exploration of safe
and effective anti-inflammatory drugs has always been a hotspot of biomedical research.

The ocean is where life is born and nurtured. It covers about 70% of the earth’s
surface and 90% of the biosphere. The ocean has special physical and chemical conditions,
including high salinity and weak alkalinity; the depths encompass an environment that is
dark, cold, subject to high pressures, and presents many other complex characteristics [10].
To better to adapt to such an extreme environment, marine organisms have formed unique
genetic systems and biosynthetic pathways and produced novel bioactive metabolites
which constitute a huge natural active compound library [11]. For decades, researchers
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have isolated and purified numerous bioactive products with anti-inflammatory activ-
ity from a variety of marine organisms, however, only a few have been approved for
clinical trial and even fewer have reached the market [12]. Here, we summarize those
promising anti-inflammatory natural products from marine organisms (marine bacteria
and fungi, sponges, algae, and coral) and their anti-inflammatory mechanisms, to help re-
searchers to understand the latest research progress in relation to marine anti-inflammatory
natural products.

2. Inflammatory Pathways and Evaluation Model of Anti-Inflammatory Activity
2.1. Inflammatory Pathways

Multiple signaling pathways, including nuclear factor-κB (NF-κB), Janus kinases/signal
transducers and activators of transcription (JAK-STAT) and mitogen-activated protein
kinase (MAPK) are involved in the regulation of inflammatory response, and play an
essential role in a series of physiological and pathological processes in the body.

NF-κB signaling pathway is a classical pathway in inflammation regulation [13].
NF-κB is an important transcriptional regulator in cells, usually in the inactivated form
of p50–p65 heterodimer that binds to its inhibitor kappa B (IκB) [14]. After stimulation
by inducers, phosphorylation, and proteolysis of IκBα enhance the translocation of NF-
κB into the nucleus, where it binds to specific κB sites on DNA to regulate target gene
transcription [15]. Activation of NF-κB increases the expression of downstream inflam-
matory mediators, including pro-inflammatory cytokines (interleukin-1β (IL-1β), IL-6,
tumor necrosis factor α (TNFα), etc.), key pro-inflammatory enzymes (inducible nitric
oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)), and their derivatives (nitric oxide
(NO) and prostaglandin E2 (PGE2)) [16,17]. Meanwhile, inflammatory mediators such as
pro-inflammatory factors induced by NF-κB can in turn activate NF-κB, creating a vicious
cycle that amplifies the initial inflammatory response [18].

The JAK-STAT pathway, as a cytokine signaling transduction pathway, has recently
attracted much attention. When cytokines bind to cell surface receptors, the receptor
molecules dimerize and promote the polymerization and phosphorylation of JAKs. Acti-
vated JAKs can bind to the Src homology-2 domain of STATs, which is phosphorylated and
activated, eventually entering the nucleus in the form of homologous or heterodimer to
initiate the transcription of target genes [19]. Studies indicated that the JAK-STAT signaling
pathway is closely associated with the inflammatory differentiation of macrophages [20–22].
Interferon-γ (IFN-γ), interleukin and other inflammatory factors can promote the activation
of the JAK-STAT signaling pathway, exert signal transduction and transcriptional activation
functions, and then affect the M1/M2 type differentiation and inflammatory direction of
macrophages [20,23].

MAPK is a type of serine/threonine protein kinases widely distributed in mammals,
which can be activated by a three-level kinase cascade process. Extracellular signals
stimulate receptors located on the cell membrane to activate MAPKKK, the activated
MAPKKK further activates MAPKK, then the activated MAPKK activates MAPK [24]. The
transduction process of MAPK signaling mainly consists of three pathways: the c-Jun
N-terminal kinase (JNK) pathway, the p38MAPK pathway, and the extracellular regulated
protein kinases (ERK) pathway [25,26]. The JNK and p38MAPK pathways can be activated
by lipopolysaccharide (LPS), IL-1, TNFα, and other factors [27].

2.2. Evaluation Model of Anti-Inflammatory Activity

It is important to select an appropriate model to preliminarily evaluate the activity
and the mechanism of anti-inflammatory drugs. The production of pro-inflammatory
cytokines by immune cells is a key step in establishing and maintaining an inflammatory
response, so it is regarded as the main target of anti-inflammatory intervention [28,29].
The inflammatory models established by macrophages and neutrophils (the main sites
of inflammatory response) are the most commonly used and most effective means to
assess the anti-inflammatory activity of drug molecules [30–32]. Specifically, in vitro anti-
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inflammatory activity can be evaluated by measuring NO release, mRNA expression
and/or production of inflammatory modulators (IL-1/2/5/6/8/10/12/25, TNFα, PGE2,
etc.), and expressions of key protein (iNOS, COX-2, etc.) in macrophage cells RAW264.7 or
THP-1 and other cell types (splenocytes, BV2 microglia, dendritic cells (DCs), etc.) induced
by LPS, ovalbumin, or IFN-γ [33,34]. Researchers also stimulated neutrophils with LPS and
assessed the anti-inflammatory activity of the drug molecule by examining its influence on
superoxide anion production or elastase secretion [12].

Mice or rats are commonly chosen as experimental animals to build the in vivo in-
flammation model. Xylene, arachidonic acid, or croton oil can induce acute exudative
inflammatory edema in the ear of experimental animals [35,36]. Intra-plantar use of car-
rageenan in the hind paws of the experimental animals can also induce acute inflammation
and the anti-inflammatory activity of drug molecule can be assessed by measuring im-
provements at the inflammatory site [37]. Furthermore, dextran sulphate sodium (DSS)
and 2,4,6-trinitrobenzene sulfonic acid (TNBS) are frequently employed to induce colitis in
mice. The typical characteristics of mouse colitis are shortened mucosal folds, swelling of
the lamina propria and subepithelial mucosa, and severe infiltration of various inflamma-
tory cells, increased mRNA expression of proinflammatory cytokines, increased intestinal
mucosal permeability, etc. [38,39] The anti-inflammatory activity of drug molecules can
be assessed by measuring the changes in such indicators. Additionally, the zebrafish is an
attractive in vivo model due to its small size, high fecundity and full annotation of genome.
Several chemical-based inflammation models of zebrafish induced by LPS, DSS, TNBS or
CuSO4 have been established and the anti-inflammatory activity of drug molecule can be
evaluated through the suppression of various inflammatory symptoms [40,41].

3. Anti-Inflammatory Bioactive Substances Derived from Marine Organisms
3.1. Marine Bacteria and Fungi

Marine bacteria and fungi are an important part of marine ecosystems; they can
survive and reproduce continuously in low-pressure, low-temperature, or other extreme
environments such as those under high pressure, high temperature, and high salinity. Com-
pared with terrestrial microorganisms, marine bacteria and fungi are more likely to produce
natural secondary metabolites with novel structures and high activities. Marine bacteria
and fungi have been the frontier of drug discovery and numerous bioactive compounds
have been obtained from them [42,43]. The anti-inflammatory bioactive substances derived
from marine bacteria and fungi in this review were shown in Table 1.

Table 1. Anti-inflammatory bioactive substances derived from marine bacteria and fungi.

Bioactive Substances Species Model Activities Reference

USF-19A (1), somalimycin (2),
and urauchimycin D (3)

Streptomyces somaliensis
SCSIO ZH66

ovalbumin-stimulated
mouse splenocytes

against IL-5 with IC50 values
of 0.57 µM, > 10 µM

and > 10 µM
[44]

Violaceomide A (4) Aspergillus
violaceofuscus

LPS-stimulated
THP-1 cells

against mRNA expression of
IL-10 with inhibitory rate of

84.3% at 10 µM
[45]

Penicillospirone (5) Penicillium sp. SF-5292
LPS-induced

RAW264.7 macrophages
and BV2 microglia

against the production of
NO, PGE2, TNFα, IL-1β,

IL-6, and IL-12
[46]

Eurobenzophenones B (6)
euroxanthones A (7) Aspergillus europaeus LPS induced

BV2 microglia against NO at 10 µM [47]

Curdepsidone C (8) Curvularia sp. IFB-Z10
Propionibacterium

acnes-induced
THP-1cells

against IL-1β release with an
IC50 value of 7.47 ± 0.35 µM [48]
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Table 1. Cont.

Bioactive Substances Species Model Activities Reference

(+)- and (−)-actinoxocine
(9a, 9b) Streptomyces sp.

LPS- and
Pam3CSK4-induced
RAW 264.7 mouse

macrophages

against TNFα protein release [49]

Trieffusols C and D (10, 11) Trichobotrys effuse FS524 LPS-induced
RAW264.7 macrophages

against NO with IC50 values
ranging from 51.9 to 55.9 µM [50]

Graphostromanes D, F and I
(12–14)

Graphostroma sp.
MCCC 3A00421

LPS-induced
RAW264.7 macrophages

against NO with IC50 values
of 14.2, 72.9 and 88.2 µM [51]

Caniferolide A (15) Streptomyces caniferus LPS induced
BV2 microglial cells

against NFκBp65
translocation to the nucleus,

the production of IL-1β,
IL-6 and TNFα, the release of

NO, and the activities of
iNOS, JNK and p38

[52]

6-[1-(2-aminobenzoyloxy)
ethyl]-1-Phenazinecarboxylic

acid (16),
Saphenol (17),

(R)-saphenic acid (18),
Phenazine-1-carboxylic

acid (19),
6-(1-hydroxyehtyl)

phenazine-1-carboxylic
acid (20),

6-acetyl-phenazine-1-
carboxylic
acid (21)

Cystobasidium larynges
IV17-028

LPS-induced
RAW264.7 macrophages

against NO production at
30 µg/mL [53]

Asperversiamide G (22) Aspergillus versicolor LPS-induced
RAW264.7 macrophages

against iNOS with an IC50
value of 5.39 µM [54]

Ergosterdiacids A and B
(23, 24) Aspergillus sp. LPS-induced

RAW264.7 macrophages
against NO with IC50 values

of 4.5 and 3.6 µM [55]

Diaporindenes A-D (25–28),
isoprenylisobenzofuran A (29)

Diaporthe sp.
SYSU-HQ3

LPS-induced
RAW264.7 macrophages

against NO with IC50 values
from 4.2 to 9.0 µM [56]

3.1.1. Anti-Inflammatory Peptides from Marine Bacteria and Fungi

Among various microorganisms, marine actinomycetes have long been one of the
favored strains in research related to drug development. Antimycin-type depsipeptides
USF-19A (1), somalimycin (2), and urauchimycin D (3) (Figure 1) from a mutant strain
of Streptomyces somaliensis SCSIO ZH66 can suppress the IL-5 production in splenocytes
induced by ovalbumin in mouse [44]. Compound 1 demonstrated strong inhibitory ac-
tivity with an IC50 value of 0.57 µM, while compounds 2 and 3 displayed mild effects
(>10 µM). Moreover, the three depsipeptides exhibited very weak cytotoxicity against
human umbilical vein endothelial cells with LD50 values of 62.6, 34.6, and 192.9 µM. The
new cyclic peptide, violaceomide A (4) (Figure 1), from a marine sponge-derived fungus
Aspergillus violaceofuscus showed inhibitory activity on the mRNA expression of IL-10 in the
LPS-stimulated THP-1 cells (a human acute monocytic leukemia cell line) with inhibitory
rate of 84.3% at 10 µM [45].
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Figure 1. Structures of anti-inflammatory peptides from marine bacteria and fungi.

3.1.2. Anti-Inflammatory Polyketides from Marine Bacteria and Fungi

A new polyketide-type metabolite, penicillospirone (5) (Figure 2) was isolated from
the EtOAc extract of a marine-derived fungus Penicillium sp. SF-5292 and demonstrated
inhibitory activity against the overproduction of NO and PGE2 in LPS-induced RAW264.7
macrophages and BV2 microglia, which was correlated with the suppressive effect against
over-expression of iNOS and COX-2. It could also inhibit the production of pro-inflammatory
cytokines including TNFα, IL-1β, IL-6, and IL-12. Further study confirmed that the anti-
inflammatory effect of compound 5 was mediated through the negative regulation of the
NF-κB pathway [46]. Six new polyketide derivatives, eurobenzophenones A-C, eurox-
anthones A-B, and (+)1-O-demethylvariecolorquinones A were isolated from the sponge
associated fungus Aspergillus europaeus. Eurobenzophenones B (6) and euroxanthones A (7)
(Figure 2) significantly down-regulated NF-κB in LPS-induced SW480 cells (human colon
carcinoma cell line) with weak inhibition on NO production in LPS induced BV2 cells [47].
Curdepsidone C (8) (Figure 2) was obtained from fungus Curvularia sp. IFB-Z10 (isolated
from the intestine of a white croaker) and showed remarkable anti-inflammatory activity
against IL-1β release, with an IC50 value of 7.47 ± 0.35 µM in Propionibacterium acnes-
induced THP-1cells [48]. (+)- and (−)-actinoxocine (9a, 9b) (Figure 2) were isolated from a
marine-derived Streptomyces sp. and showed inhibition on TNFα protein release in LPS-
and Pam3CSK4-induced RAW 264.7 mouse macrophages, respectively [49].
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3.1.3. Other Anti-Inflammatory Substances from Marine Bacteria and Fungi

Two new highly substituted phenol derivatives, trieffusols C (10) and D (11) (Figure 3),
were isolated from the extract of deep-sea-sediment-derived Trichobotrys effuse FS524 and
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showed the inhibition of NO production in murine macrophages with IC50 values ranging
from 51.9 to 55.9 µM [49]. New guaianes, including graphostromanes D (12), F (13) and I (14)
(Figure 3), were isolated from Graphostroma sp. MCCC 3A00421 derived from a hydrother-
mal sulfide deposit. Compound 13 can inhibit the NO release in RAW264.7 macrophages
induced by LPS with an IC50 value of 14.2 µM—stronger than that of aminoguanidine—
a positive control with an IC50 value of 23.4 µM. Compounds 12 and 14 showed weak
anti-inflammatory activities, with IC50 values of 72.9 and 88.2 µM respectively [50]. The
macrolide caniferolide A (15) (Figure 3) from Streptomyces caniferus could block NFκBp65
translocation to the nucleus and showed inhibition on the production of pro-inflammatory
cytokines (IL-1β, IL-6 and TNFα), the release of NO, and the activities of iNOS, JNK and
p38 in LPS induced BV2 microglial cells [51].
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Phenazine derivatives, 6-[1-(2-aminobenzoyloxy)ethyl]-1-phenazinecarboxylic acid
(16), saphenol (17), (R)-saphenic acid (18), phenazine-1-carboxylic acid (19), 6-(1-hydroxyeht
yl)phenazine-1-carboxylic acid (20), and 6-acetyl-phenazine-1-carboxylic acid (21) (Figure 4),
were isolated from a marine fungus Cystobasidium larynges IV17-028. They showed moder-
ate inhibition on NO production in mouse macrophage RAW264.7 cells induced by LPS at
30 µg/mL [53].

Asperversiamide G (22) (Figure 5) was isolated from the marine-derived fungus
Aspergillus versicolor and showed inhibition against iNOS with an IC50 value of 5.39 µM [54].
Two naturally Diels-Alder additive steroids, ergosterdiacids A (23) and B (24) (Figure 5),
were isolated from mangrove-derived fungus Aspergillus sp. and displayed strong in vitro
anti-inflammatory activities against the NO production at 4.5 and 3.6 µM, respectively [55].
Diaporindenes A–D (25–28), four unusual 2, 3-dihydro-1H-indene isomers and a novel
isoprenylisobenzofuran A (29), were separated from Diaporthe sp. SYSU-HQ3. Compounds
25–29 (Figure 5) exhibited remarkable inhibitory effects against NO production with IC50
values from 4.2 to 9.0 µM [56].
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3.2. Marine Sponges

Sponges, as the most primitive multicellular animals, have been living in the ocean
for around 600 million years. To date, more than 10,000 types of sponges have been
discovered, accounting for about 1/15 of all marine animal species. Sponge has become
one of the most abundant marine organisms in the discovery of marine active substances
and represents an excellent resource for marine drug exploitation. To date, approximately
84 anti-inflammatory compounds have been isolated from marine sponges [9]. The anti-
inflammatory bioactive substances derived from sponges in this review were shown in
Table 2.
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Table 2. Anti-inflammatory bioactive substances derived from marine sponge.

Bioactive Substances Species Model Activities Reference

SA and tBuSA (30a, 30b) Stylissa massa LPS-induced
RAW264.7 macrophages

against NO with EC50 values of
87 µM [57,58]

D-Tyr1-tBuSA (30c) Stylissa massa LPS-induced
RAW264.7 macrophages

against production of IL-6 and
TNFα (EC50 = 1.4 and 5.9 µM,

respectively) and the expression
of iNOS (EC50 = 20 µM)

[59]

Dactylospongins A and B
(31, 32) Dactylospongia sp. LPS-stimulated

THP-1 cells

against production of IL-6, IL-1β,
IL-8, and PGE2 with IC50 values

of 5.1–9.2 µM
[60]

Septosones A (33) Dysidea septosa
CuSO4-induced

zebrafish; human
HEK-293T cells

against migration of
macrophages surrounding the

neuromast; against
TNFα-induced NF-κB activation

with IC50 value of 6.8 µM

[61]

9,11-dihydrogracilin A
(DHG, 34) Dendrilla membranosa

Phytohemagglutinin-
activated Human
peripheral blood

mononuclear cells

against production of IL-6 and
IL-10 at 3 µM [62]

Dysiarenone (35) Dysidea arenaria LPS-induced
RAW264.7 macrophages

against COX-2 expression and
PGE2 production with IC50

value of 6.4 µM
[63]

Geobarrettin B and C
(36, 37) Geodia barretti LPS-activated DCs

against secretion of IL-10 with
inhibitory rate of 29% and 13%

at 10 µg/ml
[64]

Deacetylphylloketal (38) Phyllospongia sp.

LPS-induced co-culture
system that consisted
of human epithelial

Caco-2 cells and THP-
1 macrophage cells

against production and/or gene
expression of NO, PGE2, IL-6,

IL-1β, and TNFα, iNOS,
and COX-2

[65]

3.2.1. Anti-Inflammatory Peptides from Marine Sponge

Stylissatin A (SA) (30a) (Figure 6), a proline-rich cyclic heptapeptide isolated from
the marine sponge Stylissa massa, could suppress NO production in LPS-induced murine
RAW264.7 macrophage cells (EC50 = 87 µM) [57]. Further study reported that the activities
of a tertbutyl ether analogue of SA (tBuSA, 30b) (Figure 6) were approximately six times
stronger than natural SA (30a) (EC50 = 12 µM) with little cytotoxicity at up to 200 µM [58].
A recent study also indicated that a SA derivative D-Tyr1-tBuSA (30c) (Figure 6) could
inhibit the production of IL-6 and TNFα (EC50 = 1.4 and 5.9 µM, respectively) and the
expression of iNOS (EC50 = 20 µM) in LPS-stimulated RAW264.7 cells [59].
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3.2.2. Anti-Inflammatory Terpenoids from Marine Sponge

Dactylospongins A (31) and B (32) (Figure 7) are new sesquiterpenoids isolated from
the marine sponge Dactylospongia sp. collected from the South China Sea. They can in-
hibit the production of various cytokines (IL-6, IL-1β, IL-8, and PGE2) in LPS-stimulated
THP-1 cells; however, neither showed significant effects on the production of monocyte
chemotactic protein 1 and TNFα [60]. Three meroterpenoids (septosones A–C) were iso-
lated from the marine sponge Dysidea septosa. Septosone A (33) (Figure 7) indicated in vivo
anti-inflammatory activity that it could alleviate migration and reduce the number of
macrophages surrounding the neuromast in CuSO4-induced transgenic zebrafish in a
dose-dependent manner and could inhibit TNFα-induced NF-κB activation in human
HEK-293T cells with an IC50 value of 6.8 µM [61]. The 9,11-dihydrogracilin A (DHG, 34)
(Figure 7) extracted from Antarctic marine sponge Dendrilla membranosa showed remark-
able immunomodulatory and anti-inflammatory effects. An in vitro study indicated that
compound 34 could induce apoptosis of human peripheral blood mononuclear cells and
down-regulate the phosphorylation of NF-κB, STAT, and ERK at late time points. Mean-
while, compound 34 induced the down-regulation of IL-6 and IL-10. Compound 34 also
reduced the growth, viability, and migration of HaCaT cells (human keratinocyte cell line).
An in vivo study showed that topical use of compound 34 significantly decreased mouse
ear edema [62]. The dysiarenone (35) (Figure 7) isolated from the marine sponge Dysidea
arenaria exhibited inhibitory activities against COX-2 expression and PGE2 production in
LPS-stimulated RAW264.7 macrophages [63].
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3.2.3. Other Anti-Inflammatory Substances from Marine Sponge

Geobarrettin B (36) and C (37) (Figure 8) are new bromoindole alkaloids isolated from
the sub-Arctic sponge Geodia barretti. Compounds 36 and 37 reduced IL-12p40 secretion
of DCs, but compound 37 concomitantly increased IL-10 production. Maturing DCs
treated with compound 36 or 37 before co-culturing with allogeneic CD4+ T cells were
found to reduce the IFN-γ secretion, indicating potential for the treatment of TH1-type
inflammation [64]. A new phylloketal derivative, deacetylphylloketal (38) (Figure 8), was
obtained from the sponge genus Phyllospongia and could suppress the production and/or
gene expression of NO, PGE2, IL-6, IL-1β, and TNFα. Compound 38 could also suppress
the expression of iNOS and COX-2 in a co-culture system that consisted of human epithelial
Caco-2 cells and PMA-differentiated THP-1 macrophage cells [65].
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3.3. Marine Algae

Marine algae are the oldest existing lower cryptogamous plants, with a wide variety
of species (about 30,000 known to date). At present, four groups of seaweeds have been
extensively exploited, including blue algae, red algae, brown algae, and green algae. Marine
algae are known to be a rich source of bioactive metabolites and interesting pharmacological
substances. The search for bioactive metabolites from seaweed has been very active [66].
The anti-inflammatory bioactive substances derived from marine algae in this review were
shown in Table 3.

Table 3. Anti-inflammatory bioactive substances derived from marine algae.

Bioactive Substances Species Model Activities Reference

Lectin Solieria filiformis

carrageenan-induced
peritonitis and paw edema

induced by carrageenan,
dextran, and serotonin

against neutrophil migration
in peritonitis model and
decreased paw edema

[67]

Lectin Caulerpa cupressoides
zymosan-induced arthritis of

the rat
temporomandibular joint

against leukocyte influx and
the expression of IL-1β and

TNFα at concentrations of 0.1,
1 or 10 mg/kg

[68]

Fucoidan Ascophyllum
nodosum

Poly(I:C)-induced human
bronchial epithelial cells

against the production of
cytokines (IL-1α, IL-1β, TNFα,

and IL-6) and PGE2 at the
concentration of 0.1% (m/v)

[69]

Fucoidan Fucus vesiculosus L. LPS-induced human
mononuclear U937 cells

against COX-1, COX-2 and
hyaluronidase activity with

IC50 values of 27, 4.3 and
2.9 µg/mL, and

concentration-dependently
inhibit the MAPK p38

[70]

Purified fucoidan
fraction Turbinaria ornata

LPS-induced
RAW264.7 macrophages and

zebrafish embryo

against NO production with
IC50 value of 30.83 µg/mL and

dose-dependently against
iNOS, COX-2, and

pro-inflammatory cytokines
including PGE2 levels; against

production of NO and ROS

[71]

Fucoidan like
sulphated

polysaccharide
Turbinaria ornata Freud’s adjuvant induced

mouse arthritis

against inflammation and bone
damage at a low dose of

5 mg/kg
[72]

BBDE (39) Polysiphonia
morrowii

LPS-induced
RAW264.7 macrophages

against NO, PGE2, iNOS,
COX2, and pro-inflammatory
cytokines (TNFα, IL-1β, and

IL-6) at 2 µM

[73]
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Table 3. Cont.

Bioactive Substances Species Model Activities Reference

11-hydroxy-1′-O-
methylamentadione

(40)
Cystoseira usneoides DSS-induced mouse colitis

Increasing mucus production
and against myeloperoxidase
activity, production of TNFα,

IL-1β and IL-10, and
expression of COX-2 and iNOS

[74]

Cystodiones G and M
(41, 42), cystone C (43) Cystoseira usneoides LPS-stimulated THP-1

human macrophages

against the production of
TNFα at concentrations of 10,

8 and 5 µM
[75]

Apo-9′-fucoxanthinone
(44)

Undariopsis
peterseniana

LPS-stimulated RAW
264.7 cells;

LPS-stimulated zebrafish
embryos

against NO, PGE2, iNOS and
COX-2, and pro-inflammatory

cytokines (TNFα, IL-6, and
IL-1β); against inflammatory

stress and expression of
COX-2 and iNOS

[76]

Disulfide (45) Dictyopteris
membranacea

LPS-induced
RAW264.7 macrophages

against NO with IC50 value of
3.8 µM [77]

Monoolein (46) Ishige sinicola

LPS-stimulated primary
murine bone marrow-derived

dendritic
cells

against IL-12 p40, IL-6, and
TNFα production with IC50
values of 1.69, 6.87, and 5.19
µM; against the activation of
MAPK and NF-κB pathways

by inhibiting the
phosphorylation of p38,

ERK1/2, JNK1/2, and IκBα

[78]

3.3.1. Anti-Inflammatory Peptides and Proteins from Marine Algae

Marine lectins are glycoproteins or peptides that bind to specific mono or oligosaccha-
rides, which can promote cell recognition and adhesion, and some of them also showed
strong anti-inflammatory activity. A lectin from the red marine alga Solieria filiformis re-
duced neutrophil migration in a peritonitis model and decreased paw edema induced by
carrageenan, dextran, and serotonin with no signs of systemic damage in mice [67]. The
anti-inflammatory mechanism of a lectin from the green seaweed Caulerpa cupressoides var.
lycopodium was investigated and showed that it decreased the carrageenan-induced rat
paw edema and neutrophilic infiltration at 0.1, 1 or 10 mg/kg, and inhibited the expression
of IL-1β, IL-6, TNFα and COX-2 at 1 mg/kg [68].

3.3.2. Anti-Inflammatory Polysaccharides from Marine Algae

Polysaccharides are the main components of marine algae, which have attracted much
attention because of their various health benefits [79]. Certain marine algal polysaccharides
showed significant anti-inflammatory activities, which have been confirmed by several
inflammatory models. A fucoidan from brown algae inhibited Poly(I:C) (a TLR3 agonist
that mimics viral RNA)-induced expression of some cytokines (IL-1α, IL-1β, TNFα, and
IL-6) and PGE2 but did not change the IL-12/25 production, indicating that locally applied
fucoidan might suppress airway inflammation in viral infections [69]. The high molecu-
lar weight fucoidan from Fucus vesiculosus L. (Mw 735 kDa, sulfate content 27%, fucose
73.5 mol%, glucose 11.8 mol%, galactose 3.7 mol%, xylose 6.6 mol%, mannose 0.2 mol%,
and arabinose 0.2 mol%) showed remarkable anti-inflammatory activity through the inhibi-
tion of COX-1/2, hyaluronidase and MAPK p38 [70]. The purified fucoidan fraction from
Turbinaria ornate (sulfate content 27%) displayed anti-inflammatory potential that could
suppress NO production (IC50 = 30.83 ± 1.02 µg·mL−1) and dose-dependently reduce
iNOS, COX-2, and pro-inflammatory cytokines including PGE2 levels in LPS-induced
RAW264.7 macrophages and inhibit the production of NO and ROS in LPS-induced ze-
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brafish embryo [71]. Turbinaria ornata, a brown alga of the Sargassaceae family, is rich in
bioactive molecules with various biological activities. The sulfated polysaccharide isolated
from T. ornate could significantly reduce the paw volume and arthritic score in complete
Freund’s adjuvant induced arthritis in rats. Interestingly, the sulfated polysaccharide could
alleviate inflammation and bone damage at a low dose (5 mg/kg), indicating its potential
in the management of chronic inflammatory diseases [72].

3.3.3. Other Anti-Inflammatory Substances from Marine Algae

A bromophenol, bis (3-bromo-4,5-dihydroxybenzyl) ether (BBDE, 39) (Figure 9), iso-
lated from the red alga Polysiphonia morrowii displayed anti-inflammatory activity by re-
ducing inflammatory mediators, including NO, PGE2, iNOS, COX2, and pro-inflammatory
cytokines (TNFα, IL-1β, and IL-6) in LPS-induced macrophage cells [73]. Further stud-
ies have indicated that BBDE could suppress LPS-induced inflammation by inhibiting
the reactive oxygen species (ROS)-mediated ERK signaling pathway [73]. A meroditer-
pene, 11-hydroxy-1′-O-methylamentadione (40) (Figure 9), from the brown alga Cystoseira
usneoides displayed anti-inflammatory activity through increasing mucus production, re-
ducing myeloperoxidase activity and decreasing inflammatory mediators (TNFα, IL-1β,
IL-10, iNOS and COX2) [74]. Three new meroditerpenoids, cystodiones G (41) and M (42)
and cystone C (43) (Figure 9), were also isolated from Cystoseira usneoides and showed sig-
nificant inhibition on TNFα production in LPS-stimulated THP-1 human macrophages [75].
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Apo-9′-fucoxanthinone (44) (Figure 10) derived from Undariopsis peterseniana showed
strong anti-inflammatory activity both in vitro and in vivo. Compound 44 showed sig-
nificant inhibition of NO, PGE2, iNOS and COX-2, and pro-inflammatory cytokines
(TNFα, IL-6, and IL-1β) in LPS-stimulated RAW 264.7 cells and can relieve inflamma-
tory stress and suppress the expression of COX-2 and iNOS in LPS-stimulated zebrafish
embryos [76]. A new disulfide (45) (Figure 10) was obtained from the brown alga Dic-
tyopteris membranacea and displayed strong inhibition of NO production in LPS-induced
RAW264.7 macrophages [77]. The anti-inflammatory activity and underlying mechanism
of monoolein (46) (Figure 10) isolated from Ishige Sinicola were studied and showed that it
could inhibit the production of IL-12 p40, IL-6 and TNFα, and suppress the activation of
MAPK and NF-κB pathways through the inhibition of the phosphorylation of p38, ERK1/2,
JNK1/2, and IκBα [78].
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3.4. Marine Corals

Coral is a large group of invertebrates belonging to the phylum Cnidaria, which is a
low primitive organism with a wide distribution and with a wide variety of species (about
7000 known at time of writing). Coral is a marine biological resource that can be used
extensively, in particular, soft corals and Gorgonians have been ranked highly with regard
to the discovery of bioactive metabolites with potential pharmaceutical applications [80]. In
recent decades, researchers have isolated a variety of bioactive compounds from soft corals
and Gorgonians, including terpenoids, sterols, alkaloids, and long-chain fatty acids, some
of which have novel structures and significant physiological activities such as antivirus,
anti-inflammatory, antibacterial, anti-tumor, and immunosuppressive activities [81]. The
anti-inflammatory bioactive substances derived from corals in this review were shown in
Table 4.

Table 4. Anti-inflammatory bioactive substances derived from marine corals.

Bioactive
Substances Species Model Activities Reference

Briaviodiol A (47)
briaviotriol A (48) Briareum violaceum LPS-induced

RAW264.7 macrophages
against iNOS release with inhibitory

rate of 67.7% and 61.9% at 10 µM [82]

Excavatolide B (49) Briareum excavatum

LPS-induced
RAW264.7 macrophages;
carrageenan-induced

mouse paw edema

against iNOS protein expression at
concentrations ranging from 1 to 50

µM and against iNOS protein
expression at 50 µM; against edema
and redness of hind paws at 15 and

60 mg/kg

[83]

7-epi-pavidolide D
(50) Klyxum flaccidum fMLF/CB-induced

human neutrophils

against 24.46% of superoxide anion
generation and 29.96% of elastase

release with IC50 > 10 µM
[84]

(+)-Sarcophine (51) Sarcophyton stellatum LPS-induced
RAW264.7 macrophages

against iNOS protein expression at
50 and 100 µM, and COX-2 expression

at 25–100 µM
[85]

Lobophytins A and B
(52, 53)

Lobophytum
sarcophytoides

LPS-induced
RAW264.7 macrophages

against NO with IC50 values of
26.7 and 17.6 µM [86]

Uprolide N, O and P
(54–56) Eunicea succinea LPS-induced peritoneal

macrophages

against TNFα production with IC50
values of 1.39, 2.73 and 2.27 µM, and

against IL-6 production with IC50
values of 3.26, 4.22 and 2.60 µM

[87]

Lobophyolide A and
B (57, 58) Lobophytum crassum LPS-activated DCs

against IL-12 release with inhibitory
rate of 93.4% and 93.6% at 50 µg/mL;
against NO production with inhibitory
rate of 93.5% and 95.9% at 50 µg/mL

[88]
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Table 4. Cont.

Bioactive
Substances Species Model Activities Reference

Columnariols A and
B (59, 60) Nephthea columnaris LPS-induced

RAW264.7 macrophages
against iNOS and COX-2 protein

expressions at 50 µM [89]

5,6-epoxylitosterol
(61) Nephthea columnaris

fMet-Leu-
Phe/Cytochalastin B

induced human
neutrophils

against superoxide anions generation
and elastase release with IC50 values

of 4.60 and 3.90 µM
[90]

Michosterols A (62) Lobophytum michaelae fMLF/CB-induced
human neutrophils

against superoxide anions generation
and elastase release with IC50 values

of 7.1 and 4.5 µM
[91]

Hirsutocospiro A (63) Cladiella hirsuta. fMLF/CB-induced
human neutrophils

against superoxide generation and
elastase release with IC50 values of

4.1 and 3.7 µM
[92]

Glaucumolides A and
B (64, 65) Sarcophyton glaucum

fMLP/CB-stimulated
human neutrophils;

LPS-induced
RAW264.7 macrophages

against superoxide anion generation
and elastase release with IC50 values

of 2.79 and 3.97 µM; against iNOS and
COX-2 expression at concentrations of

10 and 20 µM

[93]

3.4.1. Anti-Inflammatory Terpenoids from Marine Corals

A new furanocembranoid–briaviotriol A (47)–along with a known analogue (briavio-
diol A, 48) (Figure 11), were obtained from Briareum violaceum. Compounds 47 and 48
showed inhibition on LPS-induced iNOS release in macrophages with inhibition rates
of 67.7 and 61.9%, respectively (at a dose of 10 µM) [82]. A natural diterpene product,
excavatolide B (49) (Figure 11), isolated from gorgonian Briareum excavatum, could signifi-
cantly inhibit the mRNA expression of the proinflammatory mediators, including iNOS
and COX-2 in LPS-induced RAW 264.7 macrophages [83]. Furthermore, compound 49
could attenuate carrageenan-induced paw edema by inhibiting the expression of iNOS
and immune cell infiltration [83]. A new capnosane-based diterpenoid, 7-epi-pavidolide
D (50) (Figure 11), was obtained from the marine soft coral Klyxum flaccidum, and could
suppress superoxide anion generation and elastase release in the N-formyl-methionyl-
leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced human neutrophils [84]. A
diterpenoid, (+)-sarcophine (51) (Figure 11), isolated from a soft coral Sarcophyton stellatum
showed anti-inflammatory activity by reducing the expressions of COX-2 and iNOS in
LPS-stimulated mouse RAW 264.7 macrophage cells [85]. Two cembrane-type diterpenoids
(lobophytins A (52) and B (53)) (Figure 11) were isolated from the soft coral Lobophytum
sarcophytoides and exerted inhibitory effects on NO production in RAW264.7 cells with IC50
values of 26.7 and 17.6 µM, respectively [86].

Three new diterpenes, uprolide N (54), uprolide O (55) and uprolide P (56) (Figure 12),
were isolated from Eunicea succinea and showed remarkable inhibitory effect on the produc-
tion of TNFα and IL-6 in LPS-induced peritoneal macrophages [87]. Two new cembrane-
type diterpenoids, lobophyolide A (57) and B (58) (Figure 12), were isolated from a wild-
type soft coral Lobophytum crissum and could suppress IL-12 release and NO production in
LPS-activated DCs [88].
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3.4.2. Other Anti-Inflammatory Substances from Marine Corals

Two new cembranes (columnariols A (59) and B (60)) (Figure 13), were isolated from
the soft coral Nephthea columnaris and play a significant inhibitory role in the accumulation
of the pro-inflammatory iNOS and COX-2 protein in LPS-stimulated RAW264.7 macrophage
cells. Compound 58 showed moderate cytotoxicity against human prostatic carcinoma
tumor cells with an IC50 value of 9.80 µg/mL [89]. A sterol (5,6-epoxylitosterol, 61)
(Figure 13) obtained from the octocoral Nephthea columnaris showed anti-inflammatory
activity via suppressing superoxide anion production and elastase secretion in fMet-Leu-
Phe/Cytochalastin B-induced human neutrophils [90]. A new polyoxygenated steroid
(michosterols A, 62) (Figure 13) isolated from the ethyl acetate extract of the soft coral
Lobophytum michaelae also showed superior anti-inflammatory activity via suppressing
superoxide anion generation and elastase release in fMLP/CB-stimulated human neu-
trophils [91].



Mar. Drugs 2021, 19, 572 16 of 21

Mar. Drugs 2021, 19, x FOR PEER REVIEW 14 of 20 
 

 

Three new diterpenes, uprolide N (54), uprolide O (55) and uprolide P (56) (Figure 
12), were isolated from Eunicea succinea and showed remarkable inhibitory effect on the 
production of TNFα and IL-6 in LPS-induced peritoneal macrophages [87]. Two new cem-
brane-type diterpenoids, lobophyolide A (57) and B (58) (Figure 12), were isolated from a 
wild-type soft coral Lobophytum crissum and could suppress IL-12 release and NO produc-
tion in LPS-activated DCs [88]. 

 
Figure 12. Structures of anti-inflammatory terpenoids from marine corals. 

3.4.2. Other Anti-Inflammatory Substances from Marine Corals 
Two new cembranes (columnariols A (59) and B (60)) (Figure 13), were isolated from 

the soft coral Nephthea columnaris and play a significant inhibitory role in the accumulation 
of the pro-inflammatory iNOS and COX-2 protein in LPS-stimulated RAW264.7 macro-
phage cells. Compound 58 showed moderate cytotoxicity against human prostatic carci-
noma tumor cells with an IC50 value of 9.80 μg/mL [89]. A sterol (5,6-epoxylitosterol, 61) 
(Figure 13) obtained from the octocoral Nephthea columnaris showed anti-inflammatory ac-
tivity via suppressing superoxide anion production and elastase secretion in fMet-Leu-
Phe/Cytochalastin B-induced human neutrophils [90]. A new polyoxygenated steroid (mi-
chosterols A, 62) (Figure 13) isolated from the ethyl acetate extract of the soft coral Lobophy-
tum michaelae also showed superior anti-inflammatory activity via suppressing superoxide 
anion generation and elastase release in fMLP/CB-stimulated human neutrophils [91]. 

 
Figure 13. Structures of anti-inflammatory cembranes, sterols and polyoxygenated steroids from 
marine corals. 

A new tocopherol-derived metabolite, hirsutocospiro A (63) (Figure 14), was ob-
tained from Cladiella hirsute and displayed strong anti-inflammatory activity in fMLF/CB-
induced human neutrophils [92]. Glaucumolides A (64) and B (65) (Figure 14) from Sar-
cophyton glaucum exhibited strong inhibition of superoxide anion generation and elastase 

Figure 13. Structures of anti-inflammatory cembranes, sterols and polyoxygenated steroids from
marine corals.

A new tocopherol-derived metabolite, hirsutocospiro A (63) (Figure 14), was obtained
from Cladiella hirsute and displayed strong anti-inflammatory activity in fMLF/CB-induced
human neutrophils [92]. Glaucumolides A (64) and B (65) (Figure 14) from Sarcophyton
glaucum exhibited strong inhibition of superoxide anion generation and elastase release in
fMLP/CB-stimulated human neutrophils and showed inhibition on the iNOS and COX-
2 expression in LPS-induced RAW264.7 macrophages [93].
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4. Conclusions and Research Prospects

Inflammation, especially chronic inflammation, is a crucial contributor to the devel-
opment of various human diseases. Regulation of inflammation to maintain its normal
level is a key step in the treatment of related diseases. Although existing steroidal and
non-steroidal anti-inflammatory drugs contribute a great deal, long-term use often causes
adverse effects, including gastrointestinal discomfort, liver and kidney dysfunction, dam-
age to the cardiovascular system, endocrine system, and so on. Marine organisms offer
hope for the development of safe and effective new anti-inflammatory drugs. This review
was conducted to provide reference for the research progress and give more impetus for the
conversion of marine-organism-derived natural products to anti-inflammatory drugs. The
Web of Science (WOS), PubMed, ScienceDirect, SpringerLink, and ACS databases were used
for the preparation of the review, and some keywords such as “anti-inflammatory activity,
natural product, marine bacteria and fungi, sponges, algae, and coral, etc.” were used for
the search of relevant information. Finally, 71 bioactive substances described during 2015–
2020 were presented, including the structures (65 of which), species sources, evaluation
models and anti-inflammatory activities. Furthermore, some limitations could be obtained
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in this review: although a wide coverage was expected to be achieved, it’s extremely
difficult to cover all the relevant literatures in view of the huge richness and diversity of
marine organisms and their natural products; furthermore, a certain degree of randomness
indeed exists for the presentation of the relevant literatures in the research field.

Research into anti-inflammatory drugs derived from marine organisms started rel-
atively late, but it has developed rapidly. As reviewed here, many anti-inflammatory
substances have been obtained from a wide variety of marine organisms, including marine
bacteria and fungi, sponges, algae, and corals. Preliminary studies have been conducted
on their anti-inflammatory activities and mechanisms. Of course, we also need to be aware
that the development and application of marine drugs still face many challenges. First,
the extreme environment in which marine organisms live is difficult to simulate in the
laboratory, which makes it extremely difficult to cultivate marine organisms and obtain
large quantities of their active ingredients. Furthermore, the clinical effect and market
application of some marine active substances remain uncertain due to their own limitations.
For instance, although bioactive peptides have many well-known advantages, their clinical
effects are often unable to match experimental results from the laboratory due to their
complex structure, low concentration of active components, and closed N-terminal. Finally,
a thorough safety assessment is crucial, as small differences in the amount used may lead
to a shift in the role of the active products between poison and therapeutic.

In future, we should try to investigate two aspects of this research: (1) take the isolated
anti-inflammatory active substances from marine organisms as lead compounds, conduct
functional modifications thereof, and study their structure-function relationship, so as to
screen anti-inflammatory drugs with better efficacy; (2) strengthen resource integration, es-
tablish a comprehensive and efficient technological platform integrating detection, fermen-
tation culture, separation and purification, functional modification, and effect evaluation,
thus improving the efficiency of the development and application of new anti-inflammatory
drugs. The ocean is a vast treasure trove, and there are still many bioactive compounds
that have not been exploited. More extensive and in-depth studies should be conducted to
find other, potentially valuable, marine drugs.
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