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Simple Summary: Although there has been improvement in our understanding about cancer stem
cells recently, we still don’t know much about cancer stem cells of oropharyngeal cancer. Lack of
knowledge solely on oropharyngeal cancer together with the information of human papilloma virus
status, which is a specific factor of prognosis in oropharyngeal cancer, hardens to elucidate the
distinction of the underlying mechanisms of cancer stem cell behavior. To proceed to an effective
and durable therapy in oropharyngeal cancer it is necessary to reveal cancer stem cell function and
related factors like its plasticity, niche, and pathways. Therefore in this review we aimed to contribute
to this emerging area by focusing on the current literature and future prospects.

Abstract: Oropharyngeal cancer (OPC), which is a common type of head and neck squamous cell
carcinoma (HNSCC), is associated with tobacco and alcohol use, and human papillomavirus (HPV)
infection. Underlying mechanisms and as a result prognosis of the HPV-positive and HPV-negative
OPC patients are different. Like stem cells, the ability of self-renewal and differentiate, cancer
stem cells (CSCs) have roles in tumor invasion, metastasis, drug resistance, and recurrence after
therapy. Research revealed their roles to some extent in all of these processes but there are still
many unresolved points to connect to CSC-targeted therapy. In this review, we will focus on what
we currently know about CSCs of OPC and limitations of our current knowledge. We will present
perspectives that will broaden our understanding and recent literature which may connect to therapy.

Keywords: oropharyngeal cancer (OPC); human papillomavirus (HPV); cancer stem cells (CSCs);
CSC markers; prognosis; tumor heterogeneity

1. Introduction

Head and neck cancer is the sixth most common malignancy worldwide and includes
tumors from the oral cavity, pharynx, larynx, nasal cavity, paranasal sinuses, thyroid, and
major as well as minor salivary glands [1] The thyroid, nasal cavity as well as paranasal
sinuses and salivary gland tumors are usually considered to be a different group and when
the head and neck cancer is mentioned, mostly squamous cell carcinomas deriving from
oral cavity, pharyngeal and laryngeal mucosa are taken into consideration. Most common
risks for head and neck cancer are smoking, heavy drinking and virus contamination [2].
Within these groups, oral cavity and especially oropharyngeal cancer are related with
human papilloma virus (HPV) infection. The identification of HPV especially in the USA
and European countries in oropharyngeal cancer resulted in increased basic and clinical
research and better outcomes for diagnosis and treatment of this head and neck cancer
type.

Oropharyngeal cancer (OPC), a common subtype of head and neck squamous cell
carcinoma (HNSCC), is mainly associated with tobacco as well as alcohol use and, HPV
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infection. Thus, oropharyngeal cancer has recently been categorized into HPV associated
(positive) or unassociated (negative) subtypes, which show quite different etiologic as well
as genetic backgrounds and therapeutic outcomes. Although high risk HPV subtypes are
HPV16, 18, 31, 33, 35, 45, 51, 52, and 56 in relation to causing cancer of the head and neck,
cervix, anus, vagina, vulva, and penis, HPV16 is the most common type in head and neck
cancer [3]. Mechanism of HPV integration to the host genome is not clear yet but fusions
through break-points of cellular and viral genome or the amplified segments of a genomic
sequence flanked with HPV genome which is also found in patient samples as focal copy
number elevation at sites of HPV integration are mainly suggested mechanisms [4]. While
HPV-positive oropharyngeal cancer has low or no common genetic abnormalities, such as
p53 mutation, and is directly associated with contamination of high risk HPV subtypes,
HPV-negative oropharyngeal cancer is closely related with smoking and excessive alcohol
consumption and demonstrates commonly activated mutation of oncogenes such as EGFR,
RAS, PI3 kinase or functional loss of tumor suppressor genes such as p53, p16, and RB1 or
both [2]. Thus, underlying mechanisms and as a result prognosis of the HPV-positive and
HPV-negative OPC patients are quite different (Table 1). There are also conflicting reports
about HPV status and HNSCC which may be due to not screening cancer of the oropharynx
and the anterior oral cavity separately or different sampling techniques such as saliva,
biopsies, and brushing and methods used to detect HPV status from those samples through
polymerase chain reaction (PCR), dot-blot hybridization, and Southern blotting [5].

Table 1. Differences between HPV-positive and negative oropharyngeal cancer *.

Subjects HPV-Positive HPV-Negative

Age Younger Elder
Smoking/Alcohol Less Often

Radiochemotherapy response Well High resistant rate
Survival Better Worse

Genetic alterations
P53 Mutation 3% 84%

CDKN2A Mutation none 58%
CCND1 Mutation 3% 31%

FGFR1 none 10%
* Genetic alterations data are from Cancer Genome Atlas Network [6].

Cancer stem cells (CSCs) are a subgroup of cells in the heterogeneous tumor bulk,
which have the ability of self-renewal and differentiation, like stem cells. They are supposed
to have a role in tumor invasion, metastasis, drug resistance, and recurrence after therapy
and therefore are accepted as one of the emerging targets for cancer therapy. Recently
they have been studied by various researchers throughout the world and their roles in
carcinogenesis, tumor invasion, metastasis, drug resistance, and recurrence after therapy
have been shown but still more research and evidence are necessary to move forward
to CSC-targeted therapy [7,8]. To be able to comprehend our knowledge of the CSC of
OPC, in this study we will first present CSC origin and model followed by CSC markers of
HNSCC. Then we will review the recent literature and our experience about CSC of OPC,
and limitations of our current knowledge. We will discuss different perspectives, which
may connect to better diagnostic as well as prognostic and therapeutic options. Lastly, we
will comment on for further investigations that can be performed to connect CSC-targeted
therapy for OPC.

CSC Model and Origin

CSCs were first identified in acute myeloid leukemia in 1997. The cells with CD34++

CD38− cell-surface antigen were only 0.2% in the tumor but had the potential to form neo-
plasms in the immune-deficient mice. Conversely, even though CD34+ CD38+ cell-surface
antigen cells were highly detected in the tumor they couldn’t engraft new neoplasms [9].
In 2007, CSCs of head and neck squamous cell carcinoma were first identified. Prince et al.
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defined CD44+ cells comprising of lower than the 10% of HNSCC cells but could give rise
to new tumors and the new tumors formed from CD44+ purified cells could reproduce
tumor heterogeneity and could be serially passaged like stem cells [10].

The hierarchic model of cancer which is also known as the CSC model implicates
that only specific cells have the ability to form cancer cells. Although it is still unclear
which cancers or which cancer stem cells expressing specific markers follow this model,
increasing evidence supports this hypothesis. Contrary to the stochastic model of tumor
growth in which all the tumor cells stochastically have the potential to self-renewal and
differentiate, in CSC model CSCs are responsible for causing different lineages in the tumor
that leads to tumor heterogeneity [11,12] (Figure 1).
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Figure 1. Origin and heterogeneity in cancer stem cell model; Cancer stem cells (CSCs) can form
progenitor and cancer stem cells and can differentiate to cancer cells. When an appropriate epigenetic
effect, oncogenic pathway activation or environmental stimuli event occur, differentiated cancer cells
can transform to cancer stem cell.

The origin of CSCs is still under discussion. Three possibilities are raised that CSCs
can be formed from: stem cells, progenitor cells or differentiated cells [13]. However, it is
also possible that even some of differentiated cancer cells may gain CSC properties through
oncogenic pathways and environmental stimuli. Therefore, it is questioned whether CSCs
differentiate in a unidirectional hierarchic way like in the CSC model. Moreover, evidence
supports that cancer cells have plasticity and can acquire CSC properties [14,15].

2. CSC Markers of HNSCC

In this part we will summarize widely used CSC markers in HNSCC studies (Table 2).

Table 2. Common Cancer Stem Cell Markers in Oropharyngeal Cancer *.

Cancer Stem Cell Marker Chromosomal Location Exon Count Characteristics

ALDH1A1 9q21.13 13 major pathway of alcohol metabolism,
most common CSC marker

CD44 11p13 21
cell-surface glycoprotein involved in

cell-cell interactions, cell adhesion and
migration
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Table 2. Cont.

Cancer Stem Cell Marker Chromosomal Location Exon Count Characteristics

BMI1 10p12.2 10
a proto-oncogene, a member of polycomb

group complex 1 (PRC1) which is an
epigenetic repressor of regulatory genes

OCT4 6p21.33 6
a transcription factor that plays role in
embryonic development and stem cell

pluripotency
SOX2 3q26.33 1(no introns) SRY-box transcription factor 2

CD133 4p15.32 35

transmembrane glycoprotein expressed
on adult stem cells, suppress

differentiation to maintain stem cell
properties

* https://www.ncbi.nlm.nih.gov/gene/ (accessed on 20 April 2021) data are used for Table 2.

2.1. ALDH1A1

Aldehyde dehydrogenase 1 (ALDH1A1) which is in the major pathway of alcohol
metabolism is located at chromosome 9q21.13 with 13 exons [16]. ALDH1A1 is a valuable
prognostic CSC marker. Chen et al. defined ALDH1A1 as a CSC marker in HNSCC, which
was previously used as CSC marker in various cancers. They showed that ALDH1+ cells
displayed resistance to radiotherapy and had ability of generating tumors [17]. Likewise it
was reported that ALDH1A1 is a highly selective marker for CSCs in HNSCC [18]. Qian
et al. analyzed HNSCC specimens of which 80% was oropharyngeal cancer for ALDH1A1
expression and its relation to prognosis. Their results showed that HNSCC patients
with ALDH1A1 expression displayed a significant p value (p = 0.011) for poor prognosis
and those of oropharyngeal cancers with ALDH1A1 expression showed worse prognosis
(p = 0.001) [19]. Similarly Szafarowski et al. compared CSC markers of HNSCC and their
results revealed that ALDH1A1+ patients showed 5.25 times worse overall survival (OS)
than ALDH1A1− patients (p = 0.01) and only ALDH1A1 positivity had a significant effect
on OS of HNSCC patients (p = 0.02) compared to other CSC markers of CD44, CD24
and CD133 [20]. In another study, it was confirmed that patients with ALDH1A1+ had
worse prognosis but also concluded that ALDH1A1 and CD44, alone or together, was not
enough to identify CSC subpopulations [21]. Contradictory to this data we previously
characterized CSCs of OPC and had been successful to isolate CSCs by ALDH1A1 marker
and CSCs have the ability to form tumor spheres [22]. ALDH1A1 is one of the most specific
markers that are used for HNSCC CSC research [23–26].

2.2. CD44

CD44 is a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion and
migration, which is located at chromosome 11p13 with 21 exons [27]. First defined by Prince
et al., CD44 has been frequently used as a CSC marker in various HNSCC studies [10,28–30]
and has been shown to play important role in HNSCC cancer stemness [31–33]. CD44
was also found to be related to angiogenesis, tumor aggressiveness, and worse prognosis
in HNSCC [34–36]. In addition, a meta-analysis study displayed worse prognosis in
pharyngeal and laryngeal cancer with CD44 expression but not in oral cancer [37].

2.3. BMI1

BMI1 is a proto-oncogene located at chromosome 10p12.2 with 10 exons. It is a member
of polycomb group complex 1 (PRC1) which is an epigenetic repressor of regulatory
genes in embryonic development and self-renewal of somatic stem cells via chromatin
remodeling [38]. It was shown that inhibiting BMI1 sensitized tumors to cisplatin and
eliminated lymph node metastasis in vivo, in vitro and primary human HNSCC samples
contained highly tumorigenic, invasive, and cisplatin-resistant BMI1+ CSCs [39,40]. Tumor
growth was also suppressed by inhibiting BMI1 pharmacologically in HNSCC and targeting

https://www.ncbi.nlm.nih.gov/gene/
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BMI1 related CSC in oral squamous cell carcinoma (OSCC) has been shown as a clinically
relevant anticancer therapy [41,42].

2.4. OCT4

OCT4 is located at chromosome 6p21.33 with six exons. It encodes a transcription
factor that plays role in embryonic development and stem cell pluripotency [43]. It was
reported as a CSC marker in HNSCC [32,44]. OCT4 was found to regulate epithelial-
mesenchymal transition (EMT) in OSCC [45]. Because of its relation to poor prognosis it
can be used as a predictive prognostic marker of HNSCC [46].

2.5. SOX2

SRY-box transcription factor 2 (SOX2) is located at chromosome 3q26.33 and it has no
intron. It plays a role in the regulation of embryonic development and the determination
of cell fate [47]. It has been shown to regulate CSC of HNSCC [48]. There are conflicting
reports about its high expression related to prognosis [46,49,50].

2.6. CD133

CD133 is located at chromosome 4p15.32 with 35 exons. It is a transmembrane glyco-
protein expressed on adult stem cells. It is supposed to suppress differentiation to maintain
stem cell properties [51]. CD133 high expression was shown to increase cancer stemness
and cause cell cycle arrest in HNSCC cell line resulting in chemoresistance [52]. Chen et al.
proposed CD133/Src axis might be a potential therapeutic target in HNSCC because of
being a regulatory switch to gain of EMT and of stemness properties in HNSCC [53]. It is
also found to be a biomarker and predictor of prognosis [54].

3. OPC CSC Pathways

CSC markers ALDH1A1, CD44, BMI1, OCT4, SOX2, and CD133 and their effects on
cancer stemness, metastasis, prognosis, chemo/radiotherapy resistance and recurrence
have been studied in HNSCC by our group and other researchers [10,17,22,31–36,39–
42,45,46,48–50,52–54]. Although there are conflicting reports about their expression and as
being a prognostic marker in HNSCC, the differences may be due to factors such as use of
cell lines in vitro vs primary tumor samples in vivo, the used isolation techniques such as
fluorescence activated cell sorting (FACS) vs magnetic beads activated cell sorting (MACS),
tumor sample/cell line kind e.g., pharyngeal cancer vs. oral cancer vs. laryngeal cancer,
patient or sample size and, if primary tumors was used before chemo/radiotherapy vs after
chemo/radiotherapy. Additionally, intratumor heterogeneity may also reflect different
results.

CSC studies involving solely OPC are very limited. Moreover, underlying mechanisms
are different due to the HPV status. Rietbergen et al. analyzed 711 oropharyngeal squamous
cell carcinoma (OPSCC) patients from two Dutch university hospitals and showed that
HPV-positive patients had lower CD44 and CD98 expression than HPV-negative patients.
Moreover HPV-positive patients with high CD98 expression showed significantly worse
overall survival (OS) and progression-free survival (PFS) rates compared to patients with
low percentage of CD98 cells [55]. Likewise Näsman et al. presented that HPV-positive
patients with CD44 absent/weak expression displayed significant favorable 3-year disease-
free survival (DFS) and overall survival (OS) [36]. In a study, OPC patients who had
undergone radiation therapy, it was shown that CD44 negative patients had significantly
higher PFS and locoregional control (LRC) than CD44 positive patients. Furthermore, p16
protein positive (likely to be HPV-positive) and CD44 negative patients showed the best
LRC while p16 protein negative (likely to be HPV-negative) and CD44 positive patients
had the worst LCR [56]. These results indicate CD44 expression is low in HPV-positive
cases while it is high in HPV-negative cases and if CD44 expression is high in HPV-positive
cases, it results in a worse outcome. Our group isolated CSCs from HPV-negative cell line
of UT-SCC 60A by CSC marker ALDH1A1 and showed that CSCs formed tumor spheres.
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We also detected significantly high expression of OCT4, SOX2, KLF4 and BMI1 in the
HPV-negative OPC CSCs as compared to the cancer cells, while CD133 expression was not
different in the CSCs and the cancer cells. Those of the CSCs showed resistance to cisplatin
treatment [22]. BMI1 was also found to be expressed more in HPV-negative OPC than
HPV-positive OPC [57].

Orai1 was shown to be regulator of CSC phenotype by Lee et al. in oral/oropharyngeal
cancer. According to their data Orai1 has been highly expressed in oral/oropharyngeal can-
cer and activates downstream molecule NFATc3 which proposes Orai1/NFAT axis to have
importance on CSC in OPC [58]. In a later study Lee et al. introduced NFATc3 as a critical
factor which affects cancer stemness through NFATc3-OCT4 axis in oral/oropharyngeal
cancer. Their data included NFATc3 was highly expressed in CSC and required for self-
renewal of CSC. Furthermore, their data indicated not only the gain of CSC phenotype but
also gain of ALDH1A1+ high cell population, morbidity and drug resistance when NFATc3
was ectopically expressed in immortalized oral epithelial cells as well [59].

Interestingly, Hufbauer et al. showed that HPV16 targets migratory and stationary
stem cells and aberrantly expressed miR-3194-5p and miR-1281 in migratory CSCs, which
might be the reason of OPC progression and metastasis [60]. Finding HPV16-positive
HNSCC to have more CSC than HPV16-negative HNSCC, Zhang et al. discussed that rather
than amount of CSC, CSC phenotype may be more important in the therapy resistance [61].

4. From the View of CSC Research to the Therapy of OPC

Possessing the ability of self-renewal and differentiate, CSCs are considered to be
one of the emerging targets for cancer therapy. They are supposed to have roles in tumor
invasion, metastasis, drug resistance, and recurrence after therapy. CSC, tumor microenvi-
ronment (TME), extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT)
all have cross-link and are affected from the stimuli one to each other. TME can alter ECM,
and ECM can induce EMT while EMT, TME and ECM have effects on generation of cancer
stem cells/malignant phenotype and enable invasion and metastasis [62–64]. Therefore
each of these processes may be a part of the solution to cure cancer.

Together with technological developments drug delivery systems (DDSs) have been
highly improved recent years but there are still many challenges to face to proceed for
clinical implementation for CSC-targeted DDSs [65].

In this part we focus on the factors that have effects on the therapy of OPC through
targeting CSC properties.

4.1. CSC Plasticity

Because of CSC plasticity, heterogeneity is an obstacle of targeting CSC. Recognizing
that cancer cells have the possibility to gain CSC abilities, both genetically and phenotypi-
cally the complexity of tumor heterogeneity highly increases [8]. Regarding the same type
of cancer, such as, here, oropharyngeal cancer, different populations in the same tumor
complicates to proceed to a solution for therapy. As previously mentioned, we discussed
ALDH1A1 as a valuable prognostic marker in HNSCC but there are reports displaying
contradictory results. For example, in one study, ALDH1A1 was found to be uniquely
expressed in a subset of suprabasal tonsillar crypt epithelium and was lost in HPV+ and
HPV− tumors suggesting ALDH1A1 positive cells not to be stem cell progenitors but a
component of the crypt cellular microenvironment [66]. Additionally Xu et al. showed
that ALDH1A1 may be a biomarker for predicting lymph node metastasis, but it is not an
independent prognostic factor for survival in HNSCC patients [67]. These conflicts may be
explained by sub-classification of CSCs according to their expression of marker proteins
which may have different positions/roles in cancer as suggested by Geißler et al. Their
data revealed that the amounts of CD44 and ALDH1A1 vary; while ALDH1A1 high tumor
cells express low levels of CD44 and EGFR, ALDH1A1−/CD44+ high tumor cells express
high levels of EGFR in HNSCC. They suggested that CSCs can also be sub-classified into
migratory and stationary CSCs. They proposed that ALDH1A1 high/CD44 low/EGFR
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low tumor cells may be stationary and quiescent, while ALDH1A1−/CD44 high/EGFR
high cells may be invasive and migratory [68]. In a systematic review it was concluded
that a single common CSC sorting marker may not even exist within identical types of
tumor [69]. However, this raises the question instead of isolating CSCs with more than
one marker would not be more enlightening to isolate CSCs with only one single marker
but with the different CSC markers within the same sample to compare their roles in the
carcinogenesis related processes, metastasis, resistance to therapy, therapy relapse tumor
rather than grouping all CSC as one group. If there are different CSC markers in the identi-
cal types of tumor, do the CSCs expressing different markers have different roles in the
carcinogenesis, invasion, metastasis, evading immune surveillance, resistance to therapy,
therapy relapse? If there is more than one origin of CSC-like stem cells, progenitor cells
and/or differentiated cells, is it possible that the origin of the CSC may cause differently
expressed CSC markers in the same type of tumor? There are still a lot of questions to be
answered. Many of the studies in HNSCC are focused on the prognosis of the patients
comparing the expression of CSC markers or functional role of solely on one CSC marker.
When differently expressed CSC markers and results are to be reported in the identical
type of cancer in different research we can functionally and mechanistically (not only as
the expression) compare the role of CSCs expressing different markers within the same
tumor to have more precise results.

Not only for tumor heterogeneity but also for metastasis, CSCs are considered to have
critical roles [70–72]. We do not know clearly yet whether a subgroup of CSCs metastasizes
in OPC. Therefore studies revealing the role/function of different CSC subgroups are
necessary for targeting CSC in OPC. These studies may have effect on preventing invasion,
metastasis as well as curing OPC.

4.2. Resistance to Antitumor Therapies and Evade Immune Surveillance

CSCs are considered to be resistant to antitumor therapies and have the ability to
escape immune surveillance [15,73–75]. For resistance to chemotherapy and radiation
CSCs use mechanisms such as dormancy, DNA repair, multidrug-resistance-type mem-
brane transporters, and escaping apoptosis [76]. Moreover, CSC markers such as CD44,
ALDH1A1 have been reported to be intensely linked with EGFR and PI3K/AKT pathway.
Coexistence of CD44v3 and ALDH1A1 in head and neck cancer cells provides escape from
apoptosis, promotes survival and proliferation through activation of downstream effectors
such as Sox2, Nanog, and Oct4 [77]. Not only resistance to therapeutics but recent therapies
such as ionizing radiation therapy or cisplatin may even cause CSC characteristics of cancer
cells is another challenging point [78,79]. Pützer et al. discussed that rather than unilat-
eral anti-CSC approaches strengthening patient’s immune defense and heading toward
individualized therapies CSC treatment can be successful [80].

4.3. CSC Niche

Because of the difficulties in the way of cure, targeting CSC alone may not be a
solution to cure oropharyngeal cancer. For example, the aforementioned CSC plasticity and
additionally cancer cells’ ability to gain CSC phenotype suggests complexity in targeting
only one type of CSC. Additionally CSC niche, which is the tumor microenvironment in
which CSC characteristics are regulated and supports self-renewal and survival of CSCs,
can both be part of the problem and the solution. CD44 intracellular signaling in response
to extracellular signals is reported as a mediator of the link between tumor-associated
macrophages in the tumor microenvironment and CSCs [28]. Although we still do not
know much about CSC niche, targeting CSC niche and crosstalk between CSCs may be
an effective and durable way of cancer therapy [81]. Therefore studies that improve our
understanding of the CSC niche are important for further developments.
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4.4. CSC Mitochondria

CSC mitochondria are another target of the CSC research aiming at the therapy. In CSC,
mitochondria have been shown to have a corresponding role like they serve in stem cells
in the regulation of stem cell identity, differentiation and fate [82]. Not only these functions
but also mitochondria can modify cell metabolism and can cause CSC evade apoptosis
leading to survival of cancer cells as well [83]. In a clinical pilot study, CSCs were shown to
be selectively eradicated through targeting mitochondria using doxycycline in early breast
cancer patients [84]. There are also studies with promising results suggesting eradicating
CSCs in cancer aiming mitochondria via antibiotics and vitamin C supplement [6,85,86].

5. Conclusions

After they were first defined in 1997 in leukemia, researchers around the world
contributed to CSC research with valuable data that improved our understanding of CSCs.
Now we can question more how to proceed for an effective therapy through CSC and
CSC related factors. For HNSCC it has only been 14 years since CSCs were identified and
accumulating information leads us to question the reason of controversial data. As we
mentioned in prior parts these may be due to experimental related factors or may be due to
different lineages and of their different role even in the same tumor type. Moreover, when
considering OPC we not only face the same problems but lack of knowledge solely on OPC
and different mechanisms for HPV-negative and HPV-positive cases. Therefore, there is
still need for a vast number of further studies which would enlighten our understanding
of CSC related characteristics and pathways of carcinogenesis, resistance to therapy and
escaping immune surveillance, CSC plasticity, CSC niche and CSC mitochondria in OPC
together with HPV status. To have an effective and a permanent therapy for OPC we
believe all these factors have great importance and should be revealed. Targeting not only
CSC but targeting cancer cells and CSC niche as well might be the preferable way to cure
OPC (Figure 2).
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