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Epigenetic changes may contribute substantially to risks
of diseases of aging. Previous studies reported seven
methylation variable positions (MVPs) robustly associ-
ated with incident type 2 diabetes mellitus (T2DM). How-
ever, their causal roles in T2DM are unclear. In an incident
T2DM case-cohort study nested within the population-
based European Prospective Investigation into Cancer
and Nutrition (EPIC)-Norfolk cohort, we used whole
blood DNA collected at baseline, up to 11 years before
T2DM onset, to investigate the role of methylation in the
etiology of T2DM. We identified 15 novel MVPs with
robust associations with incident T2DM and robustly
confirmed three MVPs identified previously (near to
TXNIP, ABCG1, and SREBF1). All 18 MVPs showed

directionally consistent associations with incident and
prevalent T2DM in independent studies. Further condi-
tional analyses suggested that the identified epigenetic
signals appear related to T2DM via glucose and obesity-
related pathways acting before the collection of base-
line samples.We integrated genome-wide genetic data to
identify methylation-associated quantitative trait loci ro-
bustly associated with 16 of the 18 MVPs and found one
MVP, cg00574958 at CPT1A, with a possible direct causal
role in T2DM. None of the implicated genes were pre-
viously highlighted by genetic association studies, sug-
gesting that DNA methylation studies may reveal novel
biological mechanisms involved in tissue responses to
glycemia.
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Type 2 diabetes mellitus (T2DM) is a major and increasing
public health problem. Genome-wide studies have identi-
fied more than 240 genetic variants (1) that are robustly
associated with T2DM. However, these only explain a mi-
nor portion of T2DM susceptibility variance (2,3). Envi-
ronmental factors, including diet and physical activity, and
also early life factors during fetal and early postnatal
development are reported to contribute to the etiology
of T2DM. Epigenetic variation can occur as a result of
genetic and/or environmental factors (4). DNA methyla-
tion (DNAm) at cytosine-guanine dinucleotides (CpG sites)
is the most commonly studied epigenetic mechanism to
date, due to its role in expression regulation and available
assays to quantify DNAm intensity at multiple sites across
the epigenome that are applicable to large-scale studies.
Unlike genotypic variation, DNAm intensity patterns are
liable to change over time, with age or following disease or
other exposure, and therefore disease-associated changes
may be either causal or consequential (5).

Previous epigenome-wide association studies (EWAS)
have identified seven methylation variable positions
(MVPs) that are significantly associated (P , 1.0 3 1027)
with incident T2DM (6,7). However, the causal role of
those markers in T2DM is unclear. Here, we aimed to
elucidate DNAm determinants of T2DM by performing an
EWAS for incident T2DM in the European Prospective
Investigation into Cancer and Nutrition (EPIC)-Norfolk
study (8). By further integrating genome-wide genetic
array data, we aimed to identify methylation quantitative
trait loci (methQTLs) for any T2DM-associated MVPs in
order to assess the likely causal role of DNAm markers in
T2DM through Mendelian randomization analyses (9).

RESEARCH DESIGN AND METHODS

Cohort Descriptions
The discovery phase EWAS was undertaken in an incident
T2DM case-cohort study nested within the EPIC-Norfolk
study (8), a prospective cohort study that recruited 25,639
individuals aged between 40 and 79 years at baseline in
1993–1997. The cohort was representative of the general
population of England and Wales for age, sex, anthropo-
metric measures, blood pressure, and serum lipids but

differed in that 99.7% of the cohort were of European
descent. We defined a random subcohort of the whole
EPIC-Norfolk study population excluding known prevalent
case subjects of diabetes at baseline using the same def-
initions as used in the InterAct Project (10) who had
available genotype data. Incident T2DM cases were ascer-
tained from multiple sources: two follow-up health and
lifestyle questionnaires providing self-reported informa-
tion on doctor-diagnosed diabetes or medications, medi-
cations brought to the second clinical exam, and medical
record linkage. Record linkage to external sources included
the listing of any EPIC-Norfolk participant in the general
practice diabetes register, local hospital diabetes register,
hospital admissions data with screening for diabetes-
related admissions, and Office of National Statistics
mortality data with coding for diabetes. Participants
who self-reported a history of diabetes that could not be
confirmed against any other sources were not considered
confirmed case subjects. Follow-up was censored at date of
diagnosis of T2DM, 31 July 2006, or date of death—
whichever came first. By definition in a case-cohort design,
there are case subjects within and outside the random
subcohort, but for the purposes of this analysis, we con-
sidered them in the incident case set only, with noncase
subjects forming the comparison group. BMI and HbA1c

levels were measured for each participant at baseline
(Table 1). All participants in the EPIC-Norfolk study
gave signed informed consent, and the study was approved
by the local research ethics committee.

Confirmation of top signals from the discovery EWAS
was sought in two further studies. The London Life
Sciences Prospective Population (LOLIPOP) study is a pro-
spective population study of Indian Asian (N 5 17,606)
and European (N 5 7,766) individuals, recruited at age
35–75 years from the lists of 58 family doctors in west
London, U.K., between 1 May 2002 and 12 September
2008. Indian Asians had all four grandparents born on the
Indian subcontinent (India, Pakistan, Sri Lanka, or Ban-
gladesh). The LOLIPOP study is approved by the National
Research Ethics Service (07/H0712/150), and all partic-
ipants gave written informed consent at enrolment. The
LOLIPOP nested case-control study of incident T2DM has

Table 1—Baseline characteristics of participants in the EPIC-Norfolk, LOLIPOP, and FHS study samples

EPIC-Norfolk, discovery phase LOLIPOP, confirmation phase FHS, confirmation phase

Incident T2DM Noncase Incident T2DM Noncase Prevalent T2DM Noncase

N 563 701 1,074 1,590 403 2,204

Female sex, n (%) 474 (84) 407 (58) 352 (36.3) 507 (31.8) 173 (43.0) 1,245 (56.5)

Age (years) 61.6 (8.1) 59.1 (9.2) 52.5 (10.2) 49.9 (9.8) 69.3 (8.4) 65.8 (8.9)

Ethnicity European European Indian Asian Indian Asian European European

HbA1c (%) 6.5 (1.3) 5.5 (0.33) 5.77 (0.49) 5.37 (0.48) 6.67 (1.15) 5.55 (0.27)

HbA1c (mmol/mol) 47.4 (14.2) 36.2 (3.6) 40 (5.4) 35 (5.2) 49 (12.6) 37 (3)

BMI (kg/m2) 29.2 (4.5) 25.6 (3.6) 28.9 (4.6) 26.7 (3.9) 31.6 (6.2) 27.7 (5.0)

Data are means (SD) unless otherwise indicated.
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previously been described (6). Briefly, at follow-up, on
31 December 2013, individuals with T2DM were identified
by primary care electronic health records and structured
queries. Participants with incident T2DM were defined as
those who did not have T2DM at baseline but who de-
veloped the disease during follow-up. Control subjects
were identified from a random subset of 7,640 participants
with a clinical assessment of fasting blood glucose con-
centration and HbA1c and questionnaire assessment be-
tween 11 January 2010 and 31 December 2013.

The Framingham Heart Study (FHS) is a community-
based longitudinal study of participants living in and near
Framingham, MA, at the start of the study in 1948 (11).
The Offspring cohort comprised the children and spouses
of the original FHS participants, as previously described
(12). Briefly, enrollment for the Offspring cohort began in
1971 (N 5 5,124), and in-person evaluations occurred
approximately every 4–8 years thereafter. The current
analysis was limited to participants from the Offspring
cohort who survived until the eighth examination cycle
(2005–2008) and consented to genetics research. DNAm
data of peripheral blood samples collected at the eighth
examination cycle were available in 2,741 participants.
Prevalent T2DM was defined as having fasting glucose
$7 mmol/L or as reporting taking T2DM medication at
any examination cycle up to the eighth examination. All
participants provided written informed consent at the
time of each examination visit. The study protocol was
approved by the institutional review board at Boston
University Medical Center (Boston, MA).

Methylation Array Profiling
In all studies, DNAm intensity was measured using the
Illumina Infinium Human Methylation 450K BeadChip
array (12-sample array for FHS and 96-sample array for
EPIC-Norfolk and LOLIPOP). Bisulfite conversion of DNA
was performed using the EZ DNAm kit (Zymo Research,
Orange, CA).

For 1,378 EPIC-Norfolk participants, DNAm was mea-
sured in DNA extracted from whole blood samples col-
lected at baseline. Converted DNA was assayed by PCR and
gel electrophoresis. Each 96-well DNA sample plate con-
tained two duplicate samples. The average correlation
between the duplicate samples was 98%.

In LOLIPOP, DNAm was measured among the first
1,074 Indian Asian participants with incident T2DM
and 1,590 matched Indian Asian control subjects. Control
subjects were matched to case subjects by age (5-year
groups) and sex. DNAm was quantified in the baseline
DNA samples collected at study enrollment. Samples were
analyzed in random order, with masking to case-control
status.

In FHS, peripheral blood samples were collected at the
eighth examination (2005–2008). GenomicDNAwas extracted
from buffy coat using the Gentra Puregene DNA extraction kit
(QIAGEN). Bisulphite-converted DNA samples were hybrid-
ized to the 12-sample Infinium HumanMethylation450

BeadChip array using the Infinium HD Methylation Assay
protocol and Tecan robotics (Illumina, San Diego, CA). DNAm
quantification was conducted in two laboratory batches.

EWAS Quality Control and Normalization
In EPIC-Norfolk, epigenome-wide DNAm data were ana-
lyzed in R (version 3.2.2). Initial quality control was
performed as recommended by the array manufacturer;
methylation intensity values were corrected using the
Illumina background correction algorithm as implemented
in minfi (13), methylation intensities with a detection P
value $ 0.01 were set to “missing,” and methylation
intensity b values were calculated for each methylation
marker per sample. For duplicate samples, the sample with
the lower CpG detection percentage was excluded.

Sample call rates were calculated as the proportion of
missing data in each sample, by autosomal, X and Y
chromosomes. For the autosomal data, 77 samples with
a call rate# 0.99 were excluded. All samples passed the call
rate threshold on the X chromosome. For the Y chromo-
some, seven male samples that did not pass the call rate
and two further female samples were excluded. Distribu-
tions of methylation intensities were also inspected by
autosomal and sex chromosomes and separately in females
and males, leading to the exclusion of two additional
samples that had an unusual distribution of methylation
intensities. After those quality control procedures, data on
1,290 samples remained. All further downstream analyses
were restricted to autosomal methylation markers.

Marker call rates were calculated as the proportion of
missing data at each CpG site. 8,775 CpGs with a call
rate #0.95 were excluded. The R package ENmix (14) was
used to identify CpG sites with multimodal distributions of
methylation intensity, which typically arise from technical
artifacts; 3,295 such CpG sites were excluded. A further
18,874 CpG sites with probes previously identified as
mapping to more than one genomic location were also
excluded (15).

To ensure reliability of the data, we repeated filtering on
sample and marker call rates until all samples and all
markers passed their respective call rate thresholds. After
exclusion of prevalent T2DM case subjects at baseline, the
final data set comprised 1,264 samples (563 incident T2D
case subjects, including 22 case subjects from the subcohort,
and 701 noncase subjects) with methylation intensities at
442,920 autosomal CpG sites. Quantile normalization of
methylation intensity b values was applied separately to the
different subgroups of markers based on color channel,
probe type, and methylated/unmethylated subtypes as pro-
posed by Lehne et al. (16)

In LOLIPOP, DNAm data were analyzed in R (version
2.15) using minfi (13) and other R scripts. Marker in-
tensities were normalized by quantile normalization as
previously described (6).

In FHS, DNAm data were normalized using the Dasen
methodology implemented in the wateRmelon package (17).
Sample exclusion criteria included poor single nucleotide
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polymorphism (SNP)matching of control positions, missing
rate .1%, outliers from multidimensional scaling, and sex
mismatch. Probes were excluded if missing rate was.20%.
Data from laboratory batches were pooled, leaving up to
2,635 samples and 443,304 CpG probes for analysis. Addi-
tional information on DNAm, normalization, and qual-
ity control is available the previously published work by
Aslibekyan et al. (18). Differences inDNAmdata generation,
quality control, and statistical models are summarized in
Supplementary Table 1.

EWAS Statistical Analyses
In EPIC-Norfolk, to identify MVPs associated with incident
T2DM, we performed a logistic regression model for each
methylation marker with incident T2DM status, with
adjustment for age, sex, estimated cell counts, and sample
plate using the EWAC pipeline. A conservative multiple
test–corrected P value threshold was applied (P , 1 3
1027). Different methylation profiles have been observed
between the different cell types in whole blood (19), and
blood-based profile of DNAm was shown to predict the
underlying distribution of cell types (20). To correct for cell
composition variability (21), we estimated first the pro-
portions of different cell types (CD41 and CD81 T-cell
subtypes, natural killer cells, monocytes, granulocytes, and
B cells) from DNAm data using the algorithm described by
Houseman et al. (22) as implemented in the R package
minfi (13). These cell count estimates were then used as
covariates in the epigenome-wide regression models for
incident T2DM.

We used STRING (23) to perform gene set enrichment
on the significant genes associated with the 18 significant
MVPs identified in the EWAS. We also performed a mod-
ified version of the MAGENTA (24) pipeline to identify the
pathways associated with genes at the loci of the signif-
icant MVPs. Since MAGENTA uses SNP data to identify
loci, we assigned to each CpG a “nearest SNP” based on
HapMap3 data and using build 36 positions for both the
CpG site and the SNPs (average distance to the nearest
SNP 5 4,175 base pairs [bp] [interquartile range 1,375–
4,859]; 1,707 of 466,039 CpGs were not assigned a SNP).
In effect, rather than using a SNP P value to rank genes to
assess enrichment, we used the P value from the methyl-
ation site to run MAGENTA.

For LOLIPOP, an epigenome-wide association of DNAm
was performed in Indian Asians with incident T2DM who
were identified from the 8-year follow-up of the study.
Differential white blood cell (lymphocyte, monocyte, and
granulocyte) count was available for all participants, and
epigenome-wide methylation scores were used to impute
a further four lymphocyte subsets (CD4, CD8, natural
killer, and B cells). Principal components analysis was
performed to quantify latent structure in the data, in-
cluding batch effects. Associations between incident T2DM
and the 18 significant MVPs identified in EPIC-Norfolk
were tested using logistic regression including intensity
values from Infinium HumanMethylation450 BeadChip

assay control probes, bisulfite conversion batch, measured
white cells, and imputed white cell subsets and the first five
principal components as covariates. Association results
were corrected for the genomic control inflation factor.
For testing of the predictive ability of the 18 markers for
incident T2DM, univariate logistic regressions were run
for each of the 18 markers to obtain individual effect sizes
(b values) for incident T2DM. A weighted methylation risk
score was subsequently calculated from these b values, and
receiver operating curve analyses were performed to pro-
vide estimates for area under the curve (AUC).

In FHS, association between each identified MVP (as-
sociated with incident T2DM in EPIC-Norfolk) was tested
for association with prevalent diabetes and glycemic traits
(fasting glucose, fasting insulin, and HbA1c). The analysis
of glycemic traits included only individuals without di-
abetes. Fasting insulin was natural log transformed. Ran-
dom effects statistical models were used to analyze the
data to account for sibling correlation and included adjust-
ments for age, sex, white blood cell counts, technical
covariates, batch effects, and BMI, with DNAm as the
dependent variable.

We also examined each T2DM-associated MVP for ad-
ditional cross-sectional association with type 1 diabetes
mellitus (T1DM) in an earlier EWAS of 52 monozygous
twin pairs discordant for T1DM, in cell-sorted peripheral
blood mononuclear cells (monocytes, B cells, or T cells) (25).
As T2DM and T1DM have largely differing aetiologies,
MVPs that are consistently associated with both outcomes
may indicate metabolic effects of diabetes on DNAm.

Other Tissues
The relevance of changes in DNAm intensity in whole
blood to other tissues was tested by analysis of genome-
wide DNAm data, generated using the Illumina Infinium
Human Methylation 450K BeadChip array, from human
liver, adipose tissue, and skeletal muscle, as previously
published (26). Human liver DNAm data were from par-
ticipants of the Kuopio Obesity Surgery Study (KOBS);
35 with T2DM and 60 without (27). Data on adipose tissue
(14 pairs), skeletal muscle (17 pairs), and blood (19 pairs)
were from monozygotic twins discordant for T2DM
(26,28,29). Adipose tissue and skeletal muscle from the
same individual were available for most of these twin pairs
(16 pairs in blood/muscle and 14 pairs in blood/fat);
concordance in DNAm intensity across these tissues was
tested for each highlighted MVP by Spearman correlation
tests. We further tested cross-tissue correlations in DNAm
at T2DM-associated MVPs between blood and other tis-
sues of relevance to T2DM etiology, liver, and pancreas in
publicly available Infinium HumanMethylation450 Bead-
Chip array data from six cadavers sampled within 12 h
postmortem (mean [SD] age 65.5 [7.2] years) (30).

Mendelian Randomization Analyses
We performed bidirectional Mendelian randomization
analyses to test whether any T2DM-associated MVPs
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had a causal effect on T2DM or are a consequence of
metabolic differences that had originated before the base-
line measurement in this study. To predict the causal effect
of each of T2DM-associated MVPs on T2DM, methQTLs
associated with each MVP (FDR ,0.05) in whole blood in
3,841 adults of European descent were identified using the
BIOS QTL browser (31). To run Mendelian randomization
analyses, we converted the Z score for each methQTL to
b and SE using the following formulas (32):

b5
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 3 2 3 MAF 3 ð12MAFÞp

SE5
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 3 2 3 MAF 3 ð12MAFÞp

where N is the sample size and MAF is the minor allele
frequency. We then tested these methQTLs in Mendelian
randomization analyses (9) for T2DM. Genetic associa-
tions with T2DM were estimated in 69,677 case and
551,081 control subjects from the UK Biobank study
(33), the EPIC-InterAct study (10) and the DIAbetes
Genetics Replication And Meta-analysis (DIAGRAM) con-
sortium (2). A summary statistics method (inverse vari-
ance weighted) that combines all the SNPs for eachMVP as
a genetic instrument was used to predict the effect of that
MVP on T2DM (34). To ensure that the instruments are
independent, we performed clumping. The Egger regres-
sion for Mendelian randomization was also used to assess
the sensitivity of the results to violations of Mendelian
randomization assumptions. Mendelian randomization
analyses were run using the R package TwoSampleMR (35).

For the reverse direction causal assessment, we tested
SNPs with previously reported associations with T2DM (2)
or related metabolic phenotypes (BMI [36], fasting glucose
[37], 2-h glucose [38], fasting insulin [39], fasting insulin
adjusted for BMI [37], insulin resistance [40], insulin
secretion [41], and waist-hip-ratio adjusted for BMI [42])
to test whether these traits have causal effects on methyl-
ation intensity at any T2DM-associated MVP. We used
summary statistics methods (inverse variance weighted
and Egger tests) that combine all the SNPs for each trait
as a genetic instrument to predict the effect of that trait on
each T2DM-associated MVP (34) in the cohort control
samples of EPIC-Norfolk (N 5 613), in which genotype
data were generated using the Affymetrix Axiom UK Bio-
bank chip. All genotypes passed standard quality control
criteria as specified by the Affymetrix best practice pipeline,
and SNPs with MAF ,5% in this sample were excluded.

Data and Resource Availability
Full summary data from the discovery EWAS for inci-
dent T2DM in the EPIC-Norfolk study are available from
https://www.repository.cam.ac.uk/; BIOS QTL browser,
http://bbmri.researchlumc.nl/atlas/; GoDMC, http://www
.godmc.org.uk/.

RESULTS

MVPs Associated With Incident T2DM
In the EPIC-Norfolk study, we identified 18 MVPs that are
associated with incident T2DM at P, 13 1027, including
15 novel signals (Table 2). None of these was reported to
have a SNP on the target CpG (15). The two strongest
associations were the previously reported signals at TXNIP
(cg19693031; P5 2.73 10221) and ABCG1 (cg06500161;
P 5 6.4 3 10214) (6,7). We confirmed a third previously
reported signal at SREBF1 (cg11024682; P5 6.03 10210)
and provide supportive evidence for an additional signal at
PROC (cg09152259; P 5 4.2 3 1024) that had previously
not been considered to be true due to lack of replication in
Europeans (Supplementary Table 2).

We sought confirmation of the top 18 MVPs in data on
1,074 incident T2DM cases and 1,590 control samples
from the LOLIPOP study and in cross-sectional data from
FHS (403 with prevalent T2DM and 2,204 control sub-
jects) (Table 3). All 18 MVPs showed directionally consis-
tent associations with incident T2DM (14 at P, 0.05) and
prevalent T2DM (16 at P , 0.05).

Novel MVPs associated with incident T2DM include
cg14476101 (P5 2.83 10210), located in the gene body of
PHGDH, which encodes phosphoglycerate dehydrogenase,
an enzyme involved in the synthesis of L-serine and other
amino acids, and cg00574958 (P 5 5.2 3 1029) in the 59
UTR (untranslated region) of CPT1A, which encodes an
enzyme that initiates mitochondrial oxidation of long-
chain fatty acids (Supplementary Table 11). Four of the
18 MVPs were located within solute carrier family genes
(SLC1A5, SLC43A1, SLC9A1, and SLC9A3R1), which en-
code plasma membrane proteins that regulate cell trans-
port of amino acids and other metabolites.

To systematically explore the biological pathways impli-
cated by T2DM-associatedmethylation signals, we first tested
the 18 MVPs for gene set enrichment using STRING and
identified significant enrichment for three pathways: “posi-
tive regulation of cholesterol biosynthetic process” (indicated
by MVPs at ABCG1, SREBF1, and POR), “carnitine metabolic
process” (indicated by CPT1A and POR), and “AMPK signal-
ing” (indicated by PFKFB3, CPT1A, and SREBF1). We then
tested the full EWAS data set in a modified MAGENTA
pipeline and identified significant enrichment for T2DM-
associated methylation signals in 10 pathways (Supplemen-
tary Table 4), including “insulin receptor signaling,” “IGF-1
signalling,” “erythropoietin signaling,” “JAK signaling,” and
“integrin signaling.”

MVPs Associated With Glycemic Traits
In nondiabetic control FHS samples, all 18 T2DM-associated
MVPs showed directionally concordant associations with fast-
ing glucose, fasting insulin levels and BMI, and 16 of the
18 MVPs showed directionally concordant associations with
HbA1c (Supplementary Table 5). In additional conditional
models in the EPIC-Norfolk discovery sample, the associations
of all individual 18 MVPs with incident T2DM were markedly
attenuated when models were further adjusted for baseline
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BMI and HbA1c (median attenuation 49% [Supplementary
Table 3]), indicating that these DNAm intensity changes
largely reflect baseline differences between future incident
T2DM cases and other cohort participants.

Furthermore, among 52 monozygous twin pairs discor-
dant for T1DM, 7 of the 18 T2DM-associated MVPs
showed cross-sectional differences in DNAm intensity in
peripheral white blood cells (monocytes, B cells, or T cells)
between the T1DM-affected and -unaffected twins, con-
sistent with an effect of glycemia on DNAm intensity (at
TXNIP, SLC9A3R1, SREBF1, CPT1A, C7orf50, PFKFB3, and
cg08309687) (Supplementary Table 6).

Relevance of Whole Blood MVPs to Other Tissues
To explore the possible relevance of changes in DNAm in-
tensity in whole blood to other tissues, relevant to T2DM
pathogenesis, we examined these 18 MVPs in liver, adipose
tissue, and skeletal muscle from individuals with and without
T2DM. Nominal associations (P, 0.05) were found with only
our 2 strongest whole blood MVP signals: cg06500161 at
ABCG1 in adipose tissue (as previously published [26]) and
cg19693031 at TXNIP in skeletal muscle (Table 4). Further-
more, at 12 of the 18 MVPs there was evidence for a positive
correlation in DNAm intensity between whole blood and liver,
pancreas, adipose tissue, or muscle (Supplementary Table 7).

Causal Effects on T2DM
To investigate the potential causal effects of the 18 T2DM-
associated MVPs, we used the BIOS QTL browser (31) to

identify methQTLs (genetic sequence variants) that are
robustly associated (at P , 5 3 1028) with DNAm in-
tensity at any of the 18 MVPs. We found 54 methQTLs
(33 cis, 21 trans), each associated with one of 16 MVPs
(Supplementary Table 8). We then used these methQTLs
as instrumental variables in Mendelian randomization
analyses, based on aggregated publicly available GWAS
data in 69,677 T2DM case and 551,081 control subjects
(DIAGRAM [2], UK Biobank [33], and EPIC-InterAct [10]).
Only one of the 16 T2DM-associated MVPs with an
identified methQTL showed nominal evidence for a direct
causal association with T2DM, cg00574958 at CPT1A (P5
0.01); however, for other MVPs the genetic-predicted
effects overlapped with the observed effects in the LOLI-
POP study (Fig. 1 and Supplementary Table 9).

We performed reverse direction causal analyses to
identify causal effects of BMI and glycemic traits on
methylation intensity at the 18 MVPs. Among participants
without T2DM in EPIC-Norfolk (N 5 613), none of the
genetic instruments for the tested glycemic or metabolic
traits (T2DM, BMI, fasting glucose, 2-h glucose, fasting
insulin, fasting insulin adjusted for BMI, insulin resistance,
insulin secretion, and waist-to-hip ratio adjusted for BMI)
showed a consistent association with any of the 18 T2DM-
associated MVPs (Supplementary Table 10).

Prediction of T2DM
In the LOLIPOP study sample, which was independent of
the discovery EWAS, the top 18 T2DM-associated MVPs in

Table 2—MVPs associated with incident T2DM at P < 1.0E-07 in EPIC-Norfolk (N 5 1,264)

CpG identifier Chr Position OR 95% CI P FDR Gene name Gene position

cg19693031 1 144152909 0.52 0.46–0.6 2.7E-21 1.3E-15 TXNIP 39 UTR

cg06500161 21 42529656 1.65 1.45–1.89 6.4E-14 1.5E-08 ABCG1 Body

cg14476101 1 120057515 0.67 0.59–0.76 2.8E-10 3.9E-05 PHGDH Body

cg14020176 17 70276580 1.63 1.4–1.9 3.3E-10 3.9E-05 SLC9A3R1 39 UTR

cg11024682 17 17670819 1.56 1.35–1.79 6.0E-10 5.7E-05 SREBF1 Body

cg06397161 22 38090005 1.51 1.32–1.73 4.5E-09 3.3E-04 SYNGR1 Body; TSS200

cg00574958 11 68364198 0.69 0.61–0.78 5.2E-09 3.3E-04 CPT1A 59 UTR

cg06235429 11 67129690 1.49 1.3–1.7 5.5E-09 3.3E-04 NDUFV1 TSS1500

cg05778424 17 52524507 1.69 1.42–2.02 7.4E-09 3.9E-04 AKAP1 59 UTR

cg11376147 11 57017774 0.68 0.59–0.77 1.3E-08 6.0E-04 SLC43A1 Body

cg04816311 7 1033176 1.51 1.31–1.75 1.7E-08 7.2E-04 C7orf50 Body

cg02711608 19 51979804 0.69 0.6–0.79 4.5E-08 1.5E-03 SLC1A5 1st exon; 59 UTR

cg08309687 21 34242466 0.68 0.6–0.78 4.5E-08 1.5E-03

cg13514042 7 1158728 1.42 1.25–1.61 4.5E-08 1.5E-03

cg08994060 10 6254032 0.65 0.55–0.76 5.2E-08 1.6E-03 PFKFB3 Body

cg01676795 7 75424284 1.56 1.33–1.84 6.5E-08 1.8E-03 POR Body

cg25130381 1 27313308 1.49 1.29–1.73 6.7E-08 1.8E-03 SLC9A1 Body

cg11183227 15 89256411 1.49 1.29–1.72 7.0E-08 1.8E-03 MAN2A2 Body

Position: by HapMap build 37. OR: odds ratio per 1 SD in methylation intensity. Genes: gene names in which the CpG falls from 1,500 bp
upstream of the transcriptional start site to the end of the 39 UTR as in Illumina’s Infinium Human Methylation 450K BeadChip manifest
file. Chr, chromosome; FDR, false discovery rate.
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aggregate showed no predictive ability for incident T2DM
(AUC 5 0.53). Furthermore, the addition of these
18 MVPs did not improve on a prediction model based
on other baseline phenotypes (BMI, HbA1c, age, sex:
AUC 5 0.761; BMI, HbA1c, age, sex, plus 18 MVPs:
AUC 5 0.762).

DISCUSSION

In this prospective study, we substantially increased the
number of MVPs in whole blood that are robustly asso-
ciated with incident T2DM. Associations for 17 of the
18 MVPs were confirmed with either incident or prevalent
T2DM in two independent studies, which indicates the
consistency of T2DM-associated whole blood DNAm in-
tensity changes across different settings and ethnicities.
Genetic causal modeling identified evidence to support
a causal effect of DNAm on T2DM at one of these MVPs,
cg00574958 at CPT1A.

The prospective designs of the EPIC-Norfolk and LOLI-
POP studies aimed to identify MVPs that precede the
development of T2DM. However, the identified T2DM-
associated DNAm intensity changes were largely attenu-
ated by adjustment for differences in BMI and glycemia
that had developed prior to the baseline measurement in
the prospective studies. Our Mendelian randomization
analyses failed to find evidence for direct causal effects
for the majority of T2DM-associatedMVPs, as indicated by

no detectable genetic-predicted effect of DNAm intensity
on T2DM and a wide discordance between the observed
and genetic-predicted effects. Conversely, overlap between
EWAS signals for T2DM and T1DM was consistent with
effects of glycemia on DNAm intensity for at least 7 of the
18 T2DM-associated MVPs.

Whether or not they show directly causal associations,
these novel and consistent T2DM-associated MVPs are
highly informative with regard to implicated genes and
biological pathways. Notably, none of the genes implicated
by this EWAS were previously identified by genetic variant
association studies. This stark difference may suggest that
T2DM-associated DNAm intensity changes may reveal
novel biological mechanisms involved in tissue responses
to glycemia rather than in the pathogenesis of insulin
resistance or insulin secretion, which are implicated by
those genetic studies. The topmost signal, cg19693031,
which lies on TXNIP, is also the most significant observa-
tion in other T2DM EWAS studies (6,7). Phosphoglycerate
dehydrogenase (PHGDH) catalyzes the first and rate-
limiting step in glucose-derived serine synthesis and
may indicate consequent purine and deoxythymidine nu-
cleotide synthesis in response to hyperglycemia and po-
tential tissue proliferative responses (43). Functional
variation in carnitine palmitoyltransferase 1 (CPT1A) reg-
ulates the composition of circulating polyunsaturated n-3
fatty acids and docosahexaoenic acid (44) and is reported

Table 3—Confirmation of the top 18 T2DM-associated MVPs in LOLIPOP and FHS

CpG identifier Chr Gene

Discovery, incident T2DM LOLIPOP, incident T2DM FHS, prevalent T2DM*

OR 95% CI OR 95% CI P b SE P

cg19693031 1 TXNIP 0.52 0.46–0.6 0.68 0.62–0.75 1.2E-14 22.6E-02 2.7E-03 1.6E-21

cg06500161 21 ABCG1 1.65 1.45–1.89 1.44 1.31–1.58 2.6E-14 1.5E-02 1.8E-03 7.1E-17

cg14476101 1 PHGDH 0.67 0.59–0.76 0.81 0.75–0.89 3.0E-06 21.6E-02 3.6E-03 1.5E-05

cg14020176 17 SLC9A3R1 1.63 1.4–1.9 1.14 1–1.29 4.3E-02 5.4E-03 1.5E-03 3.9E-04

cg11024682 17 SREBF1 1.56 1.35–1.79 1.40 1.26–1.57 2.2E-09 8.6E-03 1.6E-03 5.4E-08

cg06397161 22 SYNGR1 1.51 1.32–1.73 1.17 1.06–1.28 1.1E-03 9.6E-03 2.2E-03 1.6E-05

cg00574958 11 CPT1A 0.69 0.61–0.78 0.80 0.74–0.88 1.1E-06 26.7E-03 7.9E-04 4.8E-17

cg06235429 11 NDUFV1 1.49 1.3–1.7 1.11 1–1.24 5.8E-02 2.4E-03 1.3E-03 6.5E-02

cg05778424 17 AKAP1 1.69 1.42–2.02 1.44 1.21–1.71 3.5E-05 4.9E-03 1.6E-03 2.5E-03

cg11376147 11 SLC43A1 0.68 0.59–0.77 0.85 0.74–0.97 1.5E-02 23.2E-03 1.2E-03 8.4E-03

cg04816311 7 C7orf50 1.51 1.31–1.75 1.13 1–1.27 4.4E-02 2.0E-02 3.2E-03 8.4E-10

cg02711608 19 SLC1A5 0.69 0.6–0.79 0.84 0.76–0.93 9.7E-04 27.9E-03 1.7E-03 2.0E-06

cg08309687 21 — 0.68 0.6–0.78 0.82 0.74–0.91 1.9E-04 27.8E-03 3.0E-03 1.0E-02

cg13514042 7 — 1.42 1.25–1.61 1.04 0.94–1.15 4.4E-01 1.8E-04 1.4E-03 9.0E-01

cg08994060 10 PFKFB3 0.65 0.55–0.76 0.81 0.72–0.92 6.6E-04 21.6E-02 2.5E-03 8.5E-10

cg01676795 7 POR 1.56 1.33–1.84 1.09 0.95–1.26 2.2E-01 9.2E-03 2.4E-03 1.2E-04

cg25130381 1 SLC9A1 1.49 1.29–1.73 1.23 1.09–1.39 1.2E-03 6.5E-03 1.7E-03 1.7E-04

cg11183227 15 MAN2A2 1.49 1.29–1.72 1.08 0.97–1.2 1.9E-01 4.6E-03 2.0E-03 2.2E-02

MVPs and individual cells with confirmed association P , 0.05 appear in boldface type. FHS: 403 case and 2,204 control subjects).
LOLIPOP: 1,074 case and 1,590 control subjects. OR: odds ratio for T2DMper 1 SD inmethylation intensity. Chr, chromosome. *In FHS, b
indicates difference in percentage DNAm intensity between case and control subjects, with adjustment for age, sex, principal
components 1–3 (calculated from methylation data), batch, and family structure.
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to activate lipolysis andmitochondrial activity in brown fat
(45,46) and to maintain pancreatic islet secretion of the
principal hyperglycemic hormone, glucagon (47). Solute
carrier family members are sodium-dependent membrane
transporters that regulate intracellular cell pH, cell volume,
and other cellular events such as adhesion, migration, and
proliferation and also contribute to systemic homeostasis
of fluid volume, acid-base balance, and electrolytes. Spe-
cifically, SLC9A3R1 (NHERF1) binds to PTEN to activate
the PI3 kinase signaling cascade involved in cell survival,

growth, proliferation (48) and is a key component of
insulin and IGF-1 signaling pathways that we found
enriched for T2DM EWAS associations. These highlighted
pathways could potentially contribute to the pathogenesis
of micro- and macrovascular complications of hyperglyce-
mia. PFBK3, a regulator of glycolysis and insulin signaling
in mice, was recently highlighted by a SNP association with
late-onset autoimmune diabetes, and we here provide
independent evidence to support its role in human glucose
regulation (49).

Figure 1—Predicted causal effects of DNAm on T2DM. The scatterplot shows the genetic-predicted effects of DNAm intensity on risk for
T2DM (y-axis) plotted against observed effect estimates (from the LOLIPOP confirmation phase [x-axis]) at each of 16 top-hit MVPs (see
Supplementary Table 7). Effect sizes are log–odds ratios per 1-unit change in normalized methylation intensity aligned to higher observed
odds of T2DM.
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We recognize a number of limitations of our study. Both
of the prospective study samples displayed large differences
in baseline glycemia and BMI between incident T2DM case
and noncase subjects. This nested prospective study design
aimed to identify interactions between genetic factors and
baseline lifestyle factors measured prior to the development
of clinically diagnosed T2DM (10). Since it is impossible to
develop T2DM except by passing through a phase of non-
diabetic hyperglycemia, it is inevitable that people who go
on to develop incident diabetes in a cohort study will have
raised glucose levels at baseline if follow-up is of short or
medium duration. Future studies that have samples stored
many years prior to disease onset would be required to
identify when in the development of diabetes the T2DM-
MVP associations become apparent. Secondly, our assess-
ments of other, nonblood, tissues were limited in the range
of tissues and numbers of samples available. Despite con-
cordant changes in DNAm intensity between whole blood
and various tissues relevant to T2DM pathogenesis at 12 of
the 18 T2DM-associated MVPs, nominal differences in
DNAm were found only for our strongest two MVPs, which
suggests that larger study samples are needed.We recognize
that whole blood is not a tissue of interest to the patho-
genesis of T2DM; however, current, and most likely future,
large-scale EWAS are confined to such samples, and func-
tional insights will depend on follow-up of whole blood
signals in other tissues (50,51). The same issue of appro-
priate tissue of interest limits our genetic modeling ap-
proach, which identified genetic markers of DNAm intensity
in peripheral blood. Furthermore, the sample size for this
approach (N5 3,841 in BIOS QTL [31] and N5 613 in the
EPIC-Norfolk cohort control group) is relatively small com-
pared with data on QTLs for gene expression in peripheral
blood (N5 8,086 in the study by Westra et al. [52]). Hence,
we found only nominal evidence for a causal effect of DNAm
at only 1 of the 18 T2DM-associated MVPs, at CPT1A, and
for several MVPs the genetic-predicted effects were over-
lapping with the observed effects. Similarly, a recent large
EWAS for BMI found a causal role of methylation at only
one MVP (cg26663590 at NFATC2IP) (53). There are var-
ious possible conceptualizations of the functional interplay
between SNP, MVP, and T2DM, which provide alternative
explanations other than SNP-to-DNAm-to-T2D (54), but
they do not limit the statistical detection of apparent causal
signals. Future, larger reference data on QTLs for DNAm
intensity in whole blood are being generated (Genetics of
DNA Methylation Consortium [GoDMC]), which will allow
more powerful tests for causality, although their relevance
to DNAm in tissues of interest remains an important
question. Finally, the determinants of the identified
T2DM-associated MVPs remain unknown. Again, larger
reference panels of GWAS and DNAm array data, as well
as new methods to integrate findings across multiple
methQTLs for eachMVP, will inform future causal analyses.
Future studies are needed to identify the potential lifestyle
and developmental determinants of these T2DM-associated
MVPs.

In conclusion, we identified several robust and consis-
tent DNAm markers for incident T2DM. These appear to
be related to T2DM via glucose and obesity-related path-
ways that had their effects before the collection of baseline
samples in these cohort studies, which commenced in
midlife. These associations indicate several plausible bi-
ological mechanisms involved in tissue responses and
comorbidities of hyperglycemia.
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