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Abstract

Inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitous intracellular calcium (Ca2z) channel which has a major role in

controlling Ca2z levels in neurons. A variety of computational models have been developed to describe the kinetic function
of IP3R under different conditions. In the field of computational neuroscience, it is of great interest to apply the existing

models of IP3R when modeling local Ca2z transients in dendrites or overall Ca2z dynamics in large neuronal models. The
goal of this study was to evaluate existing IP3R models, based on electrophysiological data. This was done in order to be
able to suggest suitable models for neuronal modeling. Altogether four models (Othmer and Tang, 1993; Dawson et al.,
2003; Fraiman and Dawson, 2004; Doi et al., 2005) were selected for a more detailed comparison. The selection was based
on the computational efficiency of the models and the type of experimental data that was used in developing the model.
The kinetics of all four models were simulated by stochastic means, using the simulation software STEPS, which implements
the Gillespie stochastic simulation algorithm. The results show major differences in the statistical properties of model
functionality. Of the four compared models, the one by Fraiman and Dawson (2004) proved most satisfactory in producing
the specific features of experimental findings reported in literature. To our knowledge, the present study is the first detailed
evaluation of IP3R models using stochastic simulation methods, thus providing an important setting for constructing a new,
realistic model of IP3R channel kinetics for compartmental modeling of neuronal functions. We conclude that the kinetics of

IP3R with different concentrations of Ca2z and IP3 should be more carefully addressed when new models for IP3R are
developed.
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Introduction

Inositol 1,4,5-trisphosphate receptor (IP3R) is a ligand-gated

calcium (Ca2z) release channel typically expressed on the

endoplasmic reticulum (ER) in neurons and many other cell

types. It has a major role in intracellular Ca2z dynamics which, in

turn, is involved in many cellular processes such as muscle

contraction, neurotransmitter release, vesicle secretion, fertiliza-

tion, gene transcription, immunity, and apoptosis. In neurons,

dynamical changes in Ca2z concentration ([Ca2z]) are involved,

among others, in neuroplasticity and development (see recent

reviews [1,2]), and in neurodegeneration (see [3,4]). Transient,

repetitive changes in cytosolic Ca2z concentration are crucial for

synapse modification and plasticity, including long-term potenti-

ation (LTP) and long-term depression (LTD) [5–8]. These

phenomena constitute the biological basis for learning and

memory formation in the brain [8,9]. Particularly in the

cerebellum, IP3Rs are relatively highly expressed in Purkinje cells

[10]. Ca2z release from ER has been shown to be a key mediator

of cerebellar LTD [11].

The inositol 1,4,5-trisphosphate receptor is a tetrameric

receptor-channel, consisting of four sub-units. In total, three

different genes (ITPR1, ITPR2, and ITPR3) encode three

different types (1, 2, and 3) of IP3R and their splice variants from

which homo- or heterotetramers can form [12]. IP3R is activated

and opened by both IP3 and Ca2z. Ca2z can also act as the

inhibitor of IP3R in higher concentrations. IP3 is produced from

phosphatidylinositol 4,5-bisphosphate (PIP) by phospholipase C

(PLC). After a cell is stimulated (for example by glutamate in

neurons) certain G protein- or tyrosine kinase-linked receptors are

activated. These, in turn, can activate PLC. ER acts as a Ca2z

store, and while open, IP3R can release Ca2z from ER lumen to

the cytosol. Transient rises or oscillations in Ca2z concentration

can then activate various enzymes and even induce changes in the

transcriptional level. IP3Rs are known to be responsible for the

phenomenon called Ca2z-induced Ca2z release (CICR), in

addition to ryanodine receptors (RyRs) [13,14].

In order to develop models for ion channels and receptors

detailed data on the structure and function of the modeled entity is

required. The function of IP3R has been studied with electro-

physiological techniques. However, since IP3Rs are prevalently

located on the endoplasmic reticulum of a cell, performing the

recordings is not straightforward. The first recordings performed
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on IP3Rs involved isolated microsomes from smooth muscle cells

incorporated into artificial lipid bilayer [15]. Later, the same

technique has been used, for example, for IP3R in canine

cerebellum [16–20], in mouse cerebellum [21], and in HEK cells

[22] (IP3R recombinantly expressed). IP3Rs have also been

recorded from the plasma membranes of DT40 cells [23] (IP3R

endogenously expressed (native)) and DT40-3KO cells [24,25]

(stably expressed IP3R construct, native IP3R ablated). Since the

nuclear membrane is a continuation of the ER, IP3Rs have also

been recorded from isolated nuclei of Xenopus oocytes (for example

[26] (recombinantly expressed and native IP3Rs), Purkinje

neurons and granule cells [27,28] (IP3R endogenously expressed),

and DT40 cells [23,29]. These kind of data are of great value

when developing a model for ion channel kinetics. However, the

electrophysiological raw data on IP3R is not available in any of the

publicly available databases, but its statistics is described in

publications. For example, the dependence of open probability on

cytosolic Ca2z or IP3 concentrations is given ([16,19,20,29,30]).

In some cases, the open and closed time distributions [18,20,22] or

mean open time [17,18,22,29] are also reported. In an ideal case,

the raw data would be publicly available in a database and a

modeler could extract all needed statistical measures out of the

data or use the raw data for automated estimation of model

parameter values.

In addition to electrophysiological measurements, Ca2z imag-

ing and radioactive assays have also been used to study the

behavior of IP3R in vitro. For example, Fujiwara et al. [31] analyzed

the kinetics of Ca2z release via IP3R in controlled cytoplasmic

environment in permeabilized cerebellar Purkinje cells. In

addition, superfusion and 45Ca2z release assay (radioactive assay)

have been used for studying the Ca2z release and inhibition of

IP3R by Ca2z in hepatic microsomes [32–34]. These kind of

studies give more detailed information on the IP3R regulation by

IP3 and Ca2z and their affinities than electrophysiological studies.

In some cases, the data obtained from Ca2z imaging studies or

from radioactive assays has been used in modeling studies, for

example Fujiwara et al. [31] by Doi et al. [32] and Dufour et al. [35]

by Sneyd et al. [36].

In order to reach a better understanding of the dynamical

behavior of IP3R, as well as its involvement in various cellular

processes, it is of interest to build models of IP3R. Computational

models are important for understanding the time evolution,

dynamics, and regulation of ion channels and intracellular proteins

and enzymes [37,38]. Several models have previously been

proposed to describe the behavior of IP3R (for a comprehensive

review, see, for example [39]). There are models presented for

different types of IP3R (type 1, 2, and 3) [12] in different animals,

tissues and cells (for example Xenopus oocyte [40], cerebellar cells

[41], pancreatic acinar cells [42], and hepatic cells [32]). The first

and most well-known model is the one by De Young and Keizer

[41]. Some models for IP3R have been compared either

analytically or by means of simulation [36,43–45], and later

reviewed [39,46].

The majority of the existing models is deterministic. Determin-

istic approaches, however, do not give biologically valid results and

are not always capable of modeling the random behavior observed

with small numbers of molecules [47–50]. Stochastic modeling is

therefore more and more used for describing the dynamics of a

biochemical system. The stochastic approach is always valid

whenever the deterministic approach is valid, but when the

deterministic is not, the stochastic might sometimes be valid [51].

Most commonly, deterministic methods and, in some cases,

analytical methods are used to investigate the properties of IP3R

models (see, for example [43] or [52]). More rarely, stochastic

methods are applied [53,54], even though it is known that the

behavior of ion channels is stochastic.

Despite the wealth of IP3R models the selection of a specific

model for describing IP3R related calcium dynamics or signaling is

not straightforward. The models are seldom generic in nature and

capable of describing all possible data obtained for a specific IP3R

or cell type. The reason for this is that the models are developed

for some specific purpose, describe the behavior only in certain

experimental conditions, or the dynamics are not fully analyzed to

validate the model. This can be due to the limited access to

experimental data. We therefore wanted to study the dynamics of

existing models in detail and to specifically address their suitability

in the context of complex neuronal models. In this work, the

interest is set on the type 1 IP3R because it is most commonly

expressed in neurons [10]. After a preliminary study, we chose

four models [35,55–57] for a more detailed analysis and

comparison. Other models did not meet our criteria. The chosen

models were originally developed by using data either from IP3R

in canine cerebellum or type 1 IP3R. As the selected models are

biophysically realistic and based on the law of mass action, they

can be implemented to the stochastic simulation tool STEPS

[58,59] used in this study. Additionally, we decided to concentrate

on computationally inexpensive IP3R models so that it would be

possible to integrate them as part of larger model for calcium

dynamics or synaptic plasticity. We validated the functionality of

the models by comparing the statistical behavior of IP3R channel

kinetics (open probability curves, mean open times, and open and

closed time distributions) to the equivalent obtained by electro-

physiological recordings from IP3Rs expressed in neurons.

Our results show firstly, that the behavior of the studied models

varies in similar simulation conditions and, secondly, some models

show quite unrealistic kinetic behavior. We therefore conclude

that the kinetics of IP3R (open and closed times and the open

probability) with different concentrations of both Ca2z and IP3

should be more carefully addressed when new models for IP3R are

developed.

Materials and Methods

In our present work, after a preliminary review on existing IP3R

models, we selected four models [35,55–57] for comparison. The

selection was based on the following criteria: (1) relative simpicity

(i.e. the model should have less than 20 states), (2) development

based on data obtained from neuronal or type 1 IP3R, and (3)

basis in the law of mass action (the reactions include binding and

unbinding reaction and state transitions). As our ultimate goal is to

find a model that can be an integral part of a larger model for

Ca2z dynamics or synaptic plasticity in neurons, it is an advantage

to have a structurally simple model. The selected models are based

on the law of mass action and can thus be implemented into the

stochastic simulators such as STEPS [58].

Models
The model of Othmer and Tang. The model of Othmer

and Tang [55] is one of the earliest and small- scaled models

regarding the number of states. There is only four states, since the

binding order of Ca2z or IP3 is not free, but sequential, opposite

to the models of De Young and Keizer [41] or Bezprozvanny and

Ehrlich [18]. Othmer and Tang [55] assume that IP3 has to bind

to its binding site before Ca2z can bind and the channel can open,

as well as the activating Ca2z has to bind to its site before the

inhibition by Ca2z can occur. The schematic representation of the

model of Othmer and Tang [55] in Figure 1A and the parameter

Comparison of Models for IP3 Receptor Kinetics
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values in Table 1 were used in this study. The model of Othmer

and Tang [55] has been used before as a part of a larger model for

calcium dynamics, for example, by Mishra and Bhalla [60].

The model of Dawson et al. Dawson et al. [56] built a model

for IP3R, using a RyR model by Sachs et al. [61] as their starting

point, to understand the adaptive and incremental behavior of

IP3R. The model of Dawson et al. [56] is applicable to type 1 and 2

IP3Rs and with some modification to type 3. Dawson et al. [56]

assume that IP3R has two conformations, R and P. The

conformation R can bind four IP3 molecules rapidly, but with

low affinity, to reach an open state. The conformation P, on the

other hand, slowly binds four IP3 molecules, but with high affinity,

to reach a closed state where it is thereafter possible to reach the

open state. In this work, Scheme 2 from the original paper was

used with two exceptions: the flux through an open channel

(reactions 14 and 16 in the original paper) and the diffusion of

released Ca2z (reaction 17) were not taken into account in order

to make the model comparable with other models. This does not

have an effect on the actual channel kinetics of the receptor as the

removed reactions deal with Ca2z flux and diffusion. Moreover,

we used constant Ca2z concentration and the simulated reactions

happened in well-mixed system and in the present work only the

kinetics of the IP3R, not Ca2z dynamics was studied. We used the

the model presented in Figure 1D and the parameter values given

in Table 2.

The model of Fraiman and Dawson. The IP3R model of

Fraiman and Dawson [57] was originally built to study the effects

of different Ca2z concentrations inside the ER to the kinetics of

IP3R. It is the only model included in the present study that has a

Ca 2z binding site inside the ER in addition to the cytosolic

binding sites. The state scheme of the model of Fraiman and

Dawson [57] is presented in Figure 1C and the parameter values

used in this work are in Table 3.

Originally, six states, Oa, Ob, Oc, Pa, Pb, and Pc, were

considered open. However, it has been experimentally shown that

Figure 1. Schematic representation of the states and transitions of the IP3R models. (A) Othmer and Tang [55] (forward direction of a
reaction is to the right) (B) Doi et al. [35] (forward direction of a reaction is to the right or up), (C) Fraiman and Dawson [57] (forward direction of a
reaction is to the right or down) (D) Dawson et al. [56] (forward direction of a reaction is the to the direction of binding a ligand or in the plain state
transitions from left to the right).
doi:10.1371/journal.pone.0059618.g001

Table 1. Rate constants for IP3R model of Othmer and Tang
[55].

Reaction kf kb

r1
12:106 1

mMs
8

1

s

r2
23:4 :106 1

mMs
1:65

1

s

r3
2:81 :106 1

mMs
0:21

1

s

r1 to r3 refer to reactions represented in Figure 1A.
doi:10.1371/journal.pone.0059618.t001

Comparison of Models for IP3 Receptor Kinetics
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IP3R needs IP3 to reach a stable open conformation [33,62]. For

this reason, we neglected three of the original open states (i.e., they

were considered closed) in the present work and only states Oa,

Ob, and Oc were considered open. In addition, in the original

publication [57], the rate constant of the transition from A10 to A00

is defined as ‘detailed balance’, with no given numerical value. In

our study, it was mandatory to have a numerical value for the

parameter and thus we fixed the parameter by testing three values

with open probability simulations (data not shown). The param-

eter values of 0 s{1 and 200 s{1 produced identical results which

were in accordance with the results in the original publication

[57], while the value of 2000 s21 slightly upraised the left side of

the open probability curve. Based on these simulations we chose

the value of 200 s21 for the transition from A10 to A00 (reaction 7,

kb) and concluded that it was in the range of what was originally

used.

The model of Doi et al. The IP3R model of Doi et al. [35]

was originally published as part of a larger model for Ca2z

dynamics in the cerebellar Purkinje cell spine to investigate the

role of IP3Rs as a coincidence detector of two input signals. Doi et

al. [35] constructed their model based on a conceptual model of

Adkins and Taylor [34]. Doi et al. [35] used experimental data by

Khodakhah and Ogden [63], Marchant and Taylor [33], and

Fujiwara et al. [31] to define the structure and kinetics of the model

and experimental data by Bezprozvanny et al. [16] to test how well

the model can reproduce the bell-shaped curve. A schematic

representation of the model is presented in Figure 1B and the rate

constants for each reaction in Table 4. In the model of Doi et al.

[35], IP3R has seven states and the receptor needs to bind both IP3

and Ca2z to open and thus provide Ca2z flux from ER lumen to

cytosol. In this model, IP3R has one open state, RIC.

Simulations and data analysis
In the present study, the simulations were designed to reproduce

the data produced in experimental electrophysiological measure-

ments from neuronal IP3Rs. We used stochastic simulation

approaches since deterministic approaches were not applicable

due to the stochastic nature of ion channel gating. The simulated

data was compared with experimental data available in literature.

The four selected models were implemented according to the

information presented in the original publications with some

exceptions presented in the section ‘Models’. Our work does not

include parameter estimation (as, for example, [36]) since raw data

on channel kinetics of IP3Rs in neurons is not publicly available.

In this work, STEPS (STochastic Engine for Pathway Simula-

tion) ([58,59]; http://steps.sourceforge.net/) version 1.1.2 was

Table 2. Rate constants for IP3R model of Dawson et al. [56].

Reaction kf kb Reaction kf kb

r1
1

1

s
100

1

s

r9
100:106 1

mMs
40

1

s

r2
4000:106 1

mMs
1000

1

s

r10
1

1

s
10

1

s

r3
3000:106 1

mMs
2000

1

s

r11
1

1

s
1

1

s

r4
2000:106 1

mMs
3000

1

s

r12
10

1

s
1

1

s

r5
1000:106 1

mMs
4000

1

s

r13
10

1

s
0:1

1

s

r6
400:106 1

mMs
10

1

s

r15
100:106 1

mMs
10

1

s

r7
300:106 1

mMs
20

1

s

r18
1:106 1

mMs
0:1

1

s

r8
200:106 1

mMs
30

1

s

r19
10:106 1

mMs
0:1

1

s

r1 to r19 refer to reactions presented in Figure 1D.
doi:10.1371/journal.pone.0059618.t002

Table 3. Rate constants for IP3R model of Fraiman and
Dawson [57], taken from [67].

Reaction kf kb

r1
5000:106 1

mMs
20

1

s

r2
3000

1

s
250

1

s

r3
5000:106 1

mMs
150

1

s

r4
500

1

s
100

1

s

r5
0:3

1

s
700

1

s

r6
5000:106 1

mMs
1

1

s

r7
6670:106 1

mMs
200

1

s

r8
1540:106 1

mMs
18

1

s

r9
500:106 1

mMs
667

1

s

r10
1800

1

s
330

1

s

r11
133

1

s
1500

1

s

r12
70:106 1

mMs
2000

1

s

r13
630

1

s
400

1

s

r14
60:106 1

mMs
16

1

s

r1 to r14 refer to reactions represented in Figure 1C.
doi:10.1371/journal.pone.0059618.t003

Table 4. Rate constants for IP3R model of Doi et al. [35].

Reaction kf kb

r1
8000:106 1

mMs
2000

1

s

r2
1000:106 1

mMs
25800

1

s

r3
8:889:106 1

mMs
5

1

s

r4
20:106 1

mMs
10

1

s

r5
40:106 1

mMs
15

1

s

r6
60:106 1

mMs
20

1

s

r1 to r6 refer to reactions represented in Figure 1B.
doi:10.1371/journal.pone.0059618.t004
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used for simulation. With STEPS, it is possible to perform full

stochastic simulation of reactions and diffusion of molecules in

three dimensions and also deterministic simulations. For stochastic

simulations, STEPS uses the stochastic simulation algorithm (SSA)

described by Gillespie [64]. The model scripts are available at

ModelDB (http://senselab.med.yale.edu/ModelDB/).

In our simulations, we assumed a well-mixed system. Our

models had two compartments, cytosol and ER lumen, each

having volume of 0.1 fl and a surface, ER, between them. The

IP3R was placed on the surface and the cytosolic concentrations of

Ca2z and IP3 were kept constant in the simulations to mimic the

buffered conditions in patch-clamp recording.

The simulations were run on a stand-alone Linux computer.

For open probability curves, simulations were repeated, depending

on the model, 750–12 000 times and averaged over the repetitions

for each data point. To produce one such curve, the simulations

lasted from an hour to several hours. Simulations for open and

closed time distributions were run once for 10–5000 s to obtain

sufficient number of events to get statistically significant results.

These computations took from less than a second to a couple of

seconds each. Analysis of the simulated data was performed and

the figures were drawn with MATLAB [65].

Results

We compared four kinetic models previously developed for IP3

receptor function by simulating them with the Gillespie stochastic

simulation algorithm of STEPS simulator. The comparison was

done by analyzing the steady-state behavior, such as the open

probability, open and closed time distributions, and the mean

open and closed time. Here we show that the behavior of the

models varies and some models behave somewhat unrealistically.

Open probability
It has been experimentally shown that the open probability (Po)

of IP3R is dependent on the cytosolic Ca2z concentration and that

the dependence is bell-shaped [16]. We repeated similar exper-

iments by computational means and tested whether the selected

four models are capable of expressing the bell-shaped curve. All

the models except the model of Dawson et al. [56] produced the

bell-shaped curve (see Figure 2A). Instead, the model of Dawson et

al. [56] (blue in Figure 2A) produced an s-shaped curve similarly as

in a previous comparison study by Sneyd et al. [36]. The model of

Othmer and Tang [55] (green in Figure 2A) reaches the highest Po

(Po = 0.33) at cytosolic Ca2z concentration around 80 nM. The

model of Doi et al. [35] (magenta in Figure 2A) and the model of

Fraiman and Dawson[57] (red in Figure 2A) reach the highest Po

(Po = 0.15 and Po = 0.38, respectively) around [Ca2z] =

300 nM, which is closest to the experimentally obtained values

([Ca2z] = 250 nM by Bezprozvanny et al. [16] and [Ca2z] =

200 nM by Kaznacheyeva et al. [22]). The absolute value of Po

obtained in simulations cannot be directly compared to the

experimental data, because Bezprozvanny et al. [16] and

Kaznacheyeva et al. [22] report only normalized values, not

absolute values, for Po.

The open probability of IP3R is also dependent on cytosolic IP3

concentration (see for example [17,27,29]). The open probability

curves of the models obtained in simulations are shown in

Figure 2B. All the models except the model of Dawson et al. [56]

(blue in Figure 2B) follow the s-shape that is reported in

experimental studies [17,27,29]. In their study on IP3Rs on

Purkinje cell nuclear membrane, Marchenko et al. [27] have shown

that the Po stays close to 0 until IP3 concentration reaches 0.3 mM

and keeps rising until IP3 concentration is 3 mM ([Ca2z] =

.25 mM). Watras et al. [17] have shown that the rise starts when IP3

concentration is 0.03 mM and settles after 1 mM. The Po in models

of Dawson et al. [56] (blue in Figure 2B) and Doi et al. [35]

(magenta in Figure 2B) starts rising approximately at the same IP3

concentration as Po in [27], but the elevation does not stop at the

right concentrations. In the models of Othmer and Tang [55]

(green in Figure 2B) and Fraiman and Dawson [57] (red in

Figure 2B), Po starts rising one or two orders of magnitude too low

when compared to the experimental results.

Kaftan et al. [19] have shown in their experiments on cerebellar

IP3R that the bell-shaped Ca2z-dependence curve moves upward

and to the right when IP3 concentration is increased. They used

IP3 concentration values of 0.02, 0.2, 2, and 180 mM. We used the

same concentrations, in addition to their fivefold values, except

180 mM in our simulation for all the models (results in Figure 3).

The model of Othmer and Tang [55] (Figure 3A) shows a shift

upward and to the left, the model of Dawson et al. [56] (Figure 3B)

upward, and the models of Fraiman and Dawson [57] (Figure 3C)

and Doi et al. [35] (Figure 3D) upward and slightly to the left when

IP3 concentration increases. Similar trend has also been shown for

the model of Othmer and Tang [55] by Diambra and Guisoni

Figure 2. Open probability of IP3R as a function of (A) cytosolic Ca2z concentration (IP3 = 10 mM) and (B) cytosolic IP3 concentration

(Ca2z = 0.25 mM). Green: Othmer and Tang [55], Blue: Dawson et al. [56], Red: Fraiman and Dawson [57], Magenta: Doi et al. [35].
doi:10.1371/journal.pone.0059618.g002

Comparison of Models for IP3 Receptor Kinetics
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[66] and Tang et al. [43]. None of the models reproduced the

results presented by Kaftan et al. [19].

Mean open and closed times and distributions of open
and closed times

Bezprozvanny and Ehrlich [18] reported that the mean open

time of canine cerebellar IP3R is 2.9 + 0.2 ms and Kaznacheyeva

et al. [22] that the mean open time of wild-type rat cerebellar IP3R

is 4.2+0.5 ms and that the open and closed times have

exponential distributions (black dashed line in Figure 4E and

4K) in certain experimental conditions (lipid bilayer experiments,

[IP3] = 2 mM, [Ca2z] = 0.2 mM). We simulated the selected

models in these same conditions (Sim 1, results in Table 5 and

Figure 4A–F) and, in order to take into account the affinity

difference [31], with five times greater IP3 concentration (Sim 2,

results in Table 5 and Figure 4G–L). The mean open times of the

model of Fraiman and Dawson [57] are 2.5 ms (Sim 1) and 2.6 ms

(Sim 2). These values are close to the experimentally obtained

values. The mean open times obtained with the other models are

an order of magnitude smaller (0.5 ms for Dawson et al. [56] and

Doi et al. [35]) or significantly greater (460 ms, Othmer and Tang

[55]). None of open time distributions of the selected models

(Figures 4A-C and 4G-I) follow the experimental distribution by

Kaznacheyeva et al. [22] fully, but all give, however, the

exponential shape (see Figures 4B and 4K). The open time

distribution of the model of Fraiman and Dawson [57] is the

closest to experimentally [22] obtained distribution (see Figures 4B,

4H). The same applies also to the closed time distributions (see

Figures 4E, 4K).

Moraru et al. [20] have presented open time distributions for

canine cerebellar IP3R in two different conditions (lipid bilayer

experiments, [Ca2z] = 0.1 and 0.01 mM, and [IP3] = 2 mM)

(black dashed line in Figures 5 and 6). We simulated the behavior

of the selected models in these same experimental conditions (Sim

3 and Sim 4, results in Table 5 and Figure 5) and also with fivefold

IP3 concentration (Sim 5 and Sim 6, results in Table 5 and

Figure 6). The distributions in the wet-lab experiments are of

exponential shape [18–20,22] and simulation results also show

exponential shape for all the models. The only distributions that

are also otherwise similar to the ones obtained in wet-lab

experiments by Moraru et al. [20] are the distributions of the

model of Fraiman and Dawson [57] (Figures 5B, 5H, 6B, and 6H).

All the simulation conditions used are summarized in Table 6.

The Ca2z concentrations used in the experiments by Moraru et

al. [20] are unfortunately at the border or smaller than those

observed in a neuron at resting level (i.e., Ca2z used is 0.1 mM or

less). As IP3R is, however, known to have functional significance

only above the resting level concentrations, more emphasis should

be put on physiological conditions in experimental work in the

future. In other words, experimental work should additionally be

performed with Ca2z concentrations above the known resting

level.

Figure 3. Open probability of IP3R as a function of cytosolic Ca2z concentration in different IP3 concentrations. (A) Othmer and Tang
[55] (B) Dawson et al. [56] (C) Fraiman and Dawson [57] (D) Doi et al. [35].
doi:10.1371/journal.pone.0059618.g003
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Figure 4. Distribution of IP3 R open and closed times for all the selected models obtained in simulation conditions Sim 1 (A–F) and
Sim 2 (G–L). (A) Open time distributions of all the models in conditions Sim 1, (B) Enlarged from A, (C) Enlarged from B, (D) Closed time distributions
of all the models conditions Sim 1, (E) Enlarged from D, (F) Enlarged from E, (G) Open time distributions of all the models conditions Sim 2, (H)
Enlarged from G, (I) Enlarged from H, (J) Closed time distributions of all the models conditions Sim 2, (K) Enlarged from J, (L) Enlarged from K.
Experimental data is from [22]. In simulation conditions Sim 1 [Ca2z] = 0.2 mM, [IP3] = 2 mM and Sim 2 [Ca2z] = 0.2 mM, [IP3] = 10 mM (as shown in
Table 6).
doi:10.1371/journal.pone.0059618.g004
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Discussion

In this work, four models of IP3R [35,55–57] were selected

among many to examine their steady-state and time series

behavior and compare them with experimental data available in

literature. We implemented and simulated the selected models

using stochastic simulation software STEPS in order to obtain

similar data as in single-channel patch-clamp recordings. The

open probability curves and statistics, such as the mean open time

and open and closed time distributions, were compared to

experimental ones obtained in the same conditions. To our

knowledge, this is the first detailed evaluation of IP3R model

kinetics with stochastic methods. Our comparative study shows

significant differences in the behavior and kinetics of the studied

models.

Based on our results, the statistical properties of the model of

Fraiman and Dawson [57] seem to be the most similar to the ones

obtained in wet-lab experiments. The properties of the model of

Othmer and Tang [55] are very different when compared to the

experimental data. All the models except the model of Dawson et

al. [56] produce the bell-shaped open probability curve for Ca2z-

dependence and the s-shaped open probability curve for IP3-

dependence as seen in the electrophysiological experiments (for

example [16,17,27]). However, none of the models reproduce the

experimental finding presented by Kaftan et al. [19], which shows

that Ca2z-dependent open probability curve moves to the right

and upward when IP3 concentration increases. This kind of

behavior is shown in the original article by Fraiman and Dawson

[57]. The reason why the simulation of the same model in this

study did not produce similar behavior might be the slight

modification that we were forced to make to the model (defining a

numerical value for the one parameter that was originally defined

as ‘detailed balance’ and neglecting three of the six open states). It

is also notable that there is an Errata [67] published for the

original article [57] and that we used the parameter set in the

Errata [67].

The simulated open and closed time distributions of all the

models follow the exponential distribution as does the data from

experiments [18–20,22]. However, the distributions are not similar

apart from the distribution of Fraiman and Dawson [57]. The

reason for this may be the relatively simple structure of the models,

insufficiency of modeled states to reproduce the kinetics, and

parameter values that do not fit the data.

According to our results, the mean open time of model of Doi et

al. [35] is not congruent with the experimental findings. However,

the shape and peak value of the open probability curve are in

accordance with experimental data. As the model of Doi et al. [35]

has originally been published as part of a larger signal transduction

model for LTD induction, some inaccuracy in the behavior of the

model could have been corrected by other parameters, such as the

Ca2z flux rate and thus the small mean open time does not

invalidate the results in the original publication.

As our comparative study points out significant differences in

the behavior and kinetics of the studied models, it is of interest to

Table 5. Mean open and closed times of IP3R of the selected models.

Model mean open time (ms) mean closed time (ms) n simulation time (s)

Sim 1 Othmer and Tang 451.196423.06 12892563 1068 1 800

Dawson et al. 0.5965.46 10.33120.24 1797 20

Fraiman and Dawson 2.4562.52 4.0111.22 1535 10

Doi et al. 0.470.46 11.2138.08 1711 20

Sim 2 Othmer and Tang 463.55463.96 12902793 1045 1 800

Dawson et al. 0.524.70 9.38167.55 1897 20

Fraiman and Dawson 2.572.76 4.9219.84 1391 10

Doi et al. 0.470.46 3.7623.11 1501 6

Sim 3 Othmer and Tang 510.08526.46 104762074 1927 3 000

Dawson et al. 0.465.90 8.83697.56 2004 20

Fraiman and Dawson 2.482.64 5.3862.64 1293 10

Doi et al. 0.530.53 19.00629.60 1024 20

Sim 4 Othmer and Tang 509.68525.59 958.5062073 2044 3 000

Dawson et al. 0.6510.64 5.216100.02 2063 10

Fraiman and Dawson 2.512.67 5.50615.55 1249 10

Doi et al. 0.510.50 4.7260.50 1866 10

Sim 5 Othmer and Tang 598.32598.68 335663384 1263 5 000

Dawson et al. 0.250.25 12.606129.80 1161 10

Fraiman and Dawson 2.472.60 25.18688.87 1446 40

Doi et al. 0.470.47 107.376123.06 1854 200

Sim 6 Othmer and Tang 596.98592.01 271262709 1509 5 000

Dawson et al. 0.250.26 9.276163.25 2098 20

Fraiman and Dawson 2.492.61 27.54695.62 1331 40

Doi et al. 0.460.46 27.92647.50 1407 40

The different simulation conditions (Sim 1 – Sim 6) are presented in Table 6.
doi:10.1371/journal.pone.0059618.t005

Comparison of Models for IP3 Receptor Kinetics

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e59618



consider reasons for it. We identify four major reasons why the

selected models behave differently to each other: 1) the structure

(i.e. the equations) and parameter values differ between the

models, 2) experimental data that was used in the model

development vary, 3) different data handling procedures have

been used when developing the models, and 4) model developers

Figure 5. Distributions of IP3R open and closed times for all the selected models obtained in simulation conditions Sim 3 (A–F) and
Sim 4 (G–L). (A) Open time distributions of all the models in conditions Sim 3, (B) Enlarged from A, (C) Enlarged from B, (D) Closed time distributions
of all the models in conditions Sim 3, (E) Enlarged from D, (F) Enlarged from E, (G) Open time distributions of all the models conditions Sim 4, (H)
Enlarged from G, (I) Enlarged from H, (J) Closed time distributions of all the models conditions Sim 4, (K) Enlarged from J, (L) Enlarged from K.
Experimental data is from [20]. In simulation conditions Sim 3 [Ca2z] = 0.1 mM, [IP3] = 2 mM and Sim 4 [Ca2z] = 0.1 mM, [IP3] = 10 mM (as shown in
Table 6).
doi:10.1371/journal.pone.0059618.g005
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did not use automated parameter estimation methods. Next, we

will discuss each issue in detail.

Firstly, the most obvious reason for differences in the behavior

of models is the structure and parameter values of the models. All

the models studied here have different number of states, but this

does not cause the differences as such. More importantly, different

parameter values and thus the affinities of IP3, as well as activating

and inactivating Ca2z, vary between the models. Since the models

Figure 6. Distribution of IP3R open and closed times for all the selected models obtained in simulation conditions Sim 5 (A–F) and
Sim 6 (G–L). (A) Open time distributions of all the models conditions Sim 5, (B) Enlarged from A, (C) Enlarged from B, (D) Closed time distributions of
all the models conditions Sim 5, (E) Enlarged from D, (F) Enlarged from E, (G) Open time distributions of all the models conditions Sim 6, (H) Enlarged
from G, (I) Enlarged from H, (J) Closed time distributions of all the models conditions Sim 6, (K) Enlarged from J, (L) Enlarged from K. Experimental data
is from [20]. In simulation conditions Sim 5 [Ca2z] = 0.01 mM, [IP3] = 2 mM and Sim 6 [Ca2z] = 0.01 mM, [IP3] = 10 mM (as shown in Table 6).
doi:10.1371/journal.pone.0059618.g006
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of Othmer and Tang [55] and Doi et al. [35] reproduce the correct

shapes for the open probability curves, re-estimation of their

parameters might improve the fitting of models to experimental

data. As a general conclusion, all studies neither report the values

of all parameters used in simulations nor make it evident which

parameter set is used to produce specific results. This makes it

difficult to reproduce results (see also discussion in [68]).

Secondly, another reason for the differences in the behavior of

the models could be related to the variability in the use of

experimental data when constructing the original model. Although

the statistical properties of channel kinetics, such as the mean open

time and the distributions of open times, are known to be

important in properly reconstructing receptor-ion channel kinet-

ics, they are relatively rarely used in developing or evaluating

models for IP3R. Furthermore, there exists a clear difference on

how experimental data is used to construct (i.e., to define the

structure, the number of states, and the number of parameter

values in the model) and fine-tune the models (estimation of the

unknown parameters). We have noticed that it is not always clear

which data is used in modeling and, particularly, how it is used. In

general, the models presented for IP3R are constructed based on

only some of the data or knowledge obtained from various animal

species and experiments. Furthermore, data on kinetics of IP3R

have been obtained from various sources: native and recombi-

nantly expressed receptors in cell lines and Xenopus oocytes, and

from vertebrate cerebellum or hepatocytes.

Doi et al. [35] use the model of Adkins and Taylor [34] as their

starting point and construct the model based on data by Marchant

and Taylor [33] and use the open probability curve of

Bezprozvanny et al. [16] to study the fitness of their model. The

model of Othmer and Tang [55] is also shown to fit the data by

Bezprozvanny et al. [16] in addition to data by Watras et al. [17] in

[43], but this study does not take the difference in IP3 affinity [31]

into account as Doi et al. [35] or study the open or closed time

distributions of the model. Fraiman and Dawson [57] and Dawson

et al. [56] use several experimental observations when constructing

their model, but they do not report using any data for actual fitting

of the model parameters. The data that Dawson et al. [56]

compare their model to is more dealing with temporal aspect of

Ca2z release and accumulation of Ca2z to cytosol than actual

channel kinetics.

Thirdly, the differences between the simulated and experimen-

tally observed open time distributions and mean open times might

also be due to differences in data handling procedures. Experi-

mentally observed open time distributions can be biased due to the

limitations and established practices regarding the temporal

resolution in the patch-clamp recordings, while in the simulations

in this study all the events are recorded exactly at the time they

happen. Usually the time resolution in patch-clamp recordings is

around 1 ms and thus any opening shorter than that would stay

unnoticed or be merged with other channel openings.

Fourthly, to our knowledge, automated parameter estimation

methods have not been used in the development of the four

models here compared. Studies on IP3R models consider, to some

extent, the kinetic ion channel data to define the mathematical

structure of the models. However, only a few previous studies use

automated parameter estimation techniques and statistical data on

ion channel kinetics to fine-tune the IP3R models [36,69–72].

One of the major challenges in modeling the IP3Rs is the lack of

access to original raw data, for example from electrophysiological

measurements, that could be used in quantitative modeling. This

data is not currently available in any public database and as the

years pass by it becomes extremely hard to acquire the data from

its original sources. This problem is not new or limited just to

measurements of ion channels but to all neuroscience data [73,74].

Some suggestions to improve the situation have been made. For

instance, De Schutter [75] suggests that data publishing should be

distinguished from paper publishing. Furthermore, Ranjan et al.

[76] have established an information management framework for

ion channel information, which hopefully will make IP3R

experimental data more accessible in the future.

Despite several shortcomings in the development and presen-

tation of models, previous models on IP3R, including the present

comparative study on four stochastic IP3R models, will give a good

setting for constructing a new, realistic model of IP3Rs for

compartmental modeling of neuronal functions. It will be a

challenge to develop computationally inexpensive models that can

produce realistic stochastic behavior of an individual ion channel.

A wealth of evidence indicates, however, an important role of

randomly opening ion channels on the global behavior of cells. For

example, in neurons the stochastic openings of single ion channels

shape the integration of local signals in dendrites or spines [77],

stochastic openings of voltage-gated ion channels have an

important role in adjusting the transmembrane voltage dynamics

[78–80], and the reliability of action potential propagation along

thin axons is affected by the stochastic opening of voltage-gated

ion channels [81]. Furthermore, molecular noise of single ion

channel is shown to be translated into global cellular processes in

astrocytes [82].

In summary, the development of new IP3R models clearly calls

for both steady-state and kinetic data. Fitting of the new

computational models should be done using automated estimation

techniques, possibly using Bayesian approaches [72,83–85]. Data

for model construction and fine-tuning would ideally be acquired

from the same neuronal type as the model is built for.
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Table 6. Ca2z and IP3 concentration used in different
simulations for open and closed time distributions.

[Ca2+] (mM) [IP3] (mM)

Sim 1 0.2 2

Sim 2 0.2 10

Sim 3 0.1 2

Sim 4 0.1 10

Sim 5 0.01 2

Sim 6 0.01 10

The simulations were done in the same conditions as wet-lab experiments
[20,22] and with five times greater IP3 concentration in order to take into
account the affinity difference between in vivo and lipid bilayer experiments
[31].
doi:10.1371/journal.pone.0059618.t006
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