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A B S T R A C T   

A Bayesian method based on the learning rate parameter η is called a generalized Bayesian 
method. In this study, joint hybrid censored type I and type II samples from k exponential pop
ulations were examined to determine the influence of the parameter η on the estimation results. 
To investigate the selection effects of the learning rate and the loss parameters on the estimation 
results, we considered two additional loss functions in the Bayesian approach: the linear and the 
generalized entropy loss functions. We then compared the generalized Bayesian algorithm with 
the traditional Bayesian algorithm. We performed Monte Carlo simulations to compare the per
formance of the estimation results with the losses and different values of η. The effects of different 
losses with different values and learning rate parameters are examined using an example.   

1. Introduction 

A Bayesian analysis based on a learning rate parameter (0 < η < 1) is called a Generalized Bayes (GB). For η = 1, the classical 
Bayesian framework is derived as a fractional power on the likelihood function L(θ) ≡ L(θ; data) for parameter θ ∈ Θ. In other words, if 
π(θ) is the prior distribution of the parameter θ, then 

π∗(θ | data)∝ Lη(θ)π(θ), θ ∈ Θ,0 < η < 1, (1)  

is GB posterior distribution for θ. For more information on the GB approach and how to select the value of the rate parameter, see Refs. 
[1–13]. In Refs. [2–5], the Safe Bayes algorithm based on the minimization of a sequential risk measure was used to study the learning 
rate selection. A second technique for learning rate selection using two different information adaptation methods was presented in 
Refs. [6,7]. Using different values of the learning rate parameter, the authors in Ref. [11] investigated the generalized Bayes estimation 
(GBE) based on a common censored type II sample of k exponential populations. In Ref. [12], on the other hand, a common censored 
type II sample of several exponential populations served as the basis for GB prediction. A study using a joint censored type-II sample of 
two exponential populations for Bayes estimation and prediction was studied in Ref. [13]. We choose a range of values for the learning 
rate parameter to obtain the best estimators for the parameters of the corresponding distributions. We then compared GB with the 
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traditional Bayesian method. Exact likelihood inference under joint type-II censoring for two populations with two-parameter 
exponential distributions was studied in Ref. [14]. In Ref. [15], two exponential populations with joint progressive hybrid type I 
censoring were studied using both classical and Bayesian estimates. Exact likelihood inference for multiple exponential populations 
with joint type II and joint progressive type II censoring was studied in Refs. [16,17]. Numerous variants of hybrid censorship have 
been described in the literature. For example [18,19], investigated parametric inference using dependent competing risk data and 
partially observed the causes of failure from the MOBK distribution under uniform hybrid censoring. HCS-I can be defined as occurring 
either at a certain time T1 or after a certain number of observations (say r), whichever occurs first. Time is saved by using this type of 
censoring, although HCS-I has a drawback in that no observations are made before the set time T1. To circumvent the shortcomings of 
HCS-I, HCS-II was presented in Ref. [20], wherein the experiment was concluded at a predetermined time T2 or upon reaching a certain 
number of observations r; that is, a minimum of r observations was assured until the conclusion of the experiment. The experiment 
continues until T2; thus, if r observations occur before T2, more observations than r may be included in the data. The experiment 
continues until r observations are available if they do not occur before T2 [21]. The ordered lifetime of N experimental units is denoted 
by w1 < ... < wN, and the observations are w1 < ... < wD,0 ≤ D ≤ N. When the experiment is stopped at T = min(wr,T1), where r and 
T1 are predetermined, HCS-I occurs. As a result, there were two cases of HCS-I. where D = R1 = 0, 1, ..., r − 1; is a random variable less 
than r, the first case occurs when T = T1 or wD < T1 < wD+1,where D = R1 = 0,1,...,r − 1; , the second case occurs when wr < T1 or T =

wr, and then D = r. If the experiment is stopped at T = max(wr, T2), which indicates that at least r failures are observed at the 
conclusion of the experiment, HCS-II emerges. Two further instances were provided by the HCS-II. The first case occurs when T2 < wr 
or T = wr and then D = r; however, the second case occurs when T = T2 or wD < T2 < wD+1 where D = R2 is a random variable that 
satisfies r ≤ D ≤ N. 

Let us assume that the goods are manufactured by one and the same company on k different production lines. A life test was 
performed simultaneously on k independent samples of size nj,1 ≤ j ≤ k selected from these lines. To reduce the cost or shorten the 
duration of the experiment, the experimenter ended the lifetime test experiment at T. In this case, an estimate of the average lifetime of 
the units produced by these k lines, either as a point or interval estimate, would be of interest (for more information on this topic, see 
Refs. [11–16]). 

Suppose {Xnj
j , j= 1, ..., k} are be k-samples, and Xnj

j = {Xj1,Xj2, ...,Xjnj} denotes to the lifetimes of nj specimens of product Aj, which 
are independent and identically distributed (iid) random variables from a population with cumulative distribution function (cdf) Fj(x)
and probability density function (pdf) fj(x). Furthermore, let N =

∑k
j=1nj denote the total sample size and D =

∑k
j=1Dj denote the total 

number of observed failures. Then, under the joint hybrid censoring scheme for the k samples, the observable data consists of (δ,w), 
where w = (w1, ...,wD),wi ∈ {Xnji

ji , i = 1, ...,D; ji = 1, ...,k}, and δ = (δ1j, ..., δDj) associated to (j1, ..., jD) is defined by 

δij =

{
1, if j = ji
0, otherwise. (2) 

Let Dj =
∑D

i=1δij denote the number of Xj failures in w and D =
∑k

j=1Dj, where D ≤ N and Dj ≤ nj,∀j, then, the joint density function 
of (δ,w) is given by 

f(δ,w)=CD

∏D

i=1

∏k

j=1

(
fj(wi)

)δij
.
∏k

j=1

(
Fj(T)

)nj − Dj (3)  

where Fj = 1 − Fj, are the survival functions of jth population and CD =
∏k

j=1
nj !

(nj − Dj)!
. 

In addition, let M be the number of failures up to time T, distributed with the probability mass function (pmf) 

P(M=m)=
∑

l

∏k

j=1

(
nj
lj

)

plj
j qnj − lj

j ,m= 0, 1, ...,N, (4)  

where, 
∑

l =
∑

l1 ,...,lk ,m =
∑k

j=1lj, 1 ≤ lj ≤ nj and pj = Fj(T),qj = Fj(T). 
For HCS-I: 

D=

{R1, T = T1,M = 0,1, ..., r − 1, (
Case 1

),

r, T = wr,M = r, ...,N, (
Case 2

).

For HCS-II: 

D=

{ r, T = wr,M = 0, 1, ..., r − 1, (
Case 1

),

R2, T = T2,M = r, ...,N, (
Case 2

).

This study’s major goal was to find out how parameter learning rate and losses, when used in conjunction with the joint hybrid 
censoring scheme (HCS–I and HCS-II), affected the estimate results of k exponential populations when censoring was applied to k 
combined samples. This preprint has already been published [22]. 

The rest of this article is organized as follows. To estimate the population parameters, Section 2 presents the maximum likelihood 

Y. Abdel-Aty et al.                                                                                                                                                                                                     



Heliyon 10 (2024) e34087

3

estimators (MLE) and (GBE) using the Linex and general entropy loss functions in the GB method. Section 3 contains a numerical 
analysis of the results in Section 2. Finally, Section 4 concludes the paper. 

2. Estimation of the parameters 

In this section, we consider k exponential distributions, under the joint hybrid censoring scheme (HCS–I and HCS-II) when the 
censoring is performed on combined k samples. Then study the MLE and GBE with learning rate parameters using the Linex and general 
entropy loss functions. 

The populations studied here are exponential with pdf and cdf, respectively, 

fj = θj exp
(
− θjx

)
, Fj =1 − exp

(
− θjx

)
, x>0, θj >0,1≤ j ≤ k. (5) 

Substituting (5) into (3), we obtain the likelihood function, 

(Θ, δ,w)=CD

∏D

i=1

∏k

j=1

{
θj exp

(
− θjwi

)}δij
∏k

j=1

{
exp

(
− θjT

)}nj − Dj  

= CD

∏k

j=1
θDj

j exp
{
− θjuj

}
(6)  

where, Θ = (θ1, ..., θk) and uj =
∑D

i=1wiδij + T(nj − Dj). 
The log-likelihood function is given by, 

ln L(Θ, δ,w)= ln CD +
∑k

j=1

(
Dj ln θj − θjuj

)

2.1. Maximum likelihood estimation 

Differentiating the log-likelihood function for θj then equating to zero, the MLE of θj for 1 ≤ j ≤ k, under HCS-I is given by, 

θ̂ jM =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R1 j

uj
, T = T1,M = 0, 1, ..., r − 1, (Case1),

rj

uj
, T = wr,M = r, ...,N, (Case2).

(7) 

The MLE of θj for 1 ≤ j ≤ k, under HCS-II is given by 

θ̂ jM =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rj

uj
, T = wr,M = 0, 1, ..., r − 1, (Case1),

R2 j

uj
, T = T2,M = r, ...,N, (Case2).

(8) 

Remark 1. MLEs of θj exist if we have at least k failures (D≥ k), such that at least one failure observed from each sample that 
satisfies the condition 

∏k
j=1Dj ≥ 1 or 1 ≤ Dj ≤ D − k+ 1. 

As mentioned in Section 3, we computed the MLEs to compare their results with those of Bayesian estimation using different values 
for the learning rate parameter and different values for the loss function parameters. 

2.2. Generalized Bayes estimation 

Since we assume that the parameters Θ are unknown, we can treat the conjugate prior distributions of Θ as separate gamma prior 
distributions, denoted θj ∼ Gam(aj,bj). Thus, we obtain the joint prior distribution of Θ as: 

π(Θ)=
∏k

j=1
πj
(
θj
)
, (9)  

where 

πj
(
θj
)
=

baj
j

Γ
(
aj
) θaj − 1

j e− bjθj , (10)  

and Γ( · ) denotes the complete gamma function. 
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After raising (6) to the fractional power η and combining (6) and (9), the generalized Bayes posterior distribution of Θ is then 

π∗(Θ | data)=
∏k

j=1

(
ujη + bj

)Djη+aj θDjη+aj − 1
j

Γ
(
Djη + aj

) exp
[
−
{

θj
(
ujη+ bj

)}]
, (11) 

Notice that the distribution of the generalized posterior density function is gamma distribution Gam(Djη+aj, ujη+bj) because πj is a 
conjugate prior. 

We consider two loss functions, namely Linex and general entropy loss functions, to investigate the influence of the learning rate 
with the loss parameters on the estimation results. 

Table 1 
MLEs under HCS-I.  

(n1,n2 ,n3) (r,T1) p1 R1 (r1, r2, r3) (θ̂1M, θ̂2M, θ̂3M) Er(θ̂1M, θ̂2M, θ̂3M)

(10,10,10) (20, 2) 0.73 16.9 (3.3,6.2,8.3) (0.345, 0.625, 1.070) (0.460, 0.300, 0.443) 
(20, 3) 0.17 18.2 (3.8,7,8.9) (0.286, 0.604, 1.046) (0.235, 0.274, 0.408) 
(25, 4) 0.62 22.7 (5.3,8.5,9.7) (0.256, 0.590, 1.024) (0.177, 0.246, 0.385) 
(25, 5) 0.29 23.2 (5.8,8.9,9.8) (0.250, 0.583, 1.022) (0.123, 0.231, 0.368) 

(8, 9,13) (20, 2) 0.55 17.4 (2.6,5.5,10.6) (0.427, 0.643, 1.022) (1.126, 0.336, 0.352) 
(20, 3) 0.06 18.5 (2.8,5.9,11.2) (0.372, 0.620, 1.013) (1.464, 0.316, 0.349) 
(25, 4) 0.41 23.1 (4.1,7.6,12.5) (0.280, 0.602, 1.003) (0.192, 0.261, 0.318) 
(25, 5) 0.15 23.5 (4.4,7.8,12.6) (0.271, 0.595, 0.996) (0.218, 0.255, 0.316) 

(12,11,7) (20, 2) 0.86 16.1 (3.9,6.9,5.8) (0.299, 0.613, 1.155) (0.670, 0.269, 0.618) 
(20, 3) 0.33 17.9 (4.9,8.1,6.3) (0.263, 0.593, 1.115) (0.219, 0.245, 0.556) 
(25, 4) 0.77 22.1 (6.5,9.5,6.8) (0.243, 0.583, 1.088) (0.108, 0.220, 0.518) 
(25, 5) 0.46 22.9 (7.2,9.9,6.9) (0.239, 0.578, 1.063) (0.103, 0.212, 0.488) 

(20,20,20) (40, 2) 0.85 35 (6.6,12.6,16.7) (0.244, 0.557, 0.985) (0.106, 0.171, 0.261) 
(40, 3) 0.12 37.9 (7.7,14.2,17.8) (0.232, 0.547, 0.978) (0.094, 0.155, 0.254) 
(50, 4) 0.73 46.6 (10.9,17.2,19.4) (0.226, 0.546, 0.968) (0.074, 0.144, 0.236) 
(50, 5) 0.30 47.8 (11.8,17.9,19.6) (0.222, 0.541, 0.959) (0.070, 0.141, 0.231) 

(16,18,26) (40, 2) 0.63 36.4 (5.1,11.1,21.4) (0.262, 0.562, 0.963) (0.269, 0.183, 0.224) 
(40, 3) 0.02 38.2 (5.6,12,22.4) (0.248, 0.557, 0.957) (0.122, 0.179, 0.218) 
(50, 4) 0.47 47.4 (8.5,15.3,25.1) (0.232, 0.549, 0.952) (0.088, 0.154, 0.205) 
(50, 5) 0.11 48.3 (8.9,15.6,25.3) (0.229, 0.546, 0.949) (0.086, 0.152, 0.200) 

(24,22,14) (40, 2) 0.96 33.1 (7.9,13.9,11.7) (0.233, 0.554, 1.023) (0.091, 0.162, 0.336) 
(40, 3) 0.32 37.3 (10,16.4,12.8) (0.225, 0.544, 1.010) (0.076, 0.146, 0.316) 
(50, 4) 0.89 45.2 (13.1,19,13.6) (0.220, 0.541, 0.996) (0.063, 0.133, 0.304) 
(50, 5) 0.54 47.2 (14.7,20,13.8) (0.216, 0.537, 0.984) (0.059, 0.129, 0.293)  

Table 2 
MLEs under HCS-II.  

(n1,n2 ,n3) (r,T2) p2 R2 (r1, r2, r3) (θ̂1M, θ̂2M, θ̂3M) Er(θ̂1M, θ̂2M, θ̂3M)

(10,10,10) (20, 2) 0.27 21 (4,7.3,9) (0.282, 0.599, 1.043) (0.397, 0.267, 0.406) 
(20, 3) 0.83 22.3 (4.6,7.9,9.4) (0.266, 0.598, 1.041) (0.154, 0.246, 0.390) 
(25, 4) 0.38 25.8 (6.2,9.2,9.9) (0.246, 0.578, 1.009) (0.124, 0.225, 0.361) 
(25, 5) 0.71 26.3 (6.7,9.4,9.9) (0.245, 0.581, 1.004) (0.114, 0.222, 0.355) 

(8, 9,13) (20, 2) 0.45 21.3 (3,6.2,11.4) (0.336, 0.625, 1.017) (0.487, 0.310, 0.352) 
(20, 3) 0.94 23 (3.6,7,12.2) (0.302, 0.610, 1.009) (0.272, 0.273, 0.320) 
(25, 4) 0.59 26.1 (4.8,8.1,12.8) (0.264, 0.596, 0.990) (0.155, 0.252, 0.302) 
(25, 5) 0.85 26.7 (5.2,8.4,12.9) (0.261, 0.591, 0.987) (0.145, 0.242, 0.306) 

(12,11,7) (20, 2) 0.14 20.8 (5.2,8.4,6.5) (0.254, 0.583, 1.106) (0.135, 0.239, 0.531) 
(20, 3) 0.67 21.8 (5.7,8.8,6.6) (0.250, 0.587, 1.095) (0.122, 0.230, 0.517) 
(25, 4) 0.23 25.9 (8,10.3,6.9) (0.233, 0.570, 1.063) (0.097, 0.210, 0.507) 
(25, 5) 0.54 26.1 (8.2,10.4,7) (0.234, 0.567, 1.058) (0.096, 0.199, 0.502) 

(20,20,20) (40, 2) 0.15 41.3 (7.9,14.5,17.9) (0.234, 0.548, 0.976) (0.095, 0.161, 0.256) 
(40, 3) 0.88 43.9 (9.1,15.6,18.7) (0.230, 0.550, 0.973) (0.084, 0.152, 0.243) 
(50, 4) 0.27 51.2 (12.4,18.2,19.7) (0.221, 0.540, 0.959) (0.069, 0.139, 0.233) 
(50, 5) 0.70 52.1 (13.1,18.6,19.8) (0.221, 0.541, 0.956) (0.068, 0.136, 0.228) 

(16,18,26) (40, 2) 0.37 41.8 (5.8,12.2,22.6) (0.248, 0.557, 0.960) (0.117, 0.177, 0.219) 
(40, 3) 0.98 44.7 (7.3,14,24.3) (0.240, 0.556, 0.958) (0.100, 0.165, 0.207) 
(50, 4) 0.53 51.6 (9.3,16,25.5) (0.229, 0.545, 0.949) (0.084, 0.148, 0.199) 
(50, 5) 0.89 52.9 (10.2,16.6,25.7) (0.228, 0.545, 0.946) (0.079, 0.147, 0.194) 

(24,22,14) (40, 2) 0.04 41 (10.4,16.7,12.9) (0.224, 0.538, 1.005) (0.076, 0.145, 0.302) 
(40, 3) 0.68 42.7 (11.2,17.5,13.1) (0.224, 0.545, 1.001) (0.073, 0.144, 0.309) 
(50, 4) 0.11 50.9 (15.7,2.5,13.9) (0.214, 0.535, 0.977) (0.058, 0.128, 0.287) 
(50, 5) 0.46 51.5 (16.1,20.6,13.9) (0.215, 0.535, 0.977) (0.059, 0.129, 0.291)  
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(i). The Linex loss function which is asymmetric is given by, 

LL(ϕ∗,ϕ)∝ eν(ϕ∗ − ϕ) − ν(ϕ∗ − ϕ) − 1, ν ∕= 0.

The Linex loss function, introduced by Ref. [23] gives differing weights to overestimation and underestimation.  

(ii). The generalization of the entropy (GE) loss function is, 

LGE(ϕ∗,ϕ)∝ (ϕ∗/ϕ)c
− c ln(ϕ∗ /ϕ) − 1, c ∕= 0,

This loss function is used by Refs. [24,25], and expressed in terms of the ratio ϕ∗/ϕ to give more realism to practical situations. The 
estimators of θj under the Linex loss function are provided by, 

θ̂ jL = −
1
ν ln

[
E
(
e− νθj

)]
=

Djη + aj

ν ln
(

1+
ν

ujη + bj

)

, ν∕=0, 1≤ j ≤ k. (12) 

Under the general entropy (GE) loss function, the Bayes estimators of θj are given by 

Table 3 
GB estimators under HCS-I, GE loss.  

η = 0.1 

(n1,n2,n3) (r,T1) (θ̂1GE, θ̂2GE, θ̂3GE) Er(θ̂1GE, θ̂2GE, θ̂3GE) (θ̂1GE, θ̂2GE, θ̂3GE) Er(θ̂1GE, θ̂2GE, θ̂3GE)

c = − 1.5 c = − 1 

(10,10,10) (20, 2) (0.249, 0.608, 1.014) (0.058, 0.125, 0.150) (0.214, 0.531, 0.931) (0.029, 0.079, 0.093) 
(20, 3) (0.245, 0.598, 0.999) (0.052, 0.122, 0.153) (0.210, 0.524, 0.926) (0.029, 0.080, 0.098) 
(25, 4) (0.244, 0.586, 1.001) (0.049, 0.125, 0.137) (0.212, 0.526, 0.922) (0.030, 0.080, 0.097) 
(25, 5) (0.239, 0.581, 0.988) (0.052, 0.123, 0.151) (0.210, 0.525, 0.921) (0.031, 0.080, 0.096)  

c = − 0.85 c = − 0.7 
(20, 2) (0.204, 0.505, 0.905) (0.024, 0.075, 0.095) (0.193, 0.483, 0.878) (0.024, 0.071, 0.094) 
(20, 3) (0.202, 0.502, 0.898) (0.025, 0.075, 0.094) (0.192, 0.484, 0.873) (0.028, 0.074, 0.095) 
(25, 4) (0.202, 0.501, 0.893) (0.028, 0.077, 0.093) (0.194, 0.486, 0.873) (0.028, 0.074, 0.094) 
(25, 5) (0.202, 0.509, 0.893) (0.028, 0.075, 0.094) (0.191, 0.486, 0.871) (0.028, 0.075, 0.096) 

η = 0.4  
c = − 1 c = − 0.5  

(20, 2) (0.240, 0.564, 0.976) (0.075, 0.175, 0.228) (0.217, 0.534, 0.940) (0.064, 0.155, 0.211) 
(20, 3) (0.233, 0.557, 0.959) (0.073, 0.164, 0.227) (0.211, 0.520, 0.932) (0.064, 0.148, 0.207) 
(25, 4) (0.229, 0.556, 0.952) (0.070, 0.157, 0.214) (0.212, 0.534, 0.925) (0.061, 0.144, 0.196) 
(25, 5) (0.225, 0.552, 0.959) (0.068, 0.153, 0.213) (0.207, 0.515, 0.924) (0.060, 0.139, 0.196)  

c = − 0.25 c = 0.1 
(20, 2) (0.203, 0.509, 0.917) (0.060, 0.147, 0.205) (0.186, 0.479, 0.878) (0.062, 0.144, 0.199) 
(20, 3) (0.200, 0.510, 0.917) (0.061, 0.146, 0.200) (0.185, 0.473, 0.872) (0.062, 0.139, 0.193) 
(25, 4) (0.203, 0.503, 0.901) (0.061, 0.136, 0.191) (0.187, 0.496, 0.865) (0.057, 0.133, 0.187) 
(25, 5) (0.199, 0.505, 0.890) (0.058, 0.134, 0.190) (0.191, 0.495, 0.967) (0.057, 0.132, 0.189) 

η = 0.8  
c = − 1 c = 0.1  

(20, 2) (0.254 0.589 1.012) (0.106 0.216 0.304) (0.220, 0.528, 0.951) (0.087, 0.187, 0.267) 
(20, 3) (0.197, 0.498, 0.999) (0.101, 0.203, 0.283) (0.214, 0.531, 0.937) (0.086, 0.184, 0.257) 
(25, 4) (0.238, 0.561, 0.979) (0.090, 0.187, 0.269) (0.215, 0.526, 0.936) (0.079, 0.167, 0.246) 
(25, 5) (0.235, 0.565, 0.988) (0.088, 0.183, 0.270) (0.210, 0.522, 0.913) (0.075, 0.161, 0.235)  

c = 0.65 c = 1  
(20, 2) (0.198, 0.510, 0.913) (0.084, 0.180, 0.259) (0.183, 0.490, 0.899) (0.083, 0.179, 0.254) 
(20, 3) (0.196, 0.497, 0.921) (0.081, 0.173, 0.251) (0.185, 0.496, 0.888) (0.080, 0.169, 0.247) 
(25, 4) (0.197, 0.522, 0.901) (0.073, 0.161, 0.237) (0.193, 0.494, 0.876) (0.074, 0.159, 0.227) 
(25, 5) (0.200, 0.503, 0.899) (0.074, 0.155, 0.240) (0.191, 0.492, 0.873) (0.071, 0.153, 0.232) 

η = 1  
c = − 1 c = 0.1  

(20, 2) (0.222 0.543 0.961) (0.010 0.043 0.090) (0.194 0.497 0.904) (0.009 0.037 0.081) 
(20, 3) (0.242 0.559 0.991) (0.012 0.045 0.093) (0.214 0.536 0.935) (0.009 0.037 0.077) 
(25, 4) (0.219 0.549 0.961) (0.008 0.035 0.078) (0.200 0.510 0.936) (0.007 0.030 0.073) 
(25, 5) (0.220 0.551 0.968) (0.008 0.035 0.078) (0.212 0.518 0.923) (0.007 0.029 0.066)  

c = 0.65 c = 1  

(20, 2) (0.181 0.487 0.892) (0.009 0.038 0.076) (0.168 0.462 0.855) (0.009 0.036 0.070) 
(20, 3) (0.202 0.504 0.920) (0.008 0.034 0.073) (0.194 0.495 0.916) (0.008 0.034 0.072) 
(25, 4) (0.187 0.505 0.894) (0.006 0.029 0.065) (0.181 0.499 0.886) (0.006 0.029 0.064) 
(25, 5) (0.204 0.504 0.924) (0.006 0.028 0.067) (0.192 0.490 0.885) (0.006 0.026 0.060)  
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θ̂jE =
{

E
(

θ− c
j

)}− 1
c
=

(
Γ
(
Djη + aj − c

)

Γ
(
Djη + aj

)

)− 1
c 1

ujη + bj
,1≤ j ≤ k. (13) 

Remark 2. Some unusual instances have been included in the GE loss function. We can obtain the Bayes estimators of θj under the 
weighted squared error loss function and the squared error loss function, respectively, by substituting c = 1, − 1 into (13). 

Remark 3. Since aj = bj = 0 can be immediately substituted into (11) to obtain MLEs θ̂ jM in (13) after substituting c = − 1, the 
estimators θ̂ jJ are Bayesian estimators of θj using Jeffreys’ non-informative priors πJ∝

∏k
j=1

1
θj
. 

The estimators θ̂ j under HCS-I in the GB approach can be obtained by setting Dj = rj for case one and Dj = R1 j for case two, 
respectively. But we can obtain θ̂ j under HCS-II by setting Dj = R2 j for case one and Dj = rj for case two. 

Table 4 
GB estimators under HCS-II, GE loss.  

η = 0.1 

(n1,n2,n3) (r,T2) (θ̂1GE , θ̂2GE, θ̂3GE) Er(θ̂1GE , θ̂2GE , θ̂3GE) (θ̂1GE, θ̂2GE , θ̂3GE) Er(θ̂1GE , θ̂2GE, θ̂3GE)

c = − 1.5 c = − 1 

(10,10,10) (20, 2) (0.245, 0.599, 1.008) (0.051, 0.120, 0.141) (0.210, 0.523, 0.927) (0.031, 0.085, 0.098) 
(20, 3) (0.246, 0.594, 1.009) (0.053, 0.127, 0.137) (0.212, 0.525, 0.927) (0.032, 0.084, 0.097) 
(25, 4) (0.238, 0.584, 0.988) (0.052, 0.119, 0.145) (0.207, 0.520, 0.920) (0.033, 0.084, 0.097) 
(25, 5) (0.238, 0.585, 0.988) (0.052, 0.116, 0.146) (0.210, 0.524, 0.914) (0.033, 0.080, 0.099)   

c = − 0.85 c = − 0.7  

(20, 2) (0.201, 0.501, 0.903) (0.027, 0.077, 0.095) (0.191, 0.479, 0.872) (0.029, 0.075, 0.095) 
(20, 3) (0.204, 0.502, 0.903) (0.028, 0.078, 0.092) (0.194, 0.484, 0.873) (0.028, 0.076, 0.092) 
(25, 4) (0.201, 0.501, 0.895) (0.031, 0.076, 0.095) (0.190, 0.487, 0.872) (0.031, 0.077, 0.097) 
(25, 5) (0.201, 0.500, 0.886) (0.031, 0.075, 0.095) (0.192, 0.483, 0.867) (0.031, 0.075, 0.096) 

η = 0.4  
c = − 1 c = − 0.5  

(20, 2) (0.236, 0.561, 0.978) (0.076, 0.165, 0.223) (0.212, 0.524, 0.930) (0.067, 0.151, 0.204) 
(20, 3) (0.232, 0.555, 0.947) (0.075, 0.164, 0.217) (0.214, 0.536, 0.920) (0.065, 0.150, 0.199) 
(25, 4) (0.226, 0.540, 0.958) (0.070, 0.152, 0.210) (0.209, 0.493, 0.925) (0.063, 0.138, 0.196) 
(25, 5) (0.224, 0.555, 0.942) (0.070, 0.151, 0.212) (0.212, 0.513, 0.908) (0.062, 0.135, 0.192)  

c = − 0.25 c = 0.1 
(20, 2) (0.201, 0.501, 0.905) (0.063, 0.143, 0.198) (0.186, 0.483, 0.870) (0.063, 0.144, 0.197) 
(20, 3) (0.205, 0.514, 0.901) (0.063, 0.144, 0.196) (0.190, 0.492, 0.874) (0.063, 0.140, 0.190) 
(25, 4) (0.201, 0.507, 0.902) (0.062, 0.134, 0.194) (0.188, 0.497, 0.890) (0.059, 0.130, 0.189) 
(25, 5) (0.203, 0.502, 0.886) (0.060, 0.131, 0.192) (0.193, 0.483, 0.923) (0.060, 0.127, 0.191) 

η = 0.8  
c = − 1 c = 0.1  

(20, 2) (0.245, 0.569, 0.994) (0.101, 0.199, 0.288) (0.208, 0.533, 0.948) (0.085, 0.182, 0.260) 
(20, 3) (0.246, 0.580, 0.984) (0.098, 0.196, 0.276) (0.214, 0.540, 0.931) (0.083, 0.177, 0.252) 
(25, 4) (0.238, 0.569, 0.964) (0.088, 0.184, 0.260) (0.213, 0.526, 0.908) (0.077, 0.162, 0.239) 
(25, 5) (0.236, 0.551, 0.991) (0.086, 0.175, 0.264) (0.209, 0.514, 0.930) (0.075, 0.157, 0.242)  

c = 0.65 c = 1  

(20, 2) (0.198, 0.506, 0.911) (0.082, 0.173, 0.245) (0.183, 0.489, 0.885) (0.081, 0.170, 0.245) 
(20, 3) (0.199, 0.507, 0.916) (0.080, 0.162, 0.242) (0.196, 0.494, 0.885) (0.081, 0.164, 0.239) 
(25, 4) (0.200, 0.504, 0.899) (0.073, 0.154, 0.235) (0.191, 0.490, 0.875) (0.071, 0.150, 0.231) 
(25, 5) (0.202, 0.507, 0.898) (0.073, 0.153, 0.232) (0.196, 0.493, 0.871) (0.071, 0.150, 0.231) 

η = 1  
c = − 1 c = 0.1  

(20, 2) (0.236 0.554 0.977) (0.009 0.037 0.087) (0.214 0.530 0.934) (0.007 0.033 0.074) 
(20, 3) (0.213 0.529 0.984) (0.006 0.030 0.081) (0.197 0.505 0.916) (0.006 0.027 0.069) 
(25, 4) (0.222 0.562 0.971) (0.005 0.032 0.079) (0.209 0.523 0.930) (0.005 0.027 0.067) 
(25, 5) (0.222 0.543 0.960) (0.005 0.030 0.074) (0.207 0.524 0.929) (0.005 0.027 0.068)  

c = 0.65 c = 1  

(20, 2) (0.196 0.508 0.917) (0.006 0.029 0.069) (0.192 0.488 0.905) (0.006 0.029 0.069) 
(20, 3) (0.183 0.489 0.896) (0.005 0.027 0.064) (0.176 0.475 0.880) (0.005 0.026 0.064) 
(25, 4) (0.198 0.506 0.915) (0.005 0.025 0.062) (0.193 0.503 0.880) (0.004 0.024 0.058) 
(25, 5) (0.197 0.505 0.911) (0.004 0.025 0.065) (0.187 0.492 0.877) (0.004 0.024 0.059)  
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3. Numerical study 

The performance of the derivation techniques identified in the previous section is evaluated using Monte Carlo simulation results, 
which are also provided in this section along with an example to illustrate the different derivation techniques. 

3.1. Simulation study 

The simulation study is designed and carried out as follows.  

• Generate three samples with sizes (n1, n2, n3) from different exponential distributions by considering the values of the parameters as 
the mean of the prior distribution for each parameter, then combining the three samples in one ordered sample. 

Table 5 
GB estimators under HCS-I, Linex loss.  

η = 0.1 

(n1,n2,n3) (r,T1) (θ̂1L, θ̂2L, θ̂3L) Er(θ̂1L, θ̂2L, θ̂3L) (θ̂1L, θ̂2L, θ̂3L) Er(θ̂1L, θ̂2L, θ̂3L)

υ = − 0.5 υ = − 0.1 

(10,10,10)  (0.222, 0.584, 1.026) (0.037, 0.115, 0.166) (0.215, 0.539, 0.947) (0.031, 0.086, 0.110) 
(20, 3) (0.219, 0.570, 1.018) (0.035, 0.112, 0.158) (0.213, 0.535, 0.940) (0.028, 0.084, 0.109) 
(25, 4) (0.219, 0.568, 1.004) (0.036, 0.110, 0.160) (0.214, 0.542, 0.935) (0.031, 0.082, 0.105) 
(25, 5) (0.217, 0.562, 1.006) (0.036, 0.110, 0.153) (0.211, 0.528, 0.933) (0.032, 0.086, 0.105)   

υ = 0.3 υ = 0.5  

(20, 2) (0.209, 0.501, 0.882) (0.025, 0.069, 0.090) (0.206, 0.491, 0.856) (0.023, 0.067, 0.092) 
(20, 3) (0.207, 0.499, 0.877) (0.026, 0.071, 0.090) (0.204, 0.486, 0.853) (0.025, 0.069, 0.096) 
(25, 4) (0.207, 0.509, 0.875) (0.029, 0.072, 0.089) (0.204, 0.496, 0.855) (0.027, 0.072, 0.098) 
(25, 5) (0.207, 0.499, 0.880) (0.028, 0.072, 0.094) (0.203, 0.490, 0.852) (0.028, 0.070, 0.098) 

η = 0.4  
υ = − 0.1 υ = 0.7 

(10,10,10) (20, 2) (0.243, 0.574, 0.988) (0.077, 0.178, 0.237) (0.230, 0.537, 0.922) (0.067, 0.150, 0.193) 
(20, 3) (0.234, 0.563, 0.970) (0.074, 0.168, 0.228) (0.225, 0.532, 0.898) (0.067, 0.144, 0.187) 
(25, 4) (0.232, 0.558, 0.958) (0.070, 0.159, 0.220) (0.223, 0.534, 0.907) (0.065, 0.138, 0.184) 
(25, 5) (0.227, 0.554, 0.967) (0.068, 0.155, 0.216) (0.222, 0.530, 0.899) (0.064, 0.137, 0.182)   

υ = 1 υ = 4  

(20, 2) (0.227, 0.525, 0.895) (0.067, 0.140, 0.184) (0.199, 0.440, 0.724) (0.050, 0.122, 0.217) 
(20, 3) (0.222, 0.516, 0.882) (0.065, 0.138, 0.181) (0.198, 0.442, 0.727) (0.051, 0.119, 0.215) 
(25, 4) (0.221, 0.526, 0.885) (0.063, 0.132, 0.173) (0.201, 0.448, 0.728) (0.052, 0.113, 0.208) 
(25, 5) (0.219, 0.518, 0.883) (0.063, 0.131, 0.175) (0.199, 0.451, 0.728) (0.051, 0.114, 0.209) 

η = 0.8  
υ = 0.5 υ = 1.5 

(10,10,10) (20, 2) (0.257, 0.568, 0.985) (0.103, 0.201, 0.275) (0.244, 0.551, 0.907) (0.081, 0.181, 0.238) 
(20, 3) (0.241, 0.571, 0.950) (0.096, 0.194, 0.266) (0.233, 0.541, 0.914) (0.091, 0.175, 0.229) 
(25, 4) (0.238, 0.568, 0.970) (0.090, 0.180, 0.253) (0.230, 0.541, 0.914) (0.083, 0.163, 0.219) 
(25, 5) (0.230, 0.551, 0.950) (0.085, 0.170, 0.249) (0.228, 0.530, 0.904) (0.080, 0.157, 0.217)  

υ = 3.5 υ = 8.5  

(20, 2) (0.230, 0.504, 0.846) (0.082, 0.152, 0.209) (0.200, 0.424, 0.692) (0.065, 0.140, 0.255) 
(20, 3) (0.221, 0.491, 0.835) (0.080, 0.147, 0.207) (0.199, 0.431, 0.693) (0.066, 0.138, 0.251) 
(25, 4) (0.216, 0.502, 0.844) (0.075, 0.139, 0.197) (0.199, 0.441, 0.698) (0.062, 0.124, 0.237) 
(25, 5) (0.218, 0.508, 0.820) (0.072, 0.136, 0.193) (0.199, 0.433, 0.699) (0.061, 0.120, 0.246) 

η = 1  
υ = 0.5 υ = 1.5 

(10,10,10) (20, 2) (0.219 0.526 0.939) (0.010 0.041 0.079) (0.214 0.509 0.896) (0.009 0.034 0.067) 
(20, 3) (0.236 0.558 0.978) (0.011 0.042 0.083) (0.232 0.530 0.918) (0.010 0.035 0.064) 
(25, 4) (0.216 0.535 0.958) (0.007 0.032 0.072) (0.213 0.517 0.915) (0.007 0.027 0.060) 
(25, 5) (0.222 0.545 0.952) (0.008 0.033 0.072) (0.223 0.528 0.918) (0.007 0.028 0.057)  

υ = 3.5 υ = 8.5  

(20, 2) (0.200 0.467 0.827) (0.007 0.027 0.055) (0.180 0.414 0.705) (0.006 0.026 0.072) 
(20, 3) (0.222 0.507 0.854) (0.008 0.027 0.049) (0.197 0.442 0.718) (0.006 0.021 0.055) 
(25, 4) (0.208 0.491 0.844) (0.006 0.023 0.047) (0.192 0.446 0.731) (0.005 0.019 0.058) 
(25, 5) (0.212 0.500 0.865) (0.006 0.021 0.0471) (0.198 0.444 0.728) (0.005 0.017 0.053)  
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Table 6 
GB estimators under HCS-II, Linex loss.  

η = 0.1 

(n1,n2,n3) (r,T1) (θ̂1L , θ̂2L, θ̂3L) Er(θ̂1L, θ̂2L, θ̂3L) (θ̂1L , θ̂2L, θ̂3L) Er(θ̂1L, θ̂2L, θ̂3L)

υ = − 0.5 υ = − 0.1 

(10,10,10)  (0.219, 0.569, 1.012) (0.036, 0.114, 0.167) (0.212, 0.531, 0.942) (0.030, 0.088, 0.107) 
(20, 2) 
(20, 3) (0.221, 0.569, 1.014) (0.036, 0.115, 0.163) (0.213, 0.530, 0.941) (0.032, 0.092, 0.108) 
(25, 4) (0.217, 0.560, 1.005) (0.037, 0.110, 0.153) (0.209, 0.531, 0.930) (0.034, 0.085, 0.107) 
(25, 5) (0.217, 0.561, 0.999) (0.038, 0.108, 0.151) (0.214, 0.527, 0.931) (0.033, 0.085, 0.105)   

υ = 0.3 υ = 0.5  
(20, 2) (0.206, 0.499, 0.883) (0.027, 0.074, 0.093) (0.202, 0.486, 0.853) (0.027, 0.071, 0.097) 
(20, 3) (0.206, 0.510, 0.877) (0.030, 0.073, 0.088) (0.205, 0.491, 0.850) (0.027, 0.071, 0.089) 
(25, 4) (0.206, 0.504, 0.882) (0.031, 0.073, 0.089) (0.202, 0.490, 0.853) (0.030, 0.072, 0.098) 
(25, 5) (0.207, 0.499, 0.869) (0.032, 0.072, 0.090) (0.203, 0.489, 0.848) (0.030, 0.069, 0.099) 

η = 0.4  
υ = − 0.1 υ = 0.7 

(10,10,10) (20, 2) (0.232, 0.569, 0.982) (0.075, 0.170, 0.230) (0.224, 0.536, 0.904) (0.069, 0.146, 0.189) 
(20, 3) (0.233, 0.564, 0.984) (0.075, 0.165, 0.226) (0.225, 0.538, 0.916) (0.068, 0.142, 0.185) 
(25, 4) (0.228, 0.547, 0.959) (0.070, 0.153, 0.214) (0.217, 0.526, 0.900) (0.065, 0.134, 0.182) 
(25, 5) (0.222, 0.550, 0.956) (0.070, 0.152, 0.212) (0.221, 0.528, 0.898) (0.066, 0.133, 0.180)   

υ = 1 υ = 4  

(20, 2) (0.222, 0.522, 0.884) (0.067, 0.141, 0.180) (0.197, 0.441, 0.729) (0.054, 0.122, 0.220) 
(20, 3) (0.221, 0.518, 0.883) (0.066, 0.137, 0.176) (0.198, 0.449, 0.730) (0.054, 0.118, 0.211) 
(25, 4) (0.217, 0.528, 0.867) (0.064, 0.131, 0.173) (0.198, 0.439, 0.724) (0.054, 0.108, 0.215) 
(25, 5) (0.216, 0.522, 0.879) (0.064, 0.127, 0.173) (0.200, 0.455, 0.728) (0.053, 0.113, 0.214) 

η = 0.8  
υ = 0.5 υ = 1.5 

(10,10,10) (20, 2) (0.241, 0.561, 0.984) (0.099, 0.191, 0.267) (0.235, 0.546, 0.916) (0.092, 0.174, 0.233) 
(20, 3) (0.243, 0.557, 0.980) (0.094, 0.184, 0.257) (0.234, 0.528, 0.920) (0.089, 0.166, 0.223) 
(25, 4) (0.225, 0.541, 0.943) (0.084, 0.168, 0.248) (0.225, 0.538, 0.907) (0.081, 0.158, 0.219) 
(25, 5) (0.230, 0.543, 0.927) (0.084, 0.168, 0.237) (0.225, 0.522, 0.913) (0.080, 0.154, 0.220)  

υ = 3.5 υ = 8.5  

(20, 2) (0.217, 0.501, 0.834) (0.080, 0.149, 0.204) (0.198, 0.435, 0.699) (0.067, 0.140, 0.254) 
(20, 3) (0.224, 0.491, 0.829) (0.080, 0.145, 0.197) (0.200, 0.449, 0.700) (0.067, 0.137, 0.244) 
(25, 4) (0.216, 0.504, 0.824) (0.074, 0.137, 0.197) (0.197, 0.435, 0.697) (0.062, 0.122, 0.246) 
(25, 5) (0.214, 0.504, 0.827) (0.074, 0.133, 0.197) (0.200, 0.441, 0.697) (0.063, 0.122, 0.244) 

η = 1  
υ = 0.5 υ = 1.5 

(10,10,10) (20, 2) (0.241 0.552 0.964) (0.009 0.033 0.074) (0.228 0.525 0.929) (0.007 0.028 0.061) 
(20, 3) (0.212 0.533 0.948) (0.006 0.030 0.070) (0.211 0.516 0.918) (0.006 0.026 0.061) 
(25, 4) (0.218 0.550 0.967) (0.005 0.029 0.070) (0.214 0.525 0.915) (0.005 0.024 0.055) 
(25, 5) (0.211 0.536 0.948) (0.005 0.029 0.066) (0.213 0.529 0.908) (0.005 0.025 0.056)  

υ = 3.5 υ = 8.5  

(20, 2) (0.217 0.498 0.861) (0.006 0.023 0.047) (0.197 0.443 0.725) (0.005 0.019 0.055) 
(20, 3) (0.201 0.481 0.841) (0.005 0.021 0.047) (0.184 0.433 0.727) (0.004 0.020 0.062) 
(25, 4) (0.214 0.504 0.835) (0.005 0.020 0.042) (0.196 0.445 0.723) (0.004 0.015 0.052) 
(25, 5) (0.205 0.495 0.847) (0.004 0.019 0.045) (0.193 0.445 0.739) (0.003 0.016 0.059)  

Table 7 
Sample X1, X2 and X3, and their order (w, ji), where δji = 1.  

Sample Data 

X1 1.89, 4.03, 1.54, 0.31, 0.66, 1.7, 2.17, 1.82, 9.99, 2.24 
X2 1.17, 3.87, 2.8, 0.7, 3.82, 0.02, 0.5, 3.72, 0.06, 3.57 
X3 8.11, 3.17, 5.55, 0.80, 0.20, 1.13, 6.63, 1.08, 2.44, 0.78 
Ordered data (w, ji) 
(0.02,2), (0.06,2), (0.20,3), (0.31,1), (0.50,2), (0.66,1), (0.70,2), (0.78,3), (0.80,3), (1.083), (1.13,3), (1.17,2), (1.54,1), (1.70,1), (1.82,1), (1.89,1), 

(2.17,1), (2.24,1), (2.44,3), (2.80,2), (3.17,3), (3.57,2), (3.72,2), (3.82,2), (3.87,2), (4.03,1), (5.55,3), (6.63,3), (8.11,3), (9.99,1(  
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• Repeat generating of the combined sample B times, (discard samples that do not fulfill the condition in Remark 1, the number of 
replications becomes Bʹ ≤ B).  

• Set two fixed values, the number of observed failures from the combined sample r and the time ,T1 (T2).  
• Under HCS-I the experiment is terminated at T = min(wr, T1), then observations number D = min(r, R1), but for HCS-II the 

experiment is terminated at T = max(wr,T2), then observations number D = max(r,R2), where R1 and R2 are random.  
• Under HCS-I, p1,R1 and (r1, r2, r3) are computed, where p1 is the ratio of samples that are stopped at T1 from all replications, R1 is 

the mean of the number of observed values up to T1 (R1 ≤ r) and (r1, r2, r3) are the average values of the observed failures of the 
three samples for both cases of T. By determining the number of observations from the three samples, the MLEs θ̂ jM,j = 1,2,3; are 

computed using (7) by taking the average of the results of Bʹ replicates θ̂ jM =

∑Bʹ
i=1

θ̂ ji

Bʹ , and their estimated risk (Er) is obtained from 

Er =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Bʹ

i=1
(θj − θ̂ ji)

2

Bʹ

√

, j = 1,2,3.  

• p2,R2, (r1, r2, r3) and MLEs are also computed for HCS-II, where p2 is the ratio of samples that are stopped at T2 from all replications, 
R2 is the mean of the number of observed values up to T2 (R2 ≥ r), the MLEs θ̂ jM, j = 1,2,3; are computed using (8).  

• Compute GBEs θ̂ jL, θ̂ jE under Linex and GE loss functions from (12), (13) using different values of ν, c and η for HCS-I and HCS-II, 
(see, Appendix). 

We chose the exponential parameters (θ1, θ2, θ3) to be (0.2,0.5,0.9) based on the hyperparameters (a1, b1; a2, b2; a3, b3) = (1,5, 1,
2,1.8, 2),where (θ1, θ2, θ3) are obtained as the mean of gamma distributions in (10), for the Monte Carlo simulations we use B = 10,
000 replicates. For MLE we considered different options for the sample sizes of the three populations (n1, n2, n3) and for r, T1, and T2. 
For the Bayes study, the sample sizes are (n1,n2,n3) = (10,10,10), T1 or T2 = 2,3 for r = 20, T1 or T2 = 4,5 for r = 25. MLE results are 
shown in Table 1 for HCS-I and Table 2 for HCS-II. 

The values for the learning rate parameters were η = 0.1, 0.4,0.8 and 1. Note that for η = 0.1, c = -1.5, − 1, − 0.85, − 0.75; ν = -0.5, 
− 0.1, 0.3, 0.5, for η = 0.4, c = -1, − 0.5, − 0.25, 0.1; ν = -0.1,0.7,1,4 and finally for η = 0.8, 1; c = − 1, 0.1, 0.65, 1; ν = 0.5, 1.5, 3.5, 8.5. 
The results of the Bayesian estimators for θ1, θ2, and θ3 for HCS-I and HCS-II are shown in Tables 3–6. 

Table 8 
ML and GB estimators under HCS-I  

r (r1, r2, r3) T1  (θ̂1, θ̂2, θ̂3)

20 (6,5,5) 2 MLE (0.377, 0.402, 0.357) 
GB η = 0.1 η = 0.4 
c = − 1 (0.377, 0.402, 0.357) (0.377, 0.402, 0.357) 
c = − 0.8 (0.329, 0.343, 0.305) (0.362, 0.383, 0.341) 
c = − 0.3 (0.208, 0.198, 0.176) (0.324, 0.336, 0.300) 
υ = − 0.1 (0.390, 0.419, 0.371) (0.380, 0.405, 0.360) 
υ = 0.3 (0.346, 0.360, 0.324) (0.368, 0.390, 0.348) 
υ = 1 (0.293, 0.295, 0.270) (0.350, 0.366, 0.329) 

20 (8,6,6) 3 MLE (0.476, 0.365, 0.371) 
GB η = 0.1 η = 0.4 
c = − 1 (0.476, 0.365, 0.371) (0.476, 0.365, 0.371) 
c = − 0.8 (0.427, 0.319, 0.340) (0.462, 0.351, 0.356) 
c = − 0.3 (0.374, 0.285, 0.289) (0.426, 0.340, 0.345) 
υ = − 0.1 (0.491, 0.377, 0.383) (0.480, 0.368, 0.374) 
υ = 0.3 (0.438, 0.335, 0.340) (0.466, 0.357, 0.362) 
υ = 1 (0.374, 0.385, 0.289) (0.444, 0.340, 0.348) 

25 (8,5,6) 2.5 MLE (0.462, 0.334, 0.365) 
GB η = 0.1 η = 0.4 
c = − 1 (0.462, 0.334, 0.365) (0.462, 0.334, 0.365) 
c = − 0.8 (0.415, 0.286, 0.319) (0.448, 0.319, 0.351) 
c = − 0.3 (0.295, 0.165, 0.202) (0.413, 0.280, 0.340) 
υ = − 0.1 (0.476, 0.347, 0.377) (0.465, 0.337, 0.368) 
υ = 0.3 (0.426, 0.305, 0.335) (0.452, 0.326, 0.357) 
υ = 1 (0.364, 0.257, 0.286) (0.431, 0.310, 0.340) 

25 (8,10,7) 4 MLE (0.476, 0.494, 0.366) 
GB η = 0.1 η = 0.4 
c = − 1 (0.476, 0.494, 0.366) (0.476, 0.494, 0.366) 
c = − 0.8 (0.427, 0.452, 0.325) (0.462, 0.482, 0.354) 
c = − 0.3 (0.304, 0.345, 0.220) (0.426, 0.452, 0.323) 
υ = − 0.1 (0.491, 0.507, 0.376) (0.480, 0.498, 0.369) 
υ = 0.3 (0.438, 0.461, 0.340) (0.466, 0.485, 0.359) 
υ = 1 (0.373, 0.402, 0.294) (0.444, 0.466, 0.344)  
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3.2. Illustrative example 

We have selected from Nelson’s data three samples of size n1 = n2 = n3 = 10 (groups 1,4 and 5) [see Ref. [26] p.462] corre
sponding to the failure of an insulating liquid subjected to a high load within minutes to demonstrate the usefulness of the results 
derived in the previous sections. Table 7 lists these failure times (denoted as samples Xi, i = 1,2,3) together with their order statistics 
with respect to (W, ji). 

For GB study, there is no information about the prior and noninformative prior should be used (which gives the same results of 
MLEs for c = − 1 or υ tends to zero), therefore we suggest the hyperparameters as aj = bj = 0.0001,j = 1,2,3. Choosing the values =
− 1, − 0.8, − 0.3 ; ν = − 0.1,0.3,1; T1 = 2, 3 for r = 20; T1 = 2.5, 4 for r = 25 and T2 = 2, 3.8 for r = 20; T2 = 4, 9 for r = 25; η =

0.1,0.4. 
Table 8 shows the MLE and Bayesian estimation of the parameters for HCS-I, while Table 9 shows the results for HCS-II. 

4. Discussion and conclusion 

In this study, we examined HCS-I and HCS-II when the life spans of the three populations have exponential distributions. Using 
different values for the learning rate parameter η and GE, the Linex loss function in a simulation study and an example, we were able to 
derive the MLEs and Bayesian estimates of the parameters. Similar to the simulation study, the GBEs outperformed the MLEs. 
Therefore, we discuss the Bayesian results based on the estimator values and their ER in detail below: 

• For η = 0.1, the results are overestimated for c = − 1.5, − 1; ν = − 0.5, − 0.1 but underestimated for c = − 0.75; ν = 0.5, so that 
c = − 0.85; ν = 0.3 leads to better estimation results. 
• For η = 0.4 there is an overestimation for c = − 1, − 0.5; ν = − 0.1, 0.7 but an underestimation for c = 0.1,ν = 4, so c = − 0.25, ν =

1 leads to better estimation results. 
• For η = 0.8, 1 the best results are obtained for c = 0.65,ν = 3.5. 
• This means that the majority of the GB results of the parameters θ1, θ2 and θ3 under HCS-I and HCS-II at η = 0.1 are overestimation 
for c < − 0.85, ν < 0.3 but underestimation for c > − 0.85; ν > 0.3 GB results at η = 0.4 are overestimation for c < − 0.25; ν < 1 but 
underestimate for c > − 0.25,ν > 1; GB results at η = 0.8, 1 are overestimate for c < 0.65; ν < 8.5 but underestimate for c > 0.65,
ν > 3.5. 

Table 9 
ML and GB estimators under HCS-II  

r (r1, r2, r3) T2  (θ̂1, θ̂2, θ̂3)

20 (8,6,6) 2 MLE (0.476, 0.365, 0.371) 
GB η = 0.1 η = 0.4 
c = − 1 (0.476, 0.365, 0.371) (0.476, 0.365, 0.371) 
c = − 0.8 (0.428, 0.319, 0.324) (0.462, 0.351, 0.356) 
c = − 0.3 (0.304, 0.202, 0.208) (0.426, 0.314, 0.319) 
υ = − 0.1 (0.491, 0.377, 0.383) (0.479, 0.368 0.374) 
υ = 0.3 (0.438, 0.335, 0.340) (0.466, 0.357, 0.362) 
υ = 1 (0.374, 0.285, 0.289) (0.444, 0.340, 0.345) 

20 (8,8,7) 3.8 MLE (0.401, 0.397, 0.333) 
GB η = 0.1 η = 0.4 
c = − 1 (0.401, 0.397, 0.333) (0.401, 0.397, 0.333) 
c = − 0.8 (0.361, 0.457, 0.297) (0.389, 0.385, 0.322) 
c = − 0.3 (0.256, 0.254, 0.199) (0.359, 0.355, 0.293) 
υ = − 0.1 (0.412, 0.408, 0.342) (0.404, 0.399, 0.335) 
υ = 0.3 (0.374, 0.371, 0.312) (0.394, 0.390, 0.327) 
υ = 1 (0.325, 0.323, 0.273) (0.378, 0.374, 0.315) 

25 (8,10,7) 4 MLE (0.394, 0.494, 0.324) 
GB η = 0.1 η = 0.4 
c = − 1 (0.394, 0.494, 0.324) (0.394, 0.494, 0.324) 
c = − 0.8 (0.354, 0.452, 0.288) (0.382, 0.482, 0.313) 
c = − 0.3 (0.251, 0.345, 0.194) (0.352, 0.452, 0.285) 
υ = − 0.1 (0.404, 0.507, 0.332) (0.396, 0.497, 0.326) 
υ = 0.3 (0.367, 0.461, 0.303) (0.386, 0.485, 0.318) 
υ = 1 (0.320, 0.402, 0.266) (0.371, 0.466, 0.307) 

25 (9,10,10) 9 MLE (0.355, 0.494, 0.335) 
GB η = 0.1 η = 0.4 
c = − 1 (0.355, 0.494, 0.335) (0.355, 0.494, 0.335) 
c = − 0.8 (0.322, 0.452, 0.306) (0.345, 0.482, 0.326) 
c = − 0.3 (0.238, 0.345, 0.233) (0.322, 0.452, 0.306) 
υ = − 0.1 (0.362, 0.507, 0.340) (0.356, 0.497, 0.336) 
υ = 0.3 (0.336, 0.461, 0.319) (0.349, 0.485, 0.331) 
υ = 1 (0.299, 0.402, 0.289) (0.338, 0.466, 0.321)  
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From simulation study, we can conclude that.  

i. Due to the chosen values for T1, T2 the results under HCS-II are slightly better than that under HCS-I.  
ii. The best results are obtained for η = 0.1, c = − 0.8; ν = 0.3.  

iii. The results are affected by the different values of η, c and ν; where η = 0.1 has better performance for the learning rate 
parameter, that means the small values of η gives better results, therefore GBE is better than traditional Bayes. 

As for Illustrative example, under HCS-II for T2 = 9, in Table 9, the number of observations is 29 nearly the complete sample which 
gives the best results for the MLEs and GBEs for η = 0.1, c = − 0.8; ν = 0.3, also for η = 0.4, c = − 0.3; ν = 1 which underlined in 
Table 9. 

Regarding the investigation of the effect of the learning rate parameter on the estimation results, it may be interesting to investigate 
GB for different distributions with different types of censoring schemes. 
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Appendix 

Algorithm1. Calculating MLE–HCS–I [HCS-II] 

Step 1. [Enter the values] 

[B = iteration number, nj = sample sizes, r = observations number, T1,T2 = prefixed time, B = iteration number, θj assumed values 
for exponential parameters] 

Read (B, r,T1[ T2],nj) ; j = 1,2,3. 

Step 2. [Initialize the variables] 

Bʹ=0; d1j = 0; d2j = 0; d3j = 0; M = 0; L = 0   

Step 3. For I = 1 to B 

Step 4. [Generating samples] 
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Generate 3 samples Xj[I] with sizes nj from EXP(θj). 

Step 5. [Combine the generated samples in one ordered sample] 

W[I] = sort(X1[I],X2[I],X3[I])

Step 6. [Determine termination time of the experiment. (HCS–I) ]. 

T[I] =min(wr[I],T1)

[T[I] = max(wr[I],T2), is termination time of the experiment. (HCS-II)]. 

Step 7. [Compute the observations number, where, R1,R2 observations number till time T1 ,T2] 

D[I] =min(r,R1) [HCS − I]

[ D[I] =max(r,R2), (HCS − II)].

Step 8. [Observations ≤ T[I]] 

Yj[I] =
[
Xj[I] ≤T[I]

]
.

Step 9. Dj[I] = #[Yj[I]].

Step 10. If Dj[I] = 0 Go To Step 3 
Step 10: #[replications satisfying Dj ∕= 0 ] 

Bʹ=Bʹ + 1   

Step 11. uj[I] = sum (Yj[I]) + T[I](nj − Dj[I]).

Step 12. [Computing MLEs] 

θ̂ jM[I] =
Dj[I]
uj[I]

Vj[I] =
(
θj − θ̂ jM[I])̂2  

d1j = d1j + θ̂ jM[I]

d2j = d2j + Vj[I]

Step 13. [ Computing the number of replications for D[I] = r; the sum of rj,R1] 
If (Dj[I] = rj[I]) then M = M + 1; d3j = rj[I] + d3j. 
Else L = R1[I] + L. 
End If. 

Step 14. [ Stop for loop] 
End for. 

Step 15. [Computing MLEs, Estimated Risk, the mean of rj,R1, the ratio p1 ] 

θ̂ jM =
d1j

Bʹ ; ERj =

̅̅̅̅̅̅̅

d2j

Bʹ

√

; rj =
d3j

M
; R1 =

L
Bʹ − M

; p1 = 1 −
M
Bʹ   

Step 16. Print (p1,R1, r1, r2, r3, θ̂1M, θ̂2M, θ̂3M,ER1,ER2,ER3) Stop 

Algorithm2. Calculating GBE–HCS–I [HCS-II] 
Step 1: [Enter the values] 
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Read (B, c,ν,η, r,T1,T2 nj,aj,bj) ; j = 1,2,3. 
Step 2: [Generating θj ∼ (Gam(aj,bj).] 

θj =
aj

bj 

[The\Compute GBEs under Linex loss] 

θ̂ jL[I] =
Dj[I]η + aj

ν ln
(

1+
ν

uj[I] η + bj

)

Step 13: [Compute GBEs under GE loss 

θ̂ jE[I] =
(

Γ
(
Dj[I] η + aj − c

)

Γ
(
Dj[I]η + aj

)

)− 1
c 1

uj[I]η + bj 

… … … … … … … … … …. 
Step 16: Print (θ̂1L, θ̂2L, θ̂3L,ER1L,ER2L,ER3L) 
Print (θ̂1E, θ̂2E, θ̂3E,ER1E,ER2E,ER3E) 
Stop. 
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