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Abstract: Subclinical hypothyroidism (SCH) was reported to be associated with accelerating endothe-
lial dysfunction, which is recognized as one of the upstream mechanisms that leads to glomerular
injury (lower glomerular filtration rate (GFR)). SCH was also reported to be associated with hyper-
glycemia, which is associated with higher hemoglobin A1c (HbA1c) levels and induces endothelial
dysfunction. Therefore, SCH status could influence the association between HbA1c and reduced
eGFR. To clarify those associations, we conducted a prospective study of 1580 Japanese individuals
who participated in an annual health check-up in 2014 with 2.8 years of follow-up. All participants
had free triiodothyronine (T3) and free thyroxine (T4) levels in the normal range. Among study
participants, 88 were diagnosed as having SCH. Even though no significant correlation was observed
between HbA1c and annual change in estimated GFR among participants without SCH (multi-
adjusted standardized parameter estimate (β) = 0.03, p = 0.250), a significant inverse association was
observed among participants with SCH (β = −0.26, p = 0.014). When those analyses were performed
among participants who were not taking glucose lowering medication, the observed associations
were essentially the same: β = 0.03, p = 0.266 for participants without SCH and β = −0.32, p = 0.006 for
participants with SCH, respectively. Therefore, SCH status could influence the association between
HbA1c and renal function.

Keywords: subclinical hypothyroidism; thyroid stimulating hormone; triiodothyronine; HbA1c;
renal function; GFR

1. Introduction

Subclinical hypothyroidism (SCH), which is defined as elevated levels of thyroid-
stimulating hormone (TSH) with free triiodothyronine (T3) and thyroxine (T4) levels in the
normal range, was reported to be associated with accelerating endothelial dysfunction [1].
Recent studies have reported a close connection between thyroid hormones and endothelial
maintenance. Thyroid hormones directly stimulate hematopoietic stem cells [2], which
can differentiate into endothelial progenitor cells [3,4] that can promote thyroid follicle
formation [5,6]. Since endothelial progenitor cells play an important role in endothelial
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repair [3,4,7] and thyroid follicle cells produce thyroid hormones, the production of thyroid
hormones might be associated with endothelial repair capacity. SCH could be associated
with accelerating endothelial dysfunction [1].

On the other hand, hyperglycemia, which is associated with higher hemoglobin A1c
(HbA1c) levels, is known to induce endothelial dysfunction [8]. Endothelial dysfunction is
recognized as one of the upstream mechanisms that leads to glomerular injury, which is
associated with reducing the glomerular filtration rate (GFR) [9]. Therefore, higher HbA1c
levels could be associated with reduced renal function [10]. Appropriate endothelial repair
might mask this association between HbA1c levels and reduced renal function while the
presence of SCH might indicate inappropriate endothelial repair.

Therefore, we hypothesized that higher HbA1c levels are significantly associated
with reduced renal function as evaluated by annual changes in estimated GFR (eGFR) in
individuals with SCH but not in individuals without SCH. To clarify these associations,
we conducted a prospective study with a mean follow-up of 2.8 years (standard deviation
(SD), 0.5; range 0.8–3.2) of 1580 Japanese individuals with in normal thyroid hormone (i.e.,
free T3 and free T4 levels in the normal range) aged 40–74 years who participated in an
annual health check-up in 2014.

2. Materials and Methods
2.1. Study Population

Methods related to the present risk survey, including evaluation of thyroid function,
have been described elsewhere [11]. We ensured that participants understood the study’s
objectives and provided informed consent. This study was approved by the ethics commit-
tee of the Nagasaki University Graduate School of Biomedical Sciences (project registration
number: 14051404).

The study population comprised 1883 Japanese individuals between the ages of 40
and 74 years from Saza town in western Japan who underwent an annual medical check-up
in 2014, as recommended by the Japanese government.

To avoid the influence of thyroid disease, we excluded all participants with a history
of thyroid disease (n = 60). We also excluded participants with missing data on thyroid
function, such as TSH, free T3, and free T4 (n = 17), and participants with abnormal free
T3 and free T4 levels (n = 77). In addition, participants without baseline HbA1c or eGFR
data (n = 2) and participants without eGFR data in 2015–2017 were also excluded (n = 147).
The remaining 1580 participants, with a mean age of 60.9 years (SD, 8.9; range 40–74), were
included in the study.

2.2. Data Collection and Laboratory Measurments

Trained interviewers obtained information on the use of glucose-lowering medica-
tion. A fasting blood sample was collected. TSH, free T3, and free T4 levels were mea-
sured using a chemiluminescent immunoassay at the LSI Medience Corporation (Tokyo,
Japan). The normal range for free T3 (2.1–4.1 pg/mL), free T4 (1.0–1.7 ng/dL), and TSH
(0.39–4.01 µIU/mL) using this method was demonstrated elsewhere [12]. SCH was defined
as TSH >4.01 µIU/mL and normal free T3 and free T4 levels. By following the report from
the committee of the Japan Diabetes Society, we also defined diabetes as HbA1c ≥6.5%
and/or taking glucose lowering medication [13].

Serum creatinine concentrations were measured using a standard laboratory procedure
at SRL, Inc. (Tokyo, Japan). eGFR was calculated with an established method recently
adapted by a working group of the Japanese Chronic Kidney Disease Initiative [14]: eGFR
(mL/min/1.73 m2) = 194 × (serum creatinine (enzyme method))−1.094 × (age)−0.287 ×
(0.739 for women). Annual change in eGFR (annual ∆eGFR) was calculated as annual
∆eGFR ([mL/min/1.73 m2]/year) = [endpoint eGFR (mL/min/1.73 m2)–baseline eGFR
(mL/min/1.73 m2)]/[endpoint date–baseline date].
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2.3. Statistical Analysis

Characteristics of the study participants by SCH status were expressed as means ±SD,
except for gender and glucose lowering medication use. Those variables were expressed
as proportions.

Differences between mean values or proportions of characteristics were analyzed in
relation to SCH status. Significant differences were evaluated using the t-test for continuous
variables and the χ2 test for categorical variables.

Simple correlation analysis and multivariable linear regression analysis of annual
decrease of eGFR based on diabetes status and SCH status adjusting for relevant confound-
ing factors were performed. Renal function at baseline might influence annual ∆eGFR.
Therefore, for the multivariable linear regression analysis, adjustments were made for sex,
age, free T3 (pg/mL), TSH (µIU/mL), and eGFR (mL/min/1.73 m2).

Since diabetes could influence the main results, analysis limited to participants without
diabetes was performed.

To avoid the influence of age on the present results, by using the age-matched sample,
the association between HbA1c and annual ∆eGFR among participants without SCH
was evaluated.

Glucose-lowering medication use could act as a strong confounder in the main analysis.
As a sensitivity analysis, we also performed these analyses in a subset of participants who
were not taking glucose-lowering medication.

All statistical analysis was performed with SAS for Windows, version 9.4 (SAS Inc.,
Cary, NC, USA). Values of p < 0.05 were regarded as statistically significant.

3. Results
3.1. Characteristics of Study Population by Subclinical Hypothyroidism (SCH) Status

Among the study participants, 88 were diagnosed as having SCH and 140 were
diagnosed as having diabetes. The characteristics of study participants by SCH status are
shown in Table 1.

Table 1. Characteristics of study participants.

Subclinical Hypothyroidism
p

(−) (+)

No of participants 1492 88
Men, % 36.7 39.8 0.566

Age, year 60.8 ± 8.9 62.6 ± 8.9 0.074
free T3, (2.1–4.1) pg/mL 3.2 ± 0.3 3.1 ± 0.3 0.084
free T4, (1.0–1.7) ng/dL 1.3 ± 0.2 1.2 ± 0.2 <0.001

TSH, (0.39–4.01) µIU/mL 1.7 ± 0.8 5.7 ± 1.7 <0.001
Diabetes, % 8.2 20.5 <0.001

Glucose lowering medication use, % 5.4 12.5 <0.001
HbA1c, % 5.6 ± 0.6 6.0 ± 1.0 <0.001

Serum creatinine, mg/dL 0.75 ± 0.33 0.82 ± 0.32 0.069
eGFR, mL/min/1.76m2 71.4 ± 12.9 67.0 ± 15.0 0.002

Values are means ± SD. Normal ranges are given in parentheses. TSH, thyroid-stimulating hormone; T3,
triiodothyronine; T4, thyroxine; HebA1, hemoglobin A1c; eGFR, estimated glomerular filtration rate.

Compared with participants without SCH, participants with SCH had significantly
higher values of TSH and HbA1C. Participants with SCH had a significantly higher preva-
lence of diabetes, glucose-lowering medication use and significantly lower values of free
T4 and eGFR. Participants with SCH had lower free T3 values than participants without
SCH, but this difference was not statistically significant.

Figure 1 shows the distribution of annual ∆eGFR by SCH status. Participants with
and without SCH had essentially the same associations.
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Figure 1. Annual change in eGFR by subclinical hypothyroidism status. Annual ∆eGFR: annual
change in estimated glomerular filtration rate ([mL/min/1.73m2]/year).

3.2. Correlations between Annual Change in Estimated Glomerular Filtration Rate (∆eGFR) and
Hemoglobin A1c (HbA1c) in Relation to Diabetes

Correlations between annual ∆eGFR and HbA1c for total participants and stratified by
diabetes are shown in Table 2. Among total participants, both by simple correlation analysis
and by multiple linear regression analysis, no significant associations between HbA1c and
annual ∆eGFR were observed. These associations were also observed when the analyses
were limited to participants with diabetes and limited to those without diabetes (Table 2).

Table 2. Simple correlation analysis and multivariable linear regression analysis of annual ∆eGFR
and relevant factors for total and by diabetes status.

Simple Correlation
Analysis Multiple Linear Regression Analysis

r (p) B β p

Total

No of participants 1580
Sex (Men) −0.07 (p = 0.008) −0.51 −0.08 0.020

Age −0.03 (p = 0.320) −0.02 −0.06 0.028
free T3 −0.01 (p = 0.646) 0.30 0.03 0.240

TSH −0.002 (p = 0.943) −0.05 −0.02 0.396
eGFR 0.13 (p < 0.001) −0.04 −0.16 <0.001

HbA1c −0.02 (p = 0.417) −0.01 −0.002 0.938

Non-diabetes

No of participants 1440
Sex (Men) −0.07 (p = 0.013) −0.45 −0.07 0.080

Age −0.03 (p = 0.196) −0.02 −0.07 0.012
free T3 −0.01 (p = 0.695) 0.33 0.04 0.202

TSH 0.02 (p = 0.528) 0.002 0.001 0.979
eGFR −0.13 (p < 0.001) −0.04 −0.16 <0.001

HbA1c 0.001 (p = 0.970) −0.01 −0.001 0.982
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Table 2. Cont.

Simple Correlation
Analysis Multiple Linear Regression Analysis

r (p) B β p

Diabetes

No of participants 140
Sex (Men) −0.11 (p = 0.208) −1.11 −0.13 0.123

Age 0.09 (p = 0.284) 0.02 0.03 0.710
free T3 −0.03 (p = 0.721) 0.18 0.01 0.870

TSH −0.08 (p = 0.358) −0.33 −0.14 0.113
eGFR −0.17 (p = 0.048) −0.06 −0.21 0.021

HbA1c 0.01 (p = 0.884) 0.26 0.06 0.530
∆GFR, change in estimated glomerular filtration rate; eGFR, estimated glomerular filtration rate; T3, triiodothyro-
nine; TSH, thyroid-stimulating hormone; HebA1, hemoglobin A1c; r (p), simple correlation coefficient (p value); B,
parameter estimate; β, standardized parameter estimate.

3.3. Correlations between Annual ∆eGFR and HbA1c by SCH Status among Participants without
Diabetes

Correlations between annual ∆eGFR and HbA1c by SCH status among participants
without diabetes are shown in Table 2. In the simple correlation analysis, there was
no significant correlation between HbA1c and annual ∆eGFR in participants with and
without SCH. After adjusting for sex, age, free T3, TSH, and eGFR in a multivariable linear
regression analysis, a significant inverse association between HbA1c and annual ∆eGFR
was observed in participants with SCH but not in participants without SCH (Table 3).

Table 3. Simple correlation analysis and multivariable linear regression analysis of annual ∆eGFR
and relevant factors by subclinical hypothyroidism among participants without diabetes.

Simple Correlation
Analysis Multiple Linear Regression Analysis

r (p) B β p

Non-Subclinical Hypothyroidism

No of participants 1370
Sex (Men) −0.08 (p = 0.004) −0.51 −0.09 0.003

Age −0.05 (p = 0.094) −0.03 −0.09 0.003
free T3 −0.01 (p = 0.718) 0.38 0.04 0.152

TSH 0.02 (p = 0.574) −0.02 −0.01 0.857
eGFR −0.14 (p < 0.001) −0.04 −0.17 <0.001

HbA1c 0.01 (p = 0.759) 0.08 0.01 0.736

Subclinical Hypothyroidism

No of participants 70
Sex (Men) 0.13 (p = 0.266) 1.72 0.26 0.055

Age 0.14 (p = 0.239) 0.10 0.27 0.038
free T3 0.001 (p = 0.996) −1.24 −0.11 0.386

TSH −0.12 (p = 0.338) −0.29 −0.14 0.248
eGFR 0.07 (p = 0.557) 0.03 0.11 0.416

HbA1c −0.17 (p = 0.167) −2.58 −0.25 0.049
∆GFR, change in estimated glomerular filtration rate; eGFR, estimated glomerular filtration rate; T3, triiodothyro-
nine; TSH, thyroid-stimulating hormone; HebA1, hemoglobin A1c; r (p), simple correlation coefficient (p value); B,
parameter estimate; β, standardized parameter estimate.

3.4. Correlations between Annual ∆eGFR and HbA1c by SCH Status

Correlations between annual ∆eGFR and HbA1c by SCH status are shown in Table 2.
In the simple correlation analysis, there was no significant correlation between HbA1c
and annual ∆eGFR in participants without SCH and a significant inverse association in
participants with SCH. This inverse association shows linear association (Figure 2). After
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adjusting for sex, age, TSH, and free T3 in a multivariable linear regression analysis, the
associations were essentially the same (Table 4).
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Table 4. Simple correlation analysis and multivariable linear regression analysis of annual ∆eGFR
and relevant factors by subclinical hypothyroidism status.

Simple Correlation
Analysis Multiple Linear Regression Analysis

r (p) B β p

Non-Subclinical Hypothyroidism

No of participants 1492
Sex (Men) −0.08 (p = 0.002) −0.57 −0.09 <0.001

Age −0.04 (p = 0.161) −0.03 −0.08 0.003
free T3 −0.01 (p = 0.592) 0.34 0.04 0.194

TSH 0.01 (p = 0.670) −0.05 −0.01 0.641
eGFR −0.15 (p < 0.001) −0.04 −0.18 <0.001

HbA1c 0.01 (p = 0.804) 0.16 0.03 0.250

Subclinical Hypothyroidism

No of participants 88
Sex (Men) 0.06 (p = 0.580) 0.55 0.08 0.472

Age 0.15 (p = 0.163) 0.07 0.19 0.095
free T3 0.03 (p = 0.809) −0.53 −0.05 0.674

TSH −0.10 (p = 0.360) −0.10 −0.05 0.625
eGFR 0.09 (p = 0.429) 0.04 0.16 0.166

HbA1c −0.26 (p = 0.014) −0.86 −0.26 0.014
∆GFR, change in estimated glomerular filtration rate; eGFR, estimated glomerular filtration rate; T3, triiodothyro-
nine; TSH, thyroid-stimulating hormone; HebA1, hemoglobin A1c; r (p), simple correlation coefficient (p value); B,
parameter estimate; β, standardized parameter estimate.
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3.5. Correlations between Annual ∆eGFR and HbA1c among Non-SCH Status by Using
Age-Matched Model

Table 5 shows the correlations between annual ∆eGFR and HbA1c among non-SCH
by using an age-matched model. In the simple correlation analysis, there was no significant
correlation between HbA1c and annual ∆eGFR. This association was unchanged even
when further adjusted for known confounding factors.

Table 5. Simple correlation analysis and multiple linear regression analysis of annual ∆eGFR and
relevant factors among non-subclinical hypothyroidism by using age-matched sample.

Simple Correlation
Analysis Multiple Linear Regression Analysis

r (p) B β p

Non-Subclinical Hypothyroidism

No of participants 176
Sex (Men) −0.11 (p = 0.138) −0.83 −0.14 0.107

Age 0.03 (p = 0.690) 0.002 0.01 0.937
free T3 −0.09 (p = 0.239) −0.26 −0.03 0.745

TSH 0.004 (p = 0.959) −0.09 −0.02 0.774
eGFR −0.14 (p = 0.080) −0.03 −0.13 0.112

HbA1c 0.11 (p = 0.173) 0.55 0.13 0.105
T3, triiodothyronine; TSH, thyroid-stimulating hormone; eGFR, glomerular filtration rate; HebA1, hemoglobin
A1c; r(p), simple correlation coefficient (p value); B, parameter estimate; β, standardized parameter estimate.

3.6. Correlations between ∆eGFR and HbA1c by SCH Status among Participants Who Were Not
Taking Glucose-Lowerung Medication

Since glucose-lowering medication use could influence HbA1c values, it might act
as a strong confounding factor in the present analysis. Thus, we performed an additional
analysis of participants who were not taking glucose-lowering medication. The associations
were essentially the same (Table 6).

Table 6. Simple correlation analysis and multivariable linear regression analysis of annual ∆eGFR
and relevant factors by subclinical hypothyroidism status among participants who were not taking
glucose-lowering medication.

Simple Correlation
Analysis Multiple Linear Regression Analysis

r (p) B β p

Non-Subclinical Hypothyroidism

No of participants 1411
Sex (Men) −0.08 (p = 0.002) −0.54 −0.09 0.002

Age −0.04 (p = 0.115) −0.03 −0.08 0.003
free T3 −0.02 (p = 0.566) 0.30 0.03 0.267

TSH 0.01 (p = 0.746) −0.04 −0.11 0.690
eGFR −0.13 (p < 0.001) −0.04 −0.16 <0.001

HbA1c 0.02 (p = 0.424) 0.19 0.03 0.266

Subclinical Hypothyroidism

No of participants 77
Sex (Men) 0.17 (p = 0.139) 1.63 0.24 0.049

Age 0.19 (p = 0.101) 0.09 0.24 0.050
free T3 0.04 (p = 0.760) −1.52 −0.14 0.261

TSH −0.07 (p = 0.550) −0.33 −0.16 0.172
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Table 6. Cont.

Simple Correlation
Analysis Multiple Linear Regression Analysis

r (p) B β p

eGFR −0.001 (p = 0.993) 0.03 0.12 0.331
HbA1c −0.28 (p = 0.015) −1.14 −0.32 0.006

∆GFR, change in estimated glomerular filtration rate; eGFR, estimated glomerular filtration rate; T3, triiodothyro-
nine; TSH, thyroid-stimulating hormone; HbA1c, hemoglobin A1c; r (p), simple correlation coefficient (p value); B,
parameter estimate; β, standardized parameter estimate.

4. Discussion

The main finding of the present longitudinal study is that higher HbA1c is significantly
associated with reduced eGFR in participants with SCH but not in those without SCH.
Even when limited to participants who were not taking glucose-lowering medication, the
associations were essentially the same. However, the mechanisms underlying the present
results have not yet been clarified. We performed a multi-faceted analysis to clarify the
mechanisms that could potentially explain the present results. A summary of the potential
mechanism is shown in Figure 3. Associations shown in red (Figure 3a–f) were observed in
the present study. Endothelial repair activated by endothelial injury, which is associated
with hyperglycemia, might play an important role.
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Figure 3. Potential mechanisms underlying the present results. Associations shown in red (a–f)
were observed in the present study. TSH, thyroid-stimulating hormone; T3, triiodothyronine; T4,
thyroxine; eGFR, estimated glomerular filtration rate; SCH, subclinical hypothyroidism; Annual
∆eGFR: annual change in estimated glomerular filtration rate ([mL/min/1.73m2]/year). * Non-
statistically significant association.

Previous case-control studies that involved patients with SCH (diagnosed as mild
elevation in TSH levels with normal free T3 and free T4 levels) and age- and gender-
matched normal controls (defined as TSH, free T3, and free T4 levels being in the normal
range) showed a significant positive correlation between insulin resistance as evaluated
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by homeostasis model assessment-insulin resistance (HOMA-IR) and TSH [15]. Increased
insulin resistance is a well-known cause of type 2 diabetes. In the present study, participants
with SCH had significantly higher baseline values of HbA1c than participants without SCH
(Table 1). Furthermore, the analysis that was limited to participants who were not taking
glucose-lowering medication showed essentially the same association; the corresponding
HbA1c values were 5.8 ± 0.9% for participants with SCH and 5.5 ± 0.5% for participants
without SCH (p < 0.001). Therefore, SCH could be associated with higher baseline HbA1c
(Table 1, Figure 3a).

A previous meta-analysis reported a positive association between SCH and a higher
risk of chronic kidney disease (CKD) [16]. Furthermore, a previous hospital-based case-
control study with 3270 euthyroid patients with type 2 diabetes and 545 patients with
type 2 diabetes and SCH reported that SCH could be a significant risk factor for CKD
in patients with diabetes [17]. The findings of these studies are compatible with our
present results that showed baseline renal function as evaluated by baseline eGFR in
participants with SCH was significantly lower than that of participants without SCH
(Table 1, Figure 3b). Our longitudinal analysis revealed a significant correlation between
baseline HbA1c and renal function as evaluated by annual ∆eGFR only among participants
with SCH (Tables 3, 4 and 6, Figure 3c,d). However, a high prevalence of diabetes among
SCH [18] could not explain the significant association between HbA1c and annual ∆eGFR
in participants with SCH. By using multivariable model, a significant association between
HbA1c and annual ∆eGFR was observed even when the analysis was performed limited to
SCH without diabetes (Table 3). Furthermore, the status of diabetes did not influence the
association between HbA1c and annual ∆eGFR (Table 2). Therefore, the status of diabetes
might not act as a determinant on the association between HbA1c and annual ∆eGFR.

Hyperglycemia, which is associated with higher HbA1c levels, is known to induce
endothelial dysfunction [8]. Endothelial dysfunction is recognized as one of the upstream
mechanisms that leads to glomerular injury, which is associated with lower eGFR [9]. Since
endothelial progenitor cells contribute to endothelial repair, the presence of endothelial
injury stimulates the production of endothelial progenitor cells [7]. Our previous studies
showed that higher levels of circulating endothelial progenitor cells (CD34-positive cells)
are associated with higher HbA1c values [7,19,20]. However, the number of endothelial
progenitor cells and their functions are reported to be decreased with advancing CKD [21].
Reduction in the number of endothelial cells due to consumption [22] might lead to an
inverse relationship between endothelial progenitor cell count and CKD.

On the other hand, thyroid hormones directly stimulate hematopoietic stem cells,
which differentiate into endothelial progenitor cells [2]. Therefore, a relative shortage of
endothelial progenitor cells could be associated with increased TSH production, which
results in SCH. In other words, participants with SCH might have a relative deficiency of
endothelial progenitor cells that results in a lower ability to maintain renal function.

In addition, lower levels of thyroid hormones due to consumption could occur in
participants with aggressive endothelial repair since thyroid hormones directly stimulate
hematopoietic stem cells [2]. Thyroid hormone levels are lower in participants with SCH
than in participants without SCH, as we showed in the present study (Table 1, Figure 3e,f).
Hematopoietic activity in the bone marrow declines with age [23] and aging is also a
well-known cause of endothelial injury [24,25]. However, decreased thyroid function, as
well as TSH levels may contribute to the increased lifespan [26]. Demands for thyroid
hormone might decrease with aging [27]. TSH levels could increase with the aging process,
regardless of whether there is actual thyroid disease [28]. However, the influence of age
on the present main associations should be limited. In the present study, participants
with SCH were older than participants without SCH, even though the difference was not
statistically significant (Table 1). Furthermore, in the main results, significant association
between HbA1c and annual ∆eGFR were observed among participants with SCH even
after adjusted for age (Tables 3, 4 and 6).
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Therefore, inappropriate endothelial repair activity might lead to the development of
SCH. To clarify this mechanism, further investigation with information about endothelial
progenitor cells is necessary.

From the clinical perspective, the present study demonstrated that SCH status could
act as an effect modifier on the association between HbA1c and renal function. Therefore,
treatment of SCH could be an efficient strategy for preventing diabetic nephropathy. Fur-
thermore, even though further investigation is necessary, this study also suggests that the
presence of SCH could indicate the presence of inappropriate endothelial repair.

Potential limitations of this study warrant consideration. Excessive consumption of
iodine and the presence of autoimmune antibodies or congenital factors are known to be
associated with thyroid function. Those factors could act as confounders but we do not
have any data on them. However, our present analysis was performed among participants
without any history of thyroid disease. Even though endothelial progenitor cells might play
an important role in the mechanisms underlying the present results, we have no data about
endothelial progenitor cells because of the difficulty in measuring those cells in routine
health examinations. Further studies with those data are necessary.

5. Conclusions

In conclusion, the disadvantage of elevated HbA1c on renal function is observed only
among participants with SCH. SCH status could act as an effect modifier on the association
between HbA1c and renal function.
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