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Abstract: Skeletal muscle is the largest tissue in the human body and plays an important role in
locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal.
Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased
ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and
whole body metabolism and remains one of the most promising interventions for the prevention
of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause,
or consequence, of altered protein expressions profiles and/or their posttranslational modifications
(PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the
molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation;
however, skeletal muscle proteomics are challenging. This review describes the technical limitations
of skeletal muscle proteomics as well as emerging developments in proteomics workflow with
respect to samples preparation, liquid chromatography (LC), MS and computational analysis. These
technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future
studies that involve state-of-the-art proteomics technology will broaden our understanding of
exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead
to the identification of new therapeutic targets.

Keywords: mass spectrometry; diabetes; exercise adaptations; post-translational modifications;
glucose; fat; secretome

1. Introduction

The prevalence of obesity and Type 2 diabetes is rising at an astronomical rate both in developed
and developing countries. Increasing evidence links this rise to the population exercising less and
becoming more sedentary, coupled with increased consumption of high caloric food. Type 2 diabetes
is a progressive metabolic disorder caused by both genetic and environmental factors [1]. The
pathogenesis of Type 2 diabetes involves functional defects in all major organs governing metabolic
control including skeletal muscle, adipose tissue, and liver and pancreatic β-cells [1]. These defects
lead to an impaired capacity of insulin to regulate whole body glucose homeostasis, a condition
commonly known as “insulin resistance”. Impairments in insulin action in skeletal muscle have been
clearly established as one of the early and primary defects in the pathogenesis of Type 2 diabetes [2–4].
This is not surprising as skeletal muscle is one of the largest tissues in human body and accounts for
up to 80% of insulin-stimulated glucose uptake [5]. Therefore, the role of impaired insulin action on
glucose metabolism in skeletal muscle should not be underestimated.

Like insulin, physical exercise has profound effects on glucose homeostasis. Regular physical
activity can reduce the risk of developing Type 2 diabetes [6–8], while physical inactivity serves as
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a major risk factor for the development of insulin resistance and Type 2 diabetes [9]. The beneficial
effects of exercise are partially mediated by extensive metabolic and molecular modeling of skeletal
muscle [10]. Thus, together with the pathophysiology of insulin resistance in skeletal muscle,
understanding the molecular regulation of exercise signaling and metabolism is crucial in guiding
the development of future therapies to treat diabetes and/or advise health policies. Various “omics”
approaches, including genomics, proteomics and metabolomics, are highly suited to undertake such
investigations and might help to discover novel targets for prevention and/or treatment of Type
2 diabetes. Because the majority of the cellular processes are controlled by proteins, proteomics
technology offers enormous promise for investigating molecular mechanisms underlying skeletal
muscle insulin resistance and exercise-induced adaptation.

Liquid chromatography (LC) and high-resolution mass spectrometry (MS)-based proteomics have
advanced tremendously over the years and currently have a profound impact in the field of biology
and biomedicine [11]. They have also begun to advance molecular understanding of several muscle
related diseases [12,13]. In order to apply the system biology approach and to investigate entire cellular
system, it is desirable to monitor how all expressed proteins change under the process of interest.
Recent technological advances now allow complete proteome of simple organisms like yeast [14]
and near exhaustive proteomes of mammalian cells [15–18]. However, comprehensive proteomics of
complex samples such as tissues in general and skeletal muscle in particular is challenging [19].

2. Skeletal Muscle Proteomics—Technical Challenges

2.1. Complexity of Skeletal Muscle Tissue

Skeletal muscle fibers are the most abundant cellular entities of the mammalian body. It represents
40% of the body mass in healthy human and plays vital role in locomotion, survival and whole body
metabolism. These vital functions are mainly performed by contractile, and associated proteins,
which accounts for >50% of total muscle mass [20]. This includes some of the giant proteins such as
nebulin and titin with molecular masses of 800 kDa and 1200 kDa, respectively. The highly abundant
contractile and associated proteins including myosin, troponin, tropomyosin, nebulin and associated
proteins dramatically increases the dynamic range of the expressed proteome, which extends down to
low-abundant proteins such as transcription factors [20]. The wide dynamic range coming from highly
abundant proteins possesses one of the major problems in skeletal muscle proteomics (explained in
Section 2.2).

Skeletal muscle fibers are highly plastic, meaning it can undergo considerable changes during
physiological adaptations under exercise training, natural muscle ageing, and various pathological
conditions such as insulin resistance, cachexia, and neuromuscular diseases [21–23]. These changes
are associated with change in expression of protein or its specific isoforms and/or posttranslational
modifications (PTMs). Based on the myosin heavy chain isoforms, skeletal muscle fibers are classified
into slow oxidative, fast oxidative-glycolytic and fast glycolytic fibers as well as variety of hybrid
muscle fiber [24]. An individual skeletal muscle consists of different amount of fiber types, hence
possesses different metabolic properties. Fiber type ratio (determined by myosin heavy chain isoform)
is constantly changing under physiological adaptations (e.g., exercise and ageing) and different
pathological conditions (e.g., insulin resistance and cachexia) [24]. Histological studies have shown
that the muscle fibers belonging to the same motor unit are metabolically similar or identical [25,26].
Therefore, it is likely that the metabolic properties of individual muscle fibers are primarily under
neural control. The existence of spectrum of fibers makes skeletal muscle extremely heterogeneous,
which is metabolically suited to a wide range of functional demands; however, the resulting diversity
hampers proteomic analysis of skeletal muscle.

Human genome is relatively stable and comprises mere 20,000 protein coding genes [27].
Nevertheless, alternative splicing translates human genome into hundreds thousands of different
protein species, extending proteomics complexity [28]. For instance, alternative splicing of skeletal
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muscle SERCA genes producing different isoforms Ca2+-ATPases and their PTMs leads to the formation
of more than 10 different isoforms of SERCA [29,30]. Recently, it has been reported that human skeletal
muscle consists of >23,000 transcripts [31]. Even though existence of protein isoforms provides the cell
with a considerable degree of complexity, it is the ability of proteins and their isoforms to undergo
PTMs that exponentially increases the protein diversity. Thus plasticity of muscular system together
with its increased protein diversity due to alternate slicing and PTMs greatly impedes proteomic
analysis of skeletal muscle.

The neuromuscular system is highly complex, consisting various fiber types, capillaries, satellite
cells and several layers of connective tissues, with possible variations of their relative proportion
under several pathophysiological conditions [24]. Skeletal muscle biopsies from rodents or human
are highly heterogeneous and often contaminated with other cell types such as motor neurons and
proteins originated from the blood. For instance, we have recently shown the presence of the proteins
originated from nerves cells and blood cells in mouse muscle proteome [20]. Therefore one should
take an account of protein abundance from mixed cell population when interpreting the results. The
contamination of muscle cells by other cell types, to a certain degree, can be circumvented by studying
pure single muscle fibers. We have recently shown that with the current technology, quantitative
MS-based proteomics can be performed on single pure muscle fiber [32]. However, a tiny amount of
protein obtained from single muscle fiber can be a limiting factor when performing PTMs studies or
deep proteome studies where fractionation is required. In summary, wide dynamic range by highly
abundant proteins, existence of different isoforms, PTMs, plasticity and heterogeneity of skeletal
muscle poses huge challenges to proteomic analysis (Figure 1).
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Figure 1. Challenges in skeletal muscle proteomics: summary of the various challenges in skeletal
muscle proteomics.

2.2. Deep Proteome of Skeletal Muscle Tissue

In the age of whole-genome analysis and system biology, the proteomics community is aiming
to identify and quantify all expressed proteins in a given biological system (complete proteome).
This is already possible for simple organism like yeast [14] but it is a colossal task for skeletal
muscle tissue (described in Section 2.1). Skeletal muscle proteomics have already advanced molecular
understanding of several muscle diseases but early studies had limited proteome coverage and lacked
robust quantitation [23]. These studies often involved quantification of most abundant proteins
such as contractile proteins and enzymes of metabolic pathways while the quantitation of low
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abundant regulatory proteins was missing. Deeper coverage of muscle proteome is indispensable for
understanding the complex molecular events associated with exercise adaptation or insulin resistance
(or any other pathological condition). Recently, using advance liquid chromatography coupled with
mass spectrometry (LCMS) and streamlined bioinformatics analysis, we detected >8000 proteins
including skeletal muscle transcription factors such as myod1, myogenin and other low abundant
circadian clock proteins [20]. These low abundant transcriptional regulators were barely detected in
previous proteomics studies. Contrary to skeletal muscle tissue proteome, proteome of C2C12 muscle
cells is less challenging. In a similar study, we identified ~10,000 proteins in C2C12 cells [20]. Even
though C2C12 myotubes is a commonly used model system in the field of muscle biology, they lack
the 3D structure and specialized muscle functions characteristic of the tissue context. Therefore, it is
desirable to perform the proteomics analysis of skeletal muscle tissue.

Our deep proteome analysis of skeletal muscle tissue revealed that the dynamic range of muscle
proteome is spread over eight orders of magnitude. The top two most abundant proteins, myosin and
titin, accounted for 18% and 16% of total protein mass, respectively, while the top 12 most abundant
proteins already make up 50% of total protein mass [20] (Figure 1). When we ranked proteins according
to their abundances, the lower half of the proteome accounted for negligible fraction of total protein
mass (<0.1%). Proteins annotated with contractile machinery (Gene Ontology Cellular Compartment
(GOCC)), the major contributors to increased dynamic range, constituted 53.6% of total proteins mass.
Deep proteomic analysis also revealed detailed metabolic map of the skeletal muscle. More than 30%
proteins were annotated to metabolic process (Gene Ontology Molecular Function (GOMF)), while
7% proteins to mitochondria (GOCC) and roughly 10% were annotated to enzymes of core metabolic
pathways (glycolysis, krebs cycle, fatty acid oxidation and oxidative phosphorylation (OXPHOS)) [20].
Accurate quantitation of the enzymes of metabolic pathways is central to studying insulin resistance
and exercise adaptations in skeletal muscle.

3. Emerging Technology for Skeletal Muscle Proteome

MS based proteomics is rapidly growing field with constant advent of varieties of sophisticated
technologies with regards to sample preparation, peptide fractionation, LCMS instrumentation and
bioinformatics analysis [14,33–36]. These technologies have not yet fully exploited in the field of
skeletal muscle proteomics (Figure 2).

Figure 2. Skeletal muscle proteomics workflow: outline of the emerging development in the
various preparative and analytical steps involved in the routine mass-spectrometry based proteomics.
These advanced proteomics technologies have not yet been fully exploited in the field of skeletal
muscle proteomics.
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3.1. Sample Preparation

Sample preparation in proteomics workflow is an important step because it determines overall
quality of proteomics analysis [37]. Efficient protein extraction and solubilization is crucial for
proteomics analysis. Various reagents such as sodium dodecyl sulfate (SDS) [38], Na-deoxycholate [14],
Na-laurate [39], or guanidine-hydrochloride [40] can be used for protein extraction. Recently, we tested
these reagents for skeletal muscle protein extraction and found that SDS-based extraction provides
highest protein extraction yields [41]. Even though SDS ensure complete lysis and solubilization
of skeletal muscle, it need to be removed before subsequent enzymatic digestion using in-gel- [42],
in-solution- [43] or protein reactor-based filters [38]. Indeed, in our deep muscle proteome analysis, we
lysed the skeletal muscle tissue using SDS-based buffer and performed the enzymatic digestion
on the reactor-based filters (FASP method) [20]. Urea-based lysis buffers are widely used for
proteomics samples preparations. Nevertheless, Guanidine-hydrochloride and sodium deoxycholate
have advantages over urea as the lysis agent because of their temperature stability and chemical
inertness [40,44]. A recently published In-stage Tip (iST) [14] sample preparation protocol utilizes these
lysis agent. The iST method is simple, scalable, robust, and highly sensitive and guarantees minimal
sample loss [14]. This method has been tested for single muscle fiber proteomics [32], however, it
needs to be tested for deep muscle proteome analysis.

3.2. Protein, Peptide Fractionation

With modern technology, single LC-MS/MS analysis (single-shot) using long columns (50 cm)
and gradient coupled to a Orbitrap instrument can yield nearly complete proteome of single organisms
like yeast [14,45]. However, LC-MS instruments have limitations with respect to single-shot analysis
of highly complex protein mixtures particularly those who possess a wide dynamic range (such as
skeletal muscle). Therefore, to reduce the sample complexity, additional separation steps such as
fractionation at the levels of organelle, protein or peptide are favored.

Protein complexity can be reduced by protein fractionation prior to enzymatic digestions. This
can be achieved using various chromatographic methods, including ion exchange [46], reversed
phase [47], hydrophobic interaction [48], size exclusion or the more popular SDS polyacrylamide
gel electrophoresis (SDS PAGE) separation [42]. Alternatively, peptide can be fractionated using
several methods like OFFGEL fractionation [49], high pH fractionation [33], strong cation exchange
chromatography [50] or strong anion exchange chromatography [51]. The wide range of available
fractionation methods makes it challenging to choose the best-suited method for skeletal muscle
proteome. To our knowledge, with respect to skeletal muscle proteomics, there has been no study
where “fair” comparison between these methods has been done. We used OFFGEL fractionation
method to achieve deep skeletal muscle proteome [20]. Recent reports showed that six-fraction of
strong cation exchange chromatography (SCX) outperformed six-fraction of strong anion exchange
chromatography (SAX) and just three peptide fractions using poly (styrenedivinylbenzene) reverse
phase sulfonate (SDB-RPS) resulted in higher peptide number than the six-fraction SAX approach [14].
However, these fractionation methods need to be tested on skeletal muscle peptides.

Complexity of the protein samples can also be reduced by stepwise protein cleavage and
fractionation in filter format. For instance, it was demonstrated that consecutive digestion of proteins
with multiple proteases in the filter aided sample preparation (MEDFASP) format allows generation
of two peptide fractions with an overlap of only 2%–5%. Moreover, it significantly increased the
number of peptide and protein identifications [52]. In fact, we used this approach to quantify
key metabolic pathways in slow and fast skeletal muscle [41]. Protein coverage using MEDFASP
was further improved by inclusion of extra step, which involves enrichment of cysteine-containing
peptides as a third fraction (TAPEG FASP) [53]. This extra fraction reduced the complexity of
skeletal muscle proteome, increased peptide and protein identification and the sequence coverage
of skeletal muscle proteome [53]. Another filter based stepwise digestion method exploited the
abundance-dependent Michaelis–Menten kinetics of trypsin digestion to selectively digests and deplete
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abundant proteins [54,55]. This approach led to identification of low abundant proteins in yeast [54];
however, this elegant approach has not been tested on skeletal muscle lysate. All fractionation methods
described here utilizes physicochemical properties of proteins/peptides and they might yield different
results depending on complexity of the samples. For skeletal muscle proteomics, depending on
the biological questions, one should compare fractionation methods side by side and choose the
optimal one.

3.3. LCMS Instrumentations

Modern chromatography and mass spectrometry setup is playing a pivotal role in characterizing
deep proteome in relatively short period of time [11]. The current generation of high-pressure
high-performance liquid chromatography pumps, together with very small bead particles as column
material and comparatively long columns, has resulted in high peptide-separation capacity [36,56].
Present day mass spectrometers are extremely fast, very sensitive, have very high resolutions and a
greater dynamic range [34,57,58]. This array of features makes it possible to achieve sub-ppm range
mass accuracy, which is an obvious requirement for accurate peptide identification [59]. Together
with improvements in sample preparation protocols and computational proteomics (discussed below),
modern LCMS instrumentations are a game changer in the field of proteomics.

3.4. Computational Proteomics

Over the last decade, together with analytical proteomics workflow, there has been immense
advancement in the field of computational proteomics. Earlier, proteomics data processing time for
single project took several months and lots of steps were performed manually. Today, massive datasets
can be processed in a completely automated manner in relatively short time, without compromising
statistical accuracy [59]. The sophisticated algorithms have improved protein quantification and
identifications [35]. For instance “label free quantification” using “MaxLFQ” algorithm is one such
example where peptide intensities are directly compared between the samples given that the samples
are measured under identical conditions and data were obtained using high resolution MS [35]. The
MaxLFQ is completely integrated into the MaxQaunt [59] and can be activated by one additional
click. For accurate quantifications, metabolic labeling (such as SILAC) and chemical labeling are still
widely used [60–62]. This is primarily because of their accuracy and robustness but the care must
be taken that the samples are handled in the same way. Chemical labeling can be applied to any
proteomics samples; however, because the labels are introduced later in sample processing, some of the
advantages in robustness are lost. Additionally, depending on the label used, it can also be expensive
for large studies. It was shown that both SILAC and MaxLFQ generate similar ratio distributions [63],
suggesting that quantification accuracies obtained by MaxLFQ are comparable to those obtained with
SILAC. Moreover, similar to isotope-labeled standards, label free quantification is capable of absolute
quantifications [64]. Indeed using raw peptide intensities, we have performed absolute quantification
of key metabolic pathways in slow and white skeletal muscle [41].

In bottom-up proteomics, often peptides sequences are identified by MS/MS database search
engine. Using some elegant computational tools, it is now possible to increase the peptide identification
beyond those that have been sequenced. This can be achieved by transferring the peptide identifications
from sequenced peptides to non-sequenced or unidentified peptides by matching their mass and
retention time (“matchbetweenruns” feature in MaxQuant) [35]. A prerequisite for this is that MS runs
should be performed under identical chromatographic condition (similar gradient, columns length,
column beads, etc.) and the peptide masses should be accurately determined. The “matchbetweenruns”
feature in MaxQuant aligns the retention times between the runs and—based on the accurately
determined masses—efficiently transfers the peptide identifications from one LC run to other LC runs
where the peptide was not sequenced. We found that this approach is particularly attractive when
the identifications are matched from less complex cell line to more complex tissue of same origin. For
instance, when we matched the protein identification from C2C12 muscle cell lines to mouse adult
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skeletal muscle, protein identifications were boosted by about 30% [20]. In this study, we also showed
that most of the proteins identified skeletal muscle by the “match between runs” were partially or
exclusively of low abundance and include interesting classes of skeletal muscle specific transcription
factors, nuclear receptors and circadian clock proteins [20].

Thus, mass spectrometry-based proteomics is rapidly evolving. The new proteomics technology
is not yet fully exploited in the field of skeletal muscle proteome. In the future, application of
sophisticated proteomics workflow to complex tissues such as skeletal muscle may unravel underlying
mechanisms for exercise-mediated adaptation in skeletal muscle and various pathological conditions
such as insulin resistance and Type 2 diabetes.

4. Proteome Profiling of Diabetic Skeletal Muscle

Skeletal muscle insulin resistance is a hallmark feature of Type 2 diabetes [65,66]. Under diabetic
conditions, skeletal muscle undergoes significant remodeling, which results in decreased oxidative
capacity, fiber type changes, contractile weakness, and insulin resistance [67]. Majority of these changes
are attributed to abnormal changes in signaling events, protein expression and/or PTMs [22]. Therefore
detailed proteomics and PTMs analysis of diabetic skeletal muscle can provide underlying causes for
Type 2 diabetes.

Over the last decades, several research groups have performed skeletal muscle proteome analysis
from diabetic patients and rodent models of diabetes [68–71]. These pioneering studies have already
begun to advance our understanding of skeletal muscle insulin resistance. For instance, using
proteomics and transcriptomics approach, Stentz and Kitabchi showed that the expression of key
proteins (and genes) regulating glucose transport and glycolysis are differentially regulated in diabetic
skeletal muscle compared to their healthy controls [70]. Another study that involved proteome analysis
of lean, obese and Type 2 diabetic skeletal muscles revealed that the insulin-resistance muscle bears
reduced expression of mitochondrial and structural proteins [72]. These abnormalities were also
observed in skeletal muscle from rodent model of Type 2 diabetes [71]. Using two-dimensional
electrophoresis combined with mass spectrometry, Choi et al. demonstrated gender specific differences
in rodent model for Type 2 diabetes [73]. Altered proteins expression was also observed in human
primary skeletal muscle cells from Type 2 diabetic subjects compared to their healthy controls. It
was proposed that the derangements in proteasome system from Type 2 diabetes might have led
to development of insulin resistance [74]. Proteomics screens of skeletal muscle can also reflect the
metabolic state under disease conditions. For example, Giebelstein et al. showed that the abundance
of glycolytic enzymes was up-regulated, while mitochondrial proteins were down-regulated in
skeletal muscle from insulin-resistant subjects. Interestingly, these changes were associated with
shift in muscle properties towards a fast-twitch pattern [68]. Numerous proteomics studies suggest
pivotal role for mitochondrial function in development of Type 2 diabetes. A more recent study
showed that skeletal muscle from rodent model for diabetes bear increased mitochondrial protein
degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved
in mitochondrial respiration and beta oxidation [69]. These proteomics screens have documented
hundreds of differentially regulated proteins in diabetic skeletal muscle. Functional relevance of these
differently regulated proteins remains to be elucidated.

Due to technical challenges, majority of these studies had limited proteome coverage and
lacked robust quantifications. With cutting age proteomics technology, it is now possible to achieve
comprehensive proteome coverage of skeletal muscle [20]. Future studies using the state-of-the-art
proteomics will broaden our understanding of Type 2 diabetes.

4.1. Diabetes and Skeletal Muscle PTMs

In skeletal muscle, binding of insulin to insulin receptor (IR) initiate a signaling cascade that
results in translocation of the insulin-sensitive glucose transporter 4 (GLUT4) to plasma membrane [22].
This is the most important step in insulin stimulated glucose uptake. Studies from cellular, animal and
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human model for Type 2 diabetes have revealed clear impairment in insulin signaling cascade towards
GLUT4 translocation. These impairments were primary documented using phospho-specific antibodies
against few known insulin signaling molecules such as insulin receptor substrate (IRS), protein kinase
B (PKB) and Rab GTPase activating proteins TBC1D4 [22]. It is likely that insulin signaling to glucose
transport is not limited these known signaling events. Moreover, the function of these signaling
molecules might be regulated by their expression levels and/or their PTMs. Earlier studies involving
phosphoproteomics of healthy skeletal muscle (non-stimulated) revealed several phosphorylation
proteins that are involved in regulation of mitochondrial metabolism, sarcomeric functions, muscle
contraction, glucose and glycogen metabolism [75,76]. These pioneering studies significantly advanced
our understanding of skeletal muscle biology but these studies had limited phosphoproteome coverage.
MS-based proteomics has begun to reveal the true extent of the phosphorylation and acetylation
landscape in various tissues and cells [33,77–79]. Large-scale phosphoproteomics studies have already
deciphered hundreds of novel insulin regulated phosphoproteins in insulin sensitive tissues like liver
and skeletal muscle cells [77,80]. To my knowledge, there has been no study comparing comprehensive
phosphoproteome of control and diabetic skeletal muscle. In addition to phosphorylation and
acetylation, other PTMs such as ubiquitination, glycosylation, formylation are also important for
regulation of cellular process [81]. Current PTMs studies focus on phosphorylation and acetylation but
other modifications are also becoming amenable for investigations. Future PTMs studies comparing
control and diabetic skeletal muscle may help in understanding molecular pathogenesis of insulin
resistance in skeletal muscle.

4.2. Diabetes, Skeletal Muscle Metabolism and Muscle Fiber Type

Type 2 diabetes patients are characterized by a decreases oxidative capacity and high circulating
free fatty acids (FFA) [82]. Increased levels of plasma FFA are linked to the skeletal muscle insulin
resistance [83]. Additionally, Type 2 diabetes is associated with impaired metabolic flexibility, i.e.,
inability to switch from fatty acid to glucose oxidation in response to insulin [84]. Mechanism
underlying these derangements in diabetic skeletal muscle remains elusive. Several studies claimed
that the impaired mitochondrial function is responsible for development of Type 2 diabetes [85,86].
Whether muscular mitochondrial aberrations are cause or consequence of Type 2 diabetes is not
clear. Nevertheless, these reports suggest that the way muscle handles fat and glucose is crucial to
maintaining metabolic homeostasis. In fact, proteins controlling energy metabolism are the second
most abundant protein category (after contractile proteins) in skeletal muscle [20], suggesting their
importance in skeletal muscle metabolism. Since most of the enzymes of core metabolic pathways
(glycolysis, beta oxidation, Krebs cycle, OXPHOS, and pentose phosphate pathways) are highly
abundant in skeletal muscle, they can be easily identified and quantified MS [20,41]. For instance,
we recently reported the metabolic map of slow oxidative and fast glycolytic skeletal muscle from
mouse [41]. Compared to fast muscle, slow muscle has higher mitochondrial proteins content, higher
concentrations of enzymes of beta oxidation, TCA cycle, OXPHOS and lower concentrations of
glycolytic enzymes [41]. As expected, myosin heavy chain isoforms Myh 1,2,7 were higher in red
muscle, while Myh 4 isoform was predominant in fast muscle [41]. Due to inherent properties of
individual fibers, fiber type changes are always associated with change in their metabolic properties.
Such analysis can be used to monitor fiber type transition in diabetic skeletal muscle. It has been
reported that the skeletal muscle from Type 2 diabetic patients undergo fiber type transition from
slow-to-fast fibers, which is associated with reduced activity of oxidative enzymes [87]. Proteomic
profiling of metabolic enzymes, together with their PTMs, can provide more mechanistic understanding
of insulin resistance in skeletal muscle.

4.3. Diabetes and Muscle Strength

Impaired structure and function of the contractile fiber (sarcopenia) are responsible for the fragility
of sedentary elderly patients [88]. Patients with Type 2 diabetes showed greater decline in muscle mass
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and muscle strength with age [89], which may be a cause or a consequence of an altered proteome
profile. In the same study, it was reported that the size of the fast muscle fibers was smaller in Type 2
diabetic muscles [89]. Few other studies showed clear link between decreased muscle strength and Type
2 diabetes [90,91]. Muscle mass is often measured by body scanning technique such as dual-energy
x-ray absorptiometry (DXA), while muscle strength is estimated by various performance tests [89–91].
Contractile proteins, which constitutes >50% muscle proteome, are the most abundant protein category
in skeletal muscle [20]. Whether muscle weakness is linked to decreased abundance and/or altered
PTMs of contractile protein is still unknown. Future studies co-relating MS-based quantitation of
contractile proteins with body mass and muscle strength will provide valuable information for reduced
muscle strength in diabetic patients.

4.4. Skeletal Muscle Biomarkers for Diabetes

Type 2 diabetes is often underdiagnosed. About one-third of people with diabetes do not know
they have it. The average lag between onset of Type 2 diabetes and the diagnosis is seven years, and
that onset of Type 2 diabetes probably occurs at least 12 year before its clinical diagnosis [92]. Recently,
it has been shown that the early detection and treatment of Type 2 diabetes reduces cardiovascular
disease related morbidity and mortality [93]. Traditionally, Type 2 diabetes or prediabetes is diagnosed
using only fasting glucose or glucose two hours during oral glucose tolerance test. Recently, plasma
levels of glycated hemoglobin (HbA1c) are also used for diagnosis of Type 2 diabetes. All existing
diagnostic methods have their advantages and disadvantages [94]. There is an absolute need to
discover new biomarkers that can be used for early diagnosis and disease monitoring. Skeletal muscle
proteomics promises to play a major role in the establishment of Type 2 diabetic specific biomarker
signature. Such biomarkers signature can be crucial for the development of improved diagnosis,
the monitoring of disease progression, assessment of drug action and the identification of novel
therapeutic targets.

4.5. Interaction Proteomics

Interaction of proteins with other proteins, DNA, RNA, or metabolites, regulates numerous
cellular and molecular functions in the cells. The size of the human interactome appears to be far more
complex than the genome or proteome [95,96]. MS-based proteomics has had a significant impact on
studying protein–protein interactions [96–99]. It has also started to unravel novel abnormalities along
insulin signaling in skeletal muscle. For instance, interactome of Insulin receptor substrate 1 (IRS1)
showed increased interaction of multiple proteins in skeletal muscles from obese and Type 2 diabetic
subjects compared to their controls [100]. Future interactome studies of other signaling molecules
along the canonical insulin signaling pathways might improve our understanding of insulin signaling
and insulin resistance in skeletal muscle.

5. Proteomics Application to Study Exercise Biology

Physical inactivity (sedentary lifestyle) serves as a major risk factor for development of insulin
resistance and Type 2 diabetes [9]. It is associated with decreased insulin sensitivity, attenuation
of postprandial lipid metabolism, loss of muscle mass and accumulation of visceral adipose
tissue [101,102]. Like insulin, exercise/muscle contraction is a major stimulator of skeletal muscle
glucose uptake. A single bout of exercise or exercise training increases skeletal muscle glucose uptake in
an insulin-dependent and insulin-independent manner [103–105]. Unlike insulin, exercise-stimulated
glucose uptake is unaltered in skeletal muscle from insulin resistant humans or rodents, providing
evidence that exercise-mediated signal transduction pathways are intact in diabetic muscle [106,107]. It
is known that the acute exercise makes skeletal muscle more sensitive to insulin while lifestyle
modification though regular (chronic) exercise reduces the incidence of subsequent diabetes by
60% [9,104,105]. Thus, exercise appears to play essential role in metabolic homeostasis and remains
one of the most promising interventions for treatment of diabetes and obesity as well as the associated
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disorders. Therefore thorough investigation of MS-based protein profiles between control and exercised
skeletal muscle may identify novel proteins with potential anti-diabetic effects. To better understand
exercise effect on health, it is crucial to understand acute and long-term (chronic) effects of exercise
on signaling cascade, metabolism and long term adaptation. The Sections 5.1 and 5.2 describes how
MS-based proteomics can be applied to the field of exercise biology.

5.1. Acute Exercise (Muscle Contraction) and PTMs

The effect of acute exercise on whole-body insulin sensitivity can be explained by exercise-induced
signaling networks. In the past, majority of studies investigating exercise-induced signaling pathways
were performed using immunoblotting techniques and phospho-specific antibodies against specific
kinases. This led to the identification of several exercise-responsive kinases such as AMPK, PKA, CaMK,
MAPK, PKC, FAK and mTOR [10,21,108]. However, it is likely that the exercise-mediated signaling
is not limited to these kinases and their phosphorylation. In fact, MS-based phosphoproteomics
studies have begun to unravel the complexity of exercise-induced protein phosphorylation. For
instance, global phosphoproteome analysis of human skeletal muscle after high-intensity exercise
bout revealed >1000 exercise-regulated phosphosites on 562 proteins [109]. Effects of exercise on
other PTMs are relatively unexplored. McGee et al. showed for the first time that an acute bout of
exercise led to increase in acetylation of histone 3 lysine 36 acetylation [110]. The acetylation of this
conserved residue has been shown to be associated with transcriptional elongation. The existence of
various PTMs and their possible interplay makes muscle exercise signaling landscape far greater than
previously appreciated. In the future, large-scale proteomics studies investigating exercise-induced
PTMs, their interplay and their relevance to whole body insulin sensitivity will unravel molecular
basis for exercised mediated anti-diabetic effects.

5.2. Exercise Training and Skeletal Muscle Adaptations

Increased physical activity remains the primary preventive approach for metabolic diseases.
In fact, regular physical activity combined with dietary intervention is more successful than
pharmacological intervention in the treatment and prevention of Type 2 diabetes [111]. Skeletal muscle
demonstrates remarkable malleability in functional adaptation in response to contractile activity.
Repeated muscle contractions associated with the frequent exercise training are the potent stimuli for
physiological adaptations [112]. Exercise training orchestrates numerous morphological and metabolic
adaptations in skeletal muscle. This includes changes in contractile protein and function [113,114],
mitochondrial function [115], metabolic regulation [116], intracellular signaling [117], and
transcriptional responses [118]. Collectively, these changes lead to increased sensitivity to insulin
enhanced capacity to oxidize glucose and fat and, despite well-established phenotypic changes, the
molecular mechanisms underlying exercise-mediated skeletal muscle are poorly characterized. It
is widely accepted that the exercise training induced adaptations are associated with alteration in
protein content and enzyme activities. Several large-scale proteomics studies of human or rodent
skeletal muscle have significantly improved our understanding of the exercise biology. Holloway et al.
were the first to investigate the effects of exercise on human skeletal muscle proteome [119]. Using
2D gel analysis, they discovered 256 spots, of which 20 proteins were differentially expressed
after six weeks of interval training. Training induced adaptations were associated with increased
expression of mitochondrial proteins [119]. Another study involving 2D fluorescence difference
gel electrophoresis (2DDIGE)-based analysis of human skeletal muscle proteome showed that the
extensive remodeling of the mitochondrial proteome occurred after only seven days of exercise
training [120]. Using FASP-based digestion method and OFFGEL fractionation, 3481 proteins were
identified in human skeletal muscle; however, only 702 proteins could be identified in all samples [121].
Despite this, proteomics analysis of skeletal muscle from healthy endurance exercise-trained and
untrained individuals showed clear differences in proteome profiles. Proteins associated with
oxidative phosphorylation, tricarboxylic acid and fiber types were significantly up-regulated in trained
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individuals as opposed to untrained individuals [121]. Using MS-based proteomic analysis of skeletal
muscle from sedentary and active mice, Alves et al. showed that sedentary mice presented significant
loss of electron transport chain (ETC) functionality in opposition to active mice [122]. MS-based
proteomics has also been performed in skeletal muscle from physically inactive individuals. In one
such study, proteins involved in aerobic metabolism were significantly down-regulated in skeletal
muscle from physically inactive subjects [123]. Very few studies using MS-based strategies have been
published focusing on cross-talk between exercise training and pathophysiological conditions such
as diabetes. In one such study, exercise training significantly altered the abundance of 17 proteins
in skeletal muscle from Type 2 diabetes. These proteins were related to energy metabolism, the
cytoskeleton, or few with unknown function [124]. Another study using diet-induced insulin resistant
mice showed that six weeks of exercise training led to increased expression of 23 different proteins
in skeletal muscle from exercised mice as compared to their sedentary controls. These proteins were
mainly involved in antioxidative stress response, lipid binding, myofibrillar contraction, mitochondrial
functions and molecular chaperons [125]. However, like any other skeletal proteomics studies, these
pioneering studies had limited proteome coverage and lacked robust quantitation. Moreover, the role
of various PTMs such as phosphorylation and acetylation in exercised-induced adaptations is not yet
explored. Future studies involving modern proteomics technology will gain an understanding of the
important role physical exercise plays in maintaining health.

6. Secretome of Insulin Resistant and Exercised Skeletal Muscle

Over the last decade, skeletal muscle has emerged as an important secretory organ. Proteins
or peptides secreted from skeletal muscle (often termed as myokines) can have autocrine, paracrine,
and endocrine effects, which might influence whole body metabolism [126]. Therefore, proteomic
analysis of secreted proteins from skeletal muscle holds enormous promise. This will particularly
help us to understand how muscle communicates with other organs such as adipose tissue, brain and
liver. Secretome analysis is often performed using serum free media from primary cell cultures or cell
lines. As opposed to adult skeletal muscle proteomics, secretome analysis of skeletal muscle cells is
relatively easy; however, it faces few other challenges, such as detection of bona fide secreted proteins
at low concentration by MS (pg/mL) and separation of authentic secreted proteins from proteins
derived from cell leakage or serum. With modern technology, quantitative MS-based secretome
analysis of cells can be performed with pictogram sensitivity [127]. Using state-of-the-art MS and
streamlined bioinformatics workflow, we recently showed that C2C12 muscle cells secretes >1000 high
confidence secreted proteins [128]. Interestingly, 80% of these proteins are also found in adult skeletal
muscle [128]. An attractive element of skeletal muscle cells is that they can be manipulated to mimic
some aspects of skeletal muscle insulin resistance or muscle contractions in vivo. For instance, skeletal
muscle insulin resistance can be achieved by treatment of muscle cells with high nutrients (amino
acids, glucose, and lipids) [129–131] or pro-inflammatory factors such as tumor necrosis factor alpha
(TNFα) [132]. Exercise/contraction-inducible responses in skeletal muscle can be studied using Electric
Pulse Stimulation (EPS) of differentiated muscle cells (myotubes) [133]. These models have already
been used for investigation of secretome of insulin resistant and exercised muscle. We recently showed
that ~40% secreted proteins were regulated under lipid-induced insulin resistance conditions [128].
While using EPS stimulated human primary muscle cells, Raschke et al. identified and validated
several novel contraction-regulated myokines [134]. Raschke et al. [134] used cytokines antibody arrays
but similar analysis can be performed using MS-based proteomics. Thus, secretome analysis of insulin
resistance and EPS stimulated muscle cells has begun to unravel the world of skeletal muscle secreted
proteins. The function and regulation of newly identified secreted proteins in the context of muscle
physiology are largely unexplored. Therefore, further studies are required to clarify their regulation,
their roles in distinct signaling pathways and skeletal muscle metabolism. Figure 3 summarizes
different proteomics approaches that can be applied for study of skeletal muscle insulin resistance and
exercise-induced adaptations.
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7. Conclusions

MS-based proteomics analysis of skeletal muscle is challenging. This is primarily due to the wide,
dynamic range of highly abundant contractile and associated proteins; the heterogeneity; and various
PTMs. High-resolution mass spectrometry-based proteomics has progressed tremendously over the
years. Improved proteomics workflow at the level of sample preparation, liquid chromatography,
mass spectrometry and computational analysis has enabled probing skeletal muscle proteome at an
unprecedented depth [20]. These advanced proteomics technologies have not yet been fully exploited
in the field of skeletal muscle proteomics.

Skeletal muscle is the largest depot for glucose storage in the body [5]. Insulin and exercise
are the major stimulators of skeletal muscle glucose uptake. Skeletal muscle insulin resistance, as
evident by impaired glucose uptake and lipid oxidation, is the primary defect in development of Type
2 diabetes [1,65]. It is known that a single bout of exercise makes skeletal muscle more sensitive to
insulin, while lifestyle modification through regular exercise reduces the incidence of diabetes by
60% [9,104,105,111]. Both insulin resistance and exercise adaptations involve a complex metabolic
process that defies explanation by a single protein or etiological pathway. Therefore, MS-based
proteomics serves as an attractive tool for monitoring global proteome and PTMs changes in insulin
resistance and exercised skeletal muscle. It has already begun to catalogue the diabetes or exercise
regulated proteins and PTMs in skeletal muscle. Future studies involving state-of-the-art proteomics
will broaden our understanding of exercise induced adaptation and molecular pathogenesis of skeletal
muscle insulin resistance. Information generated from the proteome screens may one day be used by
health care practitioners and exercise physiologist to identify people at risk for metabolic diseases and
may help them design precision interventions to achieve maximal health benefits.
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