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Abstract: The loss of redox homeostasis induced by hyperglycemia is an early sign and key factor in
the development of diabetic retinopathy. Due to the high level of long-chain polyunsaturated fatty
acids, diabetic retina is highly susceptible to lipid peroxidation, source of pathophysiological alter-
ations in diabetic retinopathy. Previous studies have shown that pterostilbene, a natural antioxidant
polyphenol, is an effective therapy against diabetic retinopathy development, although its protective
effects on lipid peroxidation are not well known. Plasma, urine and retinas from diabetic rabbits,
control and diabetic rabbits treated daily with pterostilbene were analyzed. Lipid peroxidation was
evaluated through the determination of derivatives from arachidonic, adrenic and docosahexaenoic
acids by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Dia-
betes increased lipid peroxidation in retina, plasma and urine samples and pterostilbene treatment
restored control values, showing its ability to prevent early and main alterations in the development
of diabetic retinopathy. Through our study, we are able to propose the use of a derivative of adrenic
acid, 17(RS)-10-epi-SC-∆15-11-dihomo-IsoF, for the first time, as a suitable biomarker of diabetic
retinopathy in plasmas or urine.

Keywords: diabetic retinopathy; lipid peroxidation; oxidative stress; polyphenols; pterostilbene; biomarker

1. Introduction

Diabetes is a disease with high social impact and multiple systemic consequences. The
prevalence of this disease has increased from 285 million to 463 million in the last decade
and is expected to rise to 700 million in 2045 [1,2]. However, many diabetic cases are not
strictly controlled until the pathology is at an advanced stage, with the loss of metabolic
control leading to the development of long-term damages related to neurological, micro-
and macrovascular alterations in different body organs, such as the retina. In fact, diabetic
retinopathy (DR) is the most frequent ocular pathology caused by diabetes and the main
cause of preventable blindness cases in economically active people (20–65 years) [3].

The presence of the blood-retina barrier means the retina is well protected from
the leakage of circulating blood toxins. However, this tissue is extremely sensitive to
alterations in oxygen levels [4]. Under chronic hyperglycemia, redox homeostasis is
severely impaired and the overproduction of reactive oxygen species triggers neuronal and
vascular damage, critical processes in the DR development [3]. Hyperglycemia induces
alterations in biochemical pathways such as the polyol pathway, increased flux of advanced
glycation end products/receptors (AGE/RAGE), and the hexosamine pathway which
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contributes to an oxidizing environment and triggers a state of low chronic inflammation
leading to progression of DR to advanced stages [3]. Moreover, the delay in the treatment
of diabetes together with the accumulated molecular damage inflicted by oxidative stress
enables the phenomenon of metabolic memory, which refers to the development of DR
even though there is good late glycemic control [5].

Polyphenols are secondary metabolites of plants with high antioxidant properties.
In fact, the benefit of polyphenols has been suggested for combatting diabetes complica-
tions such as DR [3,6,7]. Pterostilbene (Pter), a natural analog of resveratrol, has recently
been proposed as an inhibitor of aldose reductase, the rate-limiting enzyme of the polyol
pathway, and AGE production [8], besides, it was able to reduce the levels of hexose and
hexosamine in plasma, hepatic, and renal tissues to control values in diabetic animals [9],
showing the polyphenol as a possible therapeutic agent against long-term complications
of diabetes. Our group showed that parenteral daily administration of Pter, trans-3,5-
dimethoxy-4′-hydroxystilbene, protected alloxan-induced diabetic rabbits by attenuating
hyperglycemia-mediated oxidative stress via PI3K/AKT/GSK3β/NRF2 pathway [7]. The
stilbene reduced lipid and protein oxidative damage, stimulated the activity of superoxide
dismutase, catalase and glutathione peroxidase and increased GSH levels in the retina with
a reduction in oxidative stress preventing early DR alterations [7].

The retina is one of the body tissues with the highest concentration of long-chain
polyunsaturated fatty acids (PUFAs), the latter being essential for the maintenance of the
physiological retinal function and development [10,11]. There is increasing evidence of
the importance of lipids as mediators in the development of different retinal pathologies.
In fact, the alteration of the lipid profile of patients is determinant in the progression of
DR [12] and lipid peroxidation end product such as 4-hydroxy-2,3-trans-nonenal (4-HNE)
alters the lysosomal functionality generating lipofuscin accumulation [13]. Based on these
evidences, we hypothesize that Pter reverses the lipid oxidation profile induced in retinas
under chronic hyperglycemia in vivo and that these changes may be reflected in plasma
and urine becoming a potential biomarker for early detection of pathology.

2. Materials and Methods
2.1. Animal Model

In this study, male New Zealand rabbits obtained from Granja San Bernardo, Navarra,
Spain were used. All procedures were performed according to established criteria by the
Ethics Committee for Animal Experimentation and Welfare of the University of Valencia
(Spain) (ethical code number of animal use 2016/VSC/PEA/00198, Generalitat Valenciana).
Housing conditions and experimental procedures were in accordance with European Union
(Directive 2010/63/EU) and Spanish (Royal Decree 53/2013) regulations.

Rabbits were randomly divided into 3 groups: control (non-diabetic), diabetic (dia-
betic), and treated diabetic (treated). In the experimental groups (diabetic and treated),
diabetes was induced with alloxan (Sigma-Aldrich, St. Louis, MO, USA) following the
protocol described by Alabadí et al. [14]. Briefly, animals were sedated with intramuscular
injection of ketamine (Ketalar®, Pfizer Inc., Richmond, VA, USA) (35 mg/kg) and xylazine
(Dechra Pharmaceuticals PLC, Northwich, UK) (5 mg/kg). Next, diabetes was induced
by injecting alloxan (100 mg/kg) into the marginal ear vein. In addition, to prevent hy-
poglycemia, 5% glucose (Sigma-Aldrich, St. Louis, MO, USA) (10 mL) was administered
intravenously, and drinking water was supplemented with 10% glucose for 24 h. In the case
of the group of treated rabbits, Pter treatment began 48 h after inducing diabetes. The iso-
tonic solution of Pter phosphate disodium salt (Syncom, Groningen, The Netherlands) was
subcutaneously administered to treated diabetic animals daily (74 mg/kg which is equal
to 50 mg/kg of Pter). Animals were euthanized by intravenous administration of sodium
pentobarbital (Vetoquinol, Madrid, Spain) (100 mg/kg) 6 weeks after diabetes induction.
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2.2. Standards and Reagents

Methanol, NaOH, KOH, ethanol, heptane, acetonitrile and ethyl acetate (analytical
grade) were purchased from Sigma (Sigma-Aldrich, St. Louis, MO, USA). The formic acid
and HCl were from Panreac (Barcelona, Spain) and Ultrapure H2O was generated on a
milliQ system from Millipore.

Lipid oxidative damage was determined by the analysis of prostaglandines (PG), iso-
prostanes (IsoP), neuroprostanes (NeuroP), dihomo-IsoP, and dihomo-isofurans (dihomo-
IsoF) using ultra high-performance liquid chromatography mass spectrometry (UPLC-
MS/MS) (Waters Acquity UPLC-XevoTQ system, Milford, MA, USA). The analysis was
carried out on different biological matrices: retina, plasma and urine.

The prostaglandin standard PGE2, PGF2α, the IsoP standards 8-iso-PGE2, 8-iso-15-
keto-PGE2, 8-iso-PGF2α (also named 15-F2t-IsoP), 8-iso-15-keto-PGF2α, 8-iso-15(R)-PGF2α,
5-iso-PGF2α–VI, 2,3-dinor-8-iso-PGF2α, 1a,1b-dihomo-PGF2α, and deuterated internal
standard PGF2α-d4 were obtained from Cayman Chemical Company (Ann Arbor, MI, USA)
(Figure 1). The standards 10-epi-10-F4t-NeuroP, 4(RS)-4-F4t-NeuroP, 14(RS)-14-F4t-NeuroP,
17-F2t-dihomo-IsoP, Ent-7(RS)-7-F2t-dihomo-IsoP, 17-epi-17-F2t-dihomo-IsoP, 17(RS)-10-epi-
SC-∆15-11-dihomo-IsoF, 7(RS)-ST-∆8-11-dihomo-IsoF were synthesized at the Institute
of Biomolecules Max Mousseron (IBMM) (Montpellier, France) by Professor Durand’s
team [15] (Figure 1).

2.3. Retina Sample Analysis

Animals were sacrificed as mentioned above, by intravenous administration of sodium
pentobarbital. Subsequently, ocular enucleation was performed, and the retinas were
separated into two halves and stored in cryotubes at −80 ◦C until further analysis. Ap-
proximately 30–50 mg of retina was stored for 30 min at 42 ◦C with 1 mL of methanolic
NaOH (12 g of NaOH, 23 mL of H2O and 160 mL of MeOH). Then, they were homog-
enized and transferred to a glass tube, in which 400 µL of homogenate, 800 µL of H2O,
400 µL of methanolic NaOH and 5 µL of internal standard (PGF2α-d4 20 µM) were added,
and then heated for 45 min at 42 ◦C to produce saponification. The samples were then
cooled on ice for 10 min. Subsequently, for protein precipitation, the pH of the sample
was adjusted to 3 with HCl (3 M) and centrifuged at 3000× g. Once the supernatant was
obtained, L/L extractions were carried out to extract the IsoP with 3 mL of hexane. It was
centrifuged again for 5 min at 3000× g. The organic phase was removed, and 3 mL of ethyl
acetate were added to the IsoP extract and centrifuged. The supernatant was collected in
another container and evaporated with nitrogen gas in a hood at 40 ◦C. After this, the dry
extracts were reconstituted in 200 µL of H2O (pH 3, 0.1% v/v CH3COOH):CH3OH (85:15
v/v). During the sample treatment, glass material such as glass tube and Pasteur pipette
was used. This solution was analyzed by UPLC-MS/MS. The results were standardized by
the protein levels measured in the retinal homogenates using the Pierce BCA protein assay
kit (Fisher Scientific, Madrid, Spain) following the manufacturer’s protocol.

2.4. Plasma Sample Analysis

Blood samples were collected through the central atrial artery of the ears in hep-
arinized tubes at the time of sacrifice and were processed within 30 min after extraction.
The samples were centrifuged for 10 min at 1000× g at room temperature, and the super-
natant (plasma) was separated and aliquoted. Thereafter, samples were stored at −80 ◦C
until analysis.

A volume of 200 µL of plasma samples was thawed at 4 ◦C and 5 µL of internal stan-
dard solution (20 µM) was added. Plasma samples were subjected to basic hydrolysis by
adding 200 µL of 15% KOH solution (w/v). The mixture was incubated at 40 ◦C for 30 min.
Thereafter, samples were diluted with 1360 µL of H2O (pH 3, 0.1% v/v HCOOH):MeOH
(85:15), acidified with 40 µL of formic acid, placed on ice for 10 min, and centrifuged at
4000× g for 10 min at 4 ◦C. The supernatant was collected and a cleaning and precon-
centration step was performed using solid phase extraction (SPE). This was performed
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to achieve a higher concentration of the analytes, using SPE-96 well plates (Discovery®

DSC-18, Sigma-Aldrich, St. Louis, MO, USA). SPE cartridges were conditioned first with
1ml of methanol and then with 1 mL of H2O (pH 3, 0.1% v/v HCOOH). Samples were added
in SPE wells, and each well was washed with 500 µL H2O (pH 3, 0.1% v/v HCOOH) and
500 µL heptane. Elution was carried out with 4 × 100 µL ethyl acetate in 96-well sample
plates (Acquity UPLC 700 µL, from Waters, Barcelona, Spain). The recovered samples were
evaporated in a speed vacuum concentrator (Savant SPD111V, Thermo Scientific, Waltham,
MA, USA) at 45 ◦C. Finally, the extracts were reconstituted in 60 µL of H2O (pH 3, 0.1% v/v
HCOOH): CH3OH (85:15 v/v) and measured in the UPLC–MS/MS.

2.5. Urine Sample Analysis

For the analysis of the samples, 1 mL of urine was used. The samples were thawed at
4 ◦C and centrifuged at 14,000× g for 10 min at 4 ◦C. The supernatant was collected and
5 µL of internal standard solution (20 µM) was added. Then an SPE and elution in ethyl
acetate were performed in the same way as for the retina samples in order to achieve a
higher concentration of the analytes. Once evaporated, the dry extracts were reconstituted
in 100 µL of H2O (pH 3, 0.1% v/v HCOOH):CH3OH (85:15 v/v). Finally, they were injected
into the chromatographic system (UPLC-MS/MS).

Results were standardized by creatinine levels measured using a creatinine assay
(MicroVue creatinine EIA, Quidel Corporation, San Diego, CA, USA) according to the
manufacturer’s instructions.

Validation of the bioanalytical method in plasma and urine has been shown in previous
studies [16] and the guidelines of the United States Food and Drug Administration were
followed [17].

2.6. UPLC-MS/MS Analysis

UPLC-MS/MS analysis was carried out on an Acquity-Xevo TQ system (Waters,
Barcelona, Spain). The conditions used were: ionization in negative mode (ESI-), capillary
voltage 3.5 kV, source temperature 120 ◦C, desolvation temperature 300 ◦C, gas flow of the
nitrogen cone of 150 L/h, and desolvation flow of 680 L/h.

Separation conditions were selected to achieve appropriate chromatographic retention
and resolution by using a C18 column (2.1 × 50 mm, 1.7 µm) (Acquity UPLC BEH) and pre-
column (2.1× 5 mm) from Waters. A binary mobile phase CH3OH (0.1% v/v HCOOH):H2O
(0.1% v/v HCOOH) with gradient elution was used. The flow rate was 0.4 mL/min, the
temperatures of column and the autosampler were 37 ◦C and 4 ◦C, respectively. The
injection volume was 10 µL. The gradient started with 30% v/v CH3OH (0.1% v/v HCOOH)
(i.e., channel B) and from 1 to 4.0 min %B increased up to 90%. Finally, the mobile phase
composition returned to the initial conditions at 4.1, and it was maintained for 3.9 min for
system conditioning.

The detection was performed by multiple reaction monitoring using the acquisition
parameters obtained in a previous study [18,19].

For data acquisition and processing, MassLynx 4.1 and QuanLynx 4.1 softwares from
Waters (Waters, Barcelona, Spain) were used, respectively. Linear response curves were
calculated employing PGF2α-d4 as internal standard.

2.7. Statistical Analyses

All values in retina, plasma and urine were expressed as median (inter-quartile range,
IQR). A one-way ANOVA was employed to determine the differences among groups,
followed by Tukey’s multiple comparison test. The null hypothesis was rejected for all
the values in the tests in which the F value was significant with a p-value less than 0.05.
Statistical analyses were performed using Prism 5.0 for Windows software (GraphPad
Software, San Diego, CA, USA).
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3. Results
3.1. Pterostilbene Reduces Harmful Retinal Lipid Oxidation Induced by Chronic Hyperglycemia
In Vivo

It is well-known that chronic hyperglycemia is a potent inductor of reactive oxygen
species. In a recent study, using the current experimental model, we showed that hyper-
glycemia induces very early lipid oxidation in retina tissue of diabetic animals [7]. In
addition, our group showed the ability of Pter to lower lipid peroxidation evaluated by
4-hydroxy-2-nonenal levels in diabetic treated animals [7]. Here we look more in depth
at retinal lipids oxidation under diabetes. As shown in Figure 2, chronic hyperglycemia
increases lipid peroxidation on arachidonic, adrenic and docosahexaenoic acids in retinal
samples. Specifically, we detected significant increases in the values of the prostaglandins
PGE2 and PGF2α, and the IsoPs 8-iso-PGE2, 8-iso-15-keto-PGF2α, and 8-iso-15-(R)-PGF2α
(Figure 2A). Oxidation on adrenic acid was reflected by a significant increase in 17-F2t-
dihomo-IsoP, Ent-7(RS)-7-F2t-dihomo-IsoP, 17-epi-17-F2t-dihomo-IsoP, and 17(RS)-10-epi-
SC-∆15-11-dihomo-IsoF (Figure 2B). Similar results were obtained for docosahexaenoic acid
oxidation which was reflected in an increase of 10-epi-10-F4t-NeuroP, 4(RS)-4-F4t-NeuroP
and 14(RS)-14-F4t-NeuroP (Figure 2C). As we expected, subcutaneous daily administration
of Pter was able to reverse these early oxidative alterations (Figure 2).

3.2. Determination of Lipid Oxidation Analytes in Plasma and Urine in an Experimental Diabetes
Type 1 Model

Diabetes is a systemic disease meaning that it can affect different body organs, and
logic suggests that any physiological changes in these organs would be reflected in plasma
and urine, since the internal medium is in constant motion between the interstitial fluid
and the plasma, as well as in the circulatory system. Hence, analyses of plasma samples
clearly showed lipid oxidation levels in diabetic rabbits (Figure 3). Analytes derived from
arachidonic acid such as PGE2, PGF2α, 8-iso-PGF2α, 8-iso-15-keto-PGF2α, 8-iso-15(R)-PGF2α
increased (Figure 3A). Likewise, the levels of 8-iso-15-keto-PGE2, which were non-detected
in retina tissue, showed a significant increase in plasma of diabetic animals (Figure 3A).
We found that 8-iso-PGE2 presented undetectable changes between control, diabetic and
treated animals (Figure 3A). Lipid oxidation was also reflected in the levels of the adrenic
acid derivatives 17-F2t-dihomo-IsoP, 17-epi-17-F2t-dihomo-IsoP, and 17(RS)-10-epi-SC-∆15-
11-dihomo-IsoF (Figure 3B) and an increase of docosahexaenoic acid oxidative product
10-epi-10-F4t-NeuroP in diabetic rabbit plasma samples (Figure 3C).

The antioxidant capability of Pter was demonstrated in a limited number of lipid
oxidation analytes in plasma. In Figure 3, we show that treatment with polyphenol is able
to lower PGE2, 8-iso-15-keto-PGE2, 8-iso-15-keto-PGF2α, 8-iso-15(R)-PGF2α (Figure 3A),
17(RS)-10-epi-SC-∆15-11-dihomo-IsoF (Figure 3B), and 10-epi-10-F4t-NeuroP (Figure 3C).

Diabetes-induced lipid oxidation was reflected in urine in an increase of derivatives
of arachidonic acid: PGE2, PGF2α, 8-iso-15-keto-PGE2, 8-iso-PGF2α, 5-iso-PGF2α-VI, and
2,3-dinor-8-iso-PGF2α were increased (Figure 4A). In addition, the levels of the adrenic
acid products 17-F2t-dihomo-IsoP, Ent-7(RS)-7-F2t-dihomo-IsoP, 17(RS)-10-epi-SC-∆15-11-
dihomo-IsoF, and 7(RS)-ST-∆8-11-dihomo-IsoF were also increased (Figure 4B). In a similar
way, lipid peroxidation of docosahexaenoic acid induced an increase of 14(RS)-14-F4t-
NeuroP and 4(RS)-4-F4t-NeuroP levels in urine samples (Figure 4C). The levels of all
analytes with significant diabetes-induced changes were normalized with the polyphenol
treatment (Figure 4).
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Figure 2. Boxplots of lipoperoxidation analytes in retina samples from control, diabetic and treated
group. Lipid peroxidation compounds derived from (A) arachidonic acid, (B) adrenic acid and (C)
docosahexaenoic acid. Boxes indicate the 1st and the 3rd quartiles, the median is shown as a black
line, whiskers mark the maximum and the minimum values. Values below the limit of detection
were replaced by the number of quantification limit indicated by (<LD). The statistical difference is
indicated as * < 0.05 vs. control, ** < 0.01 vs. control, & < 0.05 vs. diabetic, && < 0.01 vs. diabetic.
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(C) docosahexaenoic acid. Boxes indicate the 1st and the 3rd quartiles, the median is shown as a black
line, whiskers mark the maximum and the minimum values. Values below the limit of detection
were replaced by the number of quantification limit indicated by (<LD). The statistical difference is
indicated as * < 0.05 vs. control, ** < 0.01 vs. control, *** < 0.001 vs. control, & < 0.05 vs. diabetic,
&& < 0.01 vs. diabetic, &&& < 0.001 vs. diabetic.
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Figure 4. Boxplots of lipoperoxidation analytes in urine samples from control, diabetic and treated
group. Lipid peroxidation compounds derived from (A) arachidonic acid, (B) adrenic acid and
(C) docosahexaenoic acid. Boxes indicate the 1st and the 3rd quartiles, the median is shown as a black
line, whiskers mark the maximum and the minimum values. Values below the limit of detection
were replaced by the number of quantification limit indicated by (<LD). The statistical difference is
indicated as * < 0.05 vs. control, ** < 0.01 vs. control, *** < 0.001 vs. control, & < 0.05 vs. diabetic,
&& < 0.01 vs. diabetic.

4. Discussion

DR is considered a multifactorial disease [3]. In fact, it is difficult to understand the
exact mechanisms by which diabetes induces DR due to its complex etiology. However, it is
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well known that chronic exposure to hyperglycemia induces an increase in the production
of reactive oxygen species with the subsequent loss of redox homeostasis, which notably
contributes to early neuronal retinal cell death [3], pericytes demise, later rupture of the
blood retinal barrier, increased vascular permeability [20] and the progression to advanced
DR stages [20–22]. Delayed treatment of diabetes and cumulative molecular damage from
oxidative stress led to the development of DR [23]. It has been shown that, after diagnosis of
diabetes, strict and early control of blood glucose and/or dyslipidemia slows the evolution
of this microangiopathy [24]. In spite of this, the treatment for DR is restricted to advanced
stages of the disease when there are serious vascular alterations and the retina shows
neuronal irreparable damages [3]. Therefore, it is imperative to find new strategies for
early use to diagnose and prevent DR progression.

For the maintenance and development of the functions of the retina there are a series of
essential molecular components such as molecules of long chain polyunsaturated fatty acids
(PUFAs), which form part of the cell membranes. In fact, retinal membrane phospholipids
contain the highest level of PUFA of any tissue. Specifically, docosahexaenoic acid (DHA;
22:6n-3), arachidonic acid (AA; 20:4n-6) and adrenic acid (22:4n-6) are the most abundant
fatty acid in the retina [25–27]. Their physiological function include critical protective
effects against different retinal diseases such as retinopathy of prematurity, age-related
macular degeneration or DR [28]. For example, NPD1, a docosatriene derivative from
docosahexaenoic acid, protects retinal epithelial cells from oxidative stress thanks to its anti-
apoptotic effects [29], or their metabolism alteration by peroxisome dysfunction induces
retinal defects [30].

Polyphenols are the most abundant antioxidants in the human diet [31] and their
beneficial effects have prompted interest in their use for treating retinal pathologies. For
example, a protective effect has been observed against DR and other retinopathies with
curcumin [32,33], resveratrol [34–36], quercetin [37,38], epigallocatechin gallate [39,40], and
Pter [7], among others. The all have one thing in common, their antioxidant capacity against
oxidative stress after hypoxia [41,42] and their significant ability to stop the pathological
angiogenesis [43] by reducing levels of the vascular endothelial growth factor (VEGF) [44].
It has therefore been suggested that polyphenolic administration can protect against the
development of retinal diseases such as, DR.

Recently, we showed for the first time that daily Pter administration at non-toxic
and biologically effective doses of 50 mg/kg can prevent the early neuro-retinal damage
caused by hyperglycemia in vivo [7]. It is known that retinal neural cell death appears
in early stages of the development of DR, even prior to the appearance of the classic
phenotypic characteristics used in its diagnosis [7,45–47]. In addition, the increase of lipid
peroxidation products has been associated with neurodegeneration diseases [48] and there
is increasing evidence of the importance of products of lipid peroxidation as mediators in
the development of neovascularization in DR [49,50]. In our previous study, we showed
that Pter reduces the levels of 4-HNE [7], an end products of lipid peroxidation of PUFAs
such as linoleic acid and arachidonic acid via non-enzymatic steps [27,51]. The low levels
of 4-HNE induced by the polyphenol can reduce the former’s damaging effects on proteins,
RNA and DNA synthesis [52]. Moreover, Aguirre et al. showed that Pter mainly increases
docosahexaenoic acid levels, although linoleic acid and arachidonic acid also increase
without reaching statistical significance, indicating the ability of stilbene to restore the
PUFA composition in a model of hepatic steatosis [53]. This ability of Pter could be relevant
in the antioxidant protection observed in our experimental model.

The role of lipid peroxidation in DR has been extensively studied [54–56] but in a
general way, focusing on the manifestation of a limited number of products such as MDA,
8-Iso-PGF2α or 4-HNE, without focusing on the damage of omega-3 PUFA in such a specific
way. Little is known about the effect of the protective role of polyphenols against radical
induced peroxidation of omega-3 PUFAs by ROS related to neurodegeneration and its
implication in the development of DR. In this research, an exhaustive study of the damage
produced by oxidative stress in lipids of the retina was carried out. The components studied
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can be classified depending on the modified lipid from which they are derived. We studied
a group of products derived from the oxidation of arachidonic acid, docosahexaenoic
acid, and adrenic acid (Figure 1). Spectrometry analyses showed that lipid peroxidation
in the retinas of diabetic rabbits increased the levels of: PGE2, PGF2α, IsoPs 8-iso-PGE2,
8-iso-15-keto-PGF2α, and 8-iso-15-(R)-PGF2α, 17-F2t-dihomo-IsoP, Ent-7(RS)-7-F2t-dihomo-
IsoP, 17-epi-17-F2t-dihomo-IsoP, 17(RS)-10-epi-SC-∆15-11-dihomo-IsoF, 10-epi-10-F4t-NeuroP,
4(RS)-4-F4t-NeuroP, and 14(RS)-14-F4t-NeuroP. The action of the natural polyphenol Pter
was able to restore to control values the levels in diabetic rabbits (Figure 2).

The biological effect on DR of some of these compounds is well establish and the
protector role of this stilbene against DR progression has attracted much attention. The
formation of prostaglandins, inflammatory mediators synthetized from arachidonic acid
by cyclooxygenase enzyme (COX), such as PGE2 and PGF2α are associated with retinal
vasoconstriction, blood ocular barrier disruption, VEGF production, increased vasodilation,
leukocyte migration, and increased production of proinflammatory cytokines [49,57–61].
For example, the extracellular signal-regulated kinases 1 and 2 (ERK1/2)/COX-2/PGE2
signaling pathway induces the expression of VEGF [49], whose overexpression is related to
the vascular hyperpermeability and neovascularization developed in retinas of diabetic
patients [3]. Moreover, progression of DR may be prevented or delayed by the use of
prostaglandin inhibitors [49,50,62,63] and COX inhibitors reduce the production of VEGF,
vascular leakage and neovascularization in DR and ischemic proliferative retinopathy
in vivo [50,64].

Although the effects on DR have not been clearly identified in the present experimental
model, from the set of compounds analyzed with significant differences and affected by Pter
treatment we can make some interesting observations. 8-iso-15-Keto-PGF2α is a metabolite
of the 8-iso-PGF2α, a prostaglandin-like product produced by the non-enzymatic peroxi-
dation of arachidonic acid in membrane phospholipids [65] that showed vasoconstrictor
effects in a concentration-dependent manner in rat aorta [66] and has been proposed as a
biomarker for ischemic stroke diagnosis [67]. 8-iso-PGE2 is also an isoprostane produced
from arachidonic acid during lipid peroxidation [68] with renal vasoconstrictor effects in
rat [68,69] and its urinary quantification is considered a reliable marker of systemic ox-
idative stress, even superior to its plasmatic evaluation [54]. Ent-7(RS)-7-F2t-dihomo-IsoP,
17-epi-17-F2t-dihomo-IsoP, 17-F2t-dihomo-IsoP formed by a free radical non-enzymatic
mechanism from adrenic acid (C22:4 n-6, AdA) [70] and, 10-epi-10-F4t-NeuroP, 4(RS)-4-
F4t-NeuroP, and 14(RS)-14-F4t-NeuroP by docosahexaenoic acid (C22:6 n-3, DHA) [71],
have been used as biomarkers of oxidative stress in neurodegenerative disease [72–76].
Hence, although further research is necessary to clarify the pathophysiological action
triggered by those PUFA derivatives in DR, Pter is able to normalize the levels of almost all
analytes studied in retinas of diabetic rabbits, helping to protect the retina and avoiding
the appearance of the very early signs of DR such as neuronal cell demise derived from
oxidative stress.

Furthermore, the results presented allow us to hypothesize about the possible use
of lipid peroxidation as an early biomarker of diabetic retinal disease. The diagnosis of
DR and its ophthalmologic classification is based on the results of the multicenter Early
Treatment Diabetic Retinopathy Study (ETDRS). This study classified DR in function of the
visible ophthalmologic alterations and retinal neovascularization development [3,77,78].
There is no question of the usefulness of this diagnostic method in delaying disease
progression to the sight loss. However, although the ophthalmologic diagnosis is minimally
invasive, rapid and economical, the phenotypic manifestation of the disease involves the
development of previous molecular unobservable alterations that trigger neuronal and
vascular damage. Hence, because DR is an asymptomatic disease until reaching advanced
stages, the identification of early diagnosis biomarkers could be the best tool to prevent
the progression of the disease to an irreversible stage and ultimately the loss of vision.
Therefore, analysis of these peroxidation lipid analytes at plasma and urine levels could
instantly provide a clinical reflection of the oxidative status of patients before and after
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specific clinical interventions. In Figures 3 and 4, a comparative study on lipid peroxidation
analytes in plasma and urine samples between control, diabetic and Pter diabetic treated
rabbits are shown. The oxidative environment induced by hyperglycemia together with
the presence of skipped dienes makes PUFAs highly susceptible to oxidation [79,80].
PUFA-containing phospholipids react with reactive oxygen species generating a variety
of oxidized products potentially harmful and capable of acting on targets located at a
certain distance from the initial oxidative attack, since some of these products are more
durable than reactive oxygen species [27,81]. Therefore, the measurement of concentrations
of analytes of lipid peroxidation in biological samples is considered an important tool
for evaluating the role of oxidative processes in the pathogenesis of human diseases
and the response to specific therapies [16]. In addition, the study of these analytes in
fluids such as plasma and urine can instantly provide a clinical reflection of the oxidative
state and are useful in patients studies before and after specific clinical interventions
(i.e., antioxidant treatment).

A number of published works indicate that oxidative stress caused by diabetes triggers
lipid alterations with serious pathophysiological effects that contribute to the development
of DR both in animal models [82] and in the retina of diabetic patients [83]. Moreover,
patients suffering DR show higher lipid peroxidation than those without the retinal dis-
ease [84,85]. Although diabetes is associated with increased systemic oxidative stress,
the present study demonstrates the ability of Pter to lower lipid peroxidation detected in
plasma and urine and suggests new potential biomarkers to predict DR progression. More-
over, the results presented herein show a deeper and more extended lipid peroxidation
study beyond the classic MDA or 4-HNE.

One of the most in vivo produced and studied F2-IsoP is 8-iso-PGF2α. In fact, it has
been considered the gold standard biomarker of in vivo oxidative stress. However, we
did not detect significant alterations in retina tissue (Figure 2). Different results were
obtained from plasma and urine of diabetic rabbits, where levels of this F2-IsoP increased
(Figures 3 and 4). Although 8-iso-PGF2α is formed from arachidonic acid predominantly
via non enzymatic oxidation, it can be generated by COX activity through the enzymatic
oxidation of PGF2α [86]. COX activity is ubiquitously induced in diabetic patients and F2-
IsoPs have been involved in different acute and chronic human diseases related to oxidative
and inflammatory stress such as diabetes [87]. This situation rules out considering 8-iso-
PGF2α as a suitable biomarker for DR.

One approach that could help support our hypothesis is to investigate the location
of production of the different lipid peroxidation products studied. The products studied
derived from arachidonic acid oxidation show a ubiquitous distribution in the body tis-
sues, including retina [55]. The oxidation of docosahexaenoic acid and the production
of NeuroP/neurofurans occurs mainly in brain grey matter and retina [71,88,89], and
dihomo-IsoP/dihomo-IsoF from adrenic acid oxidation are found in brain white matter
and retina [15,70,90,91]. Furthermore, although it has not been studied in depth, docosahex-
aenoic and adrenic acid have been considered specific tissue markers of oxidative damage
in neurological disorders such as Rett syndrome, Down syndrome, epilepsy, Alzheimer’s
disease and age-related macular degeneration [48,92]. Hence, we consider that lipid per-
oxidation compounds derived from docosahexaenoic and adrenic acid may be the most
interesting analytes in the study of development and progression of DR. We detected
parallel lipid peroxidation in retina and urine samples induced by hyperglycemia and
the reinstatement to control values with the polyphenol treatment in 17-F2t-dihomo-IsoP,
Ent-7(RS)-7-F2t-dihomo-IsoP, 17(RS)-10-epi-SC-∆15-11-dihomo-IsoF, 4(RS)-4-F4t-NeuroP
(Figures 2 and 4). In plasma and retina samples, we detected similar alterations just in
17(RS)-10-epi-SC-∆15-11-dihomo-IsoF and 10-epi-10-F4t-NeuroP (Figures 2 and 3). Focus-
ing on 17(RS)-10-epi-SC-∆15-11-dihomo-IsoF, which is derived from adrenic acid, this is
increased in the retina, plasma and urine of diabetic rabbits and Pter is able to lower its
concentration. Although further research with human samples in different DR evolution
stages will help to corroborate its importance and its role, for the first time 17(RS)-10-epi-
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SC-∆15-11-dihomo-IsoF is shown as a possible suitable biomarker of DR in the prevention
of the development of the pathology.

5. Conclusions

Our study demonstrates the significant ability of Pter to prevent the retinal early
lipid peroxidation induced in vivo by hyperglycemia, phenomenon determinant in the
development and evolution of DR. A large group of specific neuronal and retinal lipid
peroxidation markers was studied including derivatives from adrenic and docosahexaenoic
acid oxidation in plasma and urine samples. 17(RS)-10-epi-SC-∆15-11-dihomo-IsoF, a
product derivative from adrenic acid oxidation, is postulated for the first time as an early
DR biomarker. Further studies will be carried out with human samples at different stages
of evolution to validate the usefulness of the determination of lipid peroxidation in plasma
and/or urine in the diagnosis and staging of DR.
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