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Abstract Single-cell expression profiling opens up new vistas on cellular processes. Extensive

cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out

observations. Because most experimental analyses are destructive we only have access to snapshot

data of cellular states. This loss of temporal information presents significant challenges for inferring

dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate

dynamic variability from within cells (‘intrinsic noise’) from variability across the population

(‘extrinsic noise’). Here, we make this non-identifiability mathematically precise, allowing us to

identify new experimental set-ups that can assist in resolving this non-identifiability. We show that

multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer

magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity.

Stochastic simulations support our theory, and demonstrate that ‘pathway-reporters’ compare

favourably to the well-known, but often difficult to implement, dual-reporter method.

Introduction
Noise is a fundamental aspect of every cellular process Shahrezaei and Swain, 2008b. Frequently it

is even of functional importance, for example in driving cell-fate transitions. Sometimes it can afford

evolutionary advantages, for example, in the context of bet-hedging strategies. Sometimes, it can

be a nuisance, for example, when it makes cellular signal processing more difficult. But noise is

nearly ubiquitous at the molecular scale, and its presence has profoundly shaped cellular life. Analy-

sing and understanding the sources of noise, how it is propagated, amplified or attenuated, and

how it can be controlled, has therefore become a cornerstone of modern molecular cell biology.

Noise arising in gene expression has arguably attracted most of the attention so far (but see e.g.

Filippi et al., 2016 and Jetka et al., 2018 for the analysis of noise at the signalling level). Generally

speaking, gene expression noise is separable into two sources of variability, as pioneered by

Swain et al., 2002. Intrinsic noise is generated by the dynamics of the gene expression process

itself. The process, however, is often influenced by other external factors, such as the availability of

promoters and of RNA polymerase, the influence of long noncoding RNA as a transcriptional regula-

tor Goodrich and Kugel, 2006, as well as differences in the cellular environment. Such sources of

variability contribute extrinsic noise, and reflect the variation in gene expression and transcription

activity across the cell population. As such, understanding extrinsic noise lies at the heart of under-

standing cell-population heterogeneity.

So far, identifying the sources of gene expression noise from transcriptomic measurements alone

has proven difficult Paulsson, 2004; Pedraza and Paulsson, 2008. The fundamental hindrance lies

in the fact that single-cell RNA sequencing, which provides most of the available data, is destructive,

so that datasets reflect samples from across a population, rather than samples taken repeatedly
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from the same cell. As temporal information is lost in such measurements Komorowski et al., 2011,

it may be impossible to distinguish temporal variability within individual cells (e.g. burstiness), from

ensemble variability across the population (i.e. extrinsic noise). A number of numerical and experi-

mental studies have suggested this confounding effect Jones and Elf, 2018; Jones et al., 2014;

Zopf et al., 2013, showing that systems with intrinsic noise alone exhibit behaviour that is indistin-

guishable from systems with both extrinsic and intrinsic noise. This is examined more formally in

Ham et al., 2020a, where we show that the moment scaling behaviour and transcript distribution

may be indistinguishable from situations with purely intrinsic noise. The limitations in inferring

dynamics from population data are becoming increasingly evident, and a number of studies that

seek to address some of these problems have emerged Skinner et al., 2016; Gorin and Pachter,

2020a.

Here we provide adetailed analysis of the extent to which sources of variability are identifiable

from population single-cell omics data. We are able to prove rigorously that it is in general impossi-

ble to identify the sources of variability, and consequently, the underlying transcription dynamics,

from observed transcript abundance distributions alone. Systems with intrinsic noise alone can

always present identically to similar systems with extrinsic noise. For practical purposes, the effect

does not appear to depend on the precise choice of distribution, but holds more generally. More-

over, we demonstrate that extrinsic noise invariably distorts the apparent degree of burstiness of

the underlying system: data which seems ‘bursty’ is not necessarily generated by a bursty process, if

there is cell-to-cell variability across the population. This is a stronger non-identifiability result than

has previously been obtained Ingram et al., 2008; Shahrezaei and Swain, 2008a; Khammash, 2009;

Munsky et al., 2009; Komorowski et al., 2011, and has important ramifications for our analysis of

experimental data: we cannot assess causes of transcriptional variability, if we do not simultaneously

assess cell-to-cell variability in the transcriptional machinery. Our results highlight (in fact prove

eLife digest In biology, seemingly random variation within or between cells can have significant

effects on a number of cellular processes, like how cells divide and develop. For example, how often

a gene is switched on, or ‘expressed’, can randomly fluctuate over time. This ‘noise’ may lead to a

cell having slightly more of a particular molecule, causing it to behave differently to other cells in the

population. However, it is currently unclear how this random variation is created and controlled in

cells, and what effect this has on biological systems as a whole.

When a gene is expressed, its sequence typically gets copied in to a molecule called mRNA,

which is then processed and used to build the protein encoded by the gene. By measuring the levels

of mRNA molecules in individual cells, researchers have been able to investigate how gene

expression varies within populations. These experiments are carried out on dead cells at a single

point in time, and mathematical models are then applied to detect noise in the molecular data.

This approach, however, precludes how noise changes over time, making it difficult to determine

the source of cell-to-cell variability. In particular, whether the variation detected is the result of

genuine random molecular changes (intrinsic noise), or external factors – such as temperature and

pH – fluctuating in the cells environment (extrinsic noise).

Here, Ham et al. have built on previous mathematical models to identify a new approach for

investigating the source of molecular noise. They found that for any given gene it is impossible to

understand what causes its activity levels to vary just from data on its mRNA levels. Instead,

information on other molecules that are affected by expression of the gene (termed ‘pathway

reporters’) can provide a clearer picture of whether molecular variability is the result of intrinsic or

extrinsic noise.

The mathematical models developed by Ham et al. reveal what can and cannot be learned about

noise from gene expression data. Furthermore, pathway-reporters are easier to measure

experimentally than other reporters that are typically used to study the origins and effects of cell-to-

cell variability. These findings could help researchers design single cell experiments that are better

for studying noise, leading to a deeper understanding of how different types of variation impact cell

biology.
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mathematically) the requirement for additional information, beyond the observed copy number dis-

tribution, in order to constrain the space of possible dynamics that could give rise to the same

distribution.

This seemingly intractable problem can at least partially be resolved with a brilliantly simple

approach: the dual-reporter method Swain et al., 2002. In this approach, noise can be separated

into extrinsic and intrinsic components, by observing correlations between the expression of two

independent, but identically distributed fluorescent reporter genes. Dual-reporter assays have been

employed experimentally to study the noise contributed by both global and gene-specific effects

Elowitz et al., 2002; Raser and O’Shea, 2005; Raj et al., 2006. A particular challenge, however, is

that dual reporters are rarely identically regulated Raj et al., 2006; Quarton et al., 2020, and are

not straightforward to set up in every system. More recently, it has been shown that the indepen-

dence of dual reporters cannot be guaranteed in some systems Naik et al., 2021. As a result, there

have been efforts in developing alternative methods for decomposing noise Quarton et al., 2020;

Singh, 2014; Lin and Amir, 2021. Here we develop a widely applicable generalisation (and simplifi-

cation) of the original dual-reporter approach Swain et al., 2002. We demonstrate that non-identical

and not-necessarily independent reporters can provide an analogous noise decomposition. Our

result shows that measurements taken from the same biochemical pathway (e.g. mRNA and protein)

can replace dual reporters, enabling the noise decomposition to be obtained from a single gene.

This completely circumvents the requirement of conditionally independent and identically regulated

reporter genes. The results obtained from our ‘pathway-reporter’ method are also borne out by sto-

chastic simulations, and compare favourably with the dual-reporter method. In the case of constitu-

tive expression, the results obtained from our decomposition are identical to those obtained from

dual reporters. For bursty systems, we show that our approach provides a satisfactorily close approx-

imation, except in extreme cases. Our methodology is verified mathematically for the most common

models of gene transcription, but holds independently of the specific nature of the gene expression

dynamics, as we verify in silico across a range of more detailed models.

Materials and methods
A simple model for stochastic mRNA dynamics is the Telegraph model: a two-state model describ-

ing promoter switching, transcription, and mRNA degradation. In this model, all parameters are

fixed, and gene expression variability arises due to the inherent stochasticity of the transcription pro-

cess. As discussed above, this process will often be influenced by extrinsic sources of variability, and

so modifications to account for this additional source of variability are required.

The telegraph model
The Telegraph model was first introduced in Ko, 1991, and has since then been widely employed in

the literature to model bursty gene expression in eukaryotic cells Bahar Halpern et al., 2015;

So et al., 2011; Suter et al., 2011; Larsson et al., 2019. In this model, the gene switches probabilis-

tically between an active state and an inactive state, at rates l (on-rate) and m (off-rate), respectively.

In the active state, mRNAs are synthesised according to a Poisson process with rate K, while in the

inactive state, transcription does either not occur, or possibly occurs at some lower Poisson rate,

K0 � K. Degradation of mRNA molecules occurs independently of the gene promoter state at rate

d. Figure 1A shows a schematic of the Telegraph model. Throughout the discussion here, we will

rescale all parameters of the Telegraph model by the mRNA degradation rate, so that d ¼ 1. The

steady-state distribution for the mRNA copy number can be explicitly calculated as Peccoud and

Ycart, 1995,

~pTðn;�Þ ¼
KnlðnÞ

n!ð�þlÞðnÞ
1F1ðlþ n;lþ�þ n;�KÞ: (1)

Here, q denotes the parameter vector ð�;l;K;dÞ, the function 1F1 is the confluent hypergeometric

function Abramowitz and Stegun, 1965, and, for real number x and positive integer n, the notation

xðnÞ abbreviates the rising factorial of x (also known as the Pochhammer function). Throughout, we

refer to the probability mass function ~pTðn;�Þ as the Telegraph distribution with parameters q.
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Constitutive gene expression is a limiting case of the Telegraph model, which arises when the off-

rate m is 0, so that the gene remains permanently in the active state. In this case, the Telegraph dis-

tribution simplifies to a Poisson distribution with rate K; the distribution PoisðKÞ.

At the opposite extreme is instantaneously bursty gene expression in which mRNA are produced

in very short bursts with potentially prolonged periods of inactivity in between. This mode of gene

expression has been frequently reported experimentally, particularly in mammalian genes Raj et al.,

2006; Bahar Halpern et al., 2015; Suter et al., 2011; Larsson et al., 2019. Transcriptional bursting

may be treated as a limit of the Telegraph model, where the off-rate, m, tends to infinity, while the

on-rate l remains fixed. In this limit, it can be shown Jones and Elf, 2018; Ham et al., 2020a that

the Telegraph distribution converges to the negative binomial distribution NegBinðl; K
�þK

Þ.

The compound distribution
We can account for random cell-to-cell variation across a population by way of a compound distribu-

tion Ham et al., 2020b

~qðn;hÞ ¼

Z

~pðn;�Þf ð�;hÞd�; (2)

where ~pðn;�Þ is the stationary probability distribution of a system with fixed parameters q and f ð�;hÞ

denotes the multivariate distribution for q with hyperparameters h. Often we will take ~pðn;�Þ to be

the stationary probability distribution of the Telegraph model ((1)), and refer to (2) as the compound

Telegraph distribution. Sometimes ~pðn;�Þ will be the Poisson distribution or the negative binomial

distribution, depending on the underlying mode of gene activity. Figure 1B gives a pictorial repre-

sentation of the compound distribution.

The compound distribution is valid in the case of ensemble heterogeneity, that is, when parame-

ter values differ between individual cells according to the distribution f ð�;hÞ, but remain constant

over time Filippi et al., 2016. This model is also a valid approximation for individual cells with

dynamic parameters, provided these change sufficiently slower than the transcriptional dynamics

Lenive et al., 2016. In general, the compound Telegraph distribution ~qðn;hÞ will be more dispersed

Figure 1. Modeling the effects of both intrinsic and extrinsic noise. (A) A schematic of the Telegraph process, with nodes A (active) and I (inactive)

representing the state of the gene. Transitions between the states A and I occur stochastically at rates m and l, respectively. The parameter K is the

mRNA transcription rate, and d is the degradation rate. (B) The compound model incorporates extrinsic noise by assuming that parameters q of the

Telegraph model vary across an ensemble of cells, according to some probability distribution f ð�;hÞ. (C) Variation in the parameters across the cell

population leads to greater variability in the mRNA copy number distribution.
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than a Telegraph distribution to account for the uncertainty in the parameters; see Figure 1C. Such

dispersion is widely observed experimentally, and as demonstrated in Ham et al., 2020a, reflects

the presence of extrinsic noise.

In the context of gene expression, it has been shown experimentally that some of the primary

sources of extrinsic noise have an autocorrelation time comparable to the cell cycle Rosenfeld et al.,

2005. It is these slow changes in variability that justify the assumptions of the compound model.

Typical sources of extrinsic variability for each parameter in the Telegraph model are summarised in

Table 1 of Ham et al., 2020a. A further significant source of heterogeneity arises from the differen-

ces in cell-cycle phases across the population Skinner et al., 2016. Such effects have been shown to

obscure the precise underlying transcriptional dynamics Zopf et al., 2013; Huh and Paulsson, 2011,

and impede the inference of transcriptional parameters from experimental data Beentjes et al.,

2020. The compound model we consider here is able to capture this variability, provided that the

parameter change within each cell phase is relatively slow, and any dynamic parameter changes dur-

ing the transition between phases can be considered as ephemeral. A more explicit treatment of the

mechanisms and changes during the cell cycle is challenging to study analytically, and theoretical

modelling is only in its infancy Cao and Grima, 2020; Beentjes et al., 2020; Perez-Carrasco et al.,

2020. Later, we verify our proposed noise decomposition on detailed models of gene transcription,

incorporating salient features of the cell-cycle, such as gene replication, dosage compensation, bino-

mial partitioning of products due to cell division, and cell-cycle length variability.

Results

Identifiability considerations
Decoupling the effects of extrinsic noise from experimental measurements has been notoriously

challenging. In the context of (2), the distribution f ð�;hÞ reflects the population heterogeneity, but

experimental data provides samples only of ~qðn;hÞ. How much can we deduce of the underlying

dynamics (that is, ~pðn; �ÞÞ, and the population heterogeneity (f ð�;hÞ), from measurements of tran-

scripts from across the cell population (~qðn;hÞ)?

Of course, even though we may be able to infer the parameter h from experimental data, the

expression ~pðn; �Þ is really a family of distributions, parameterised by q. This presents two fundamen-

tal challenges. The first is the possibility that there are different families of distributions ~pðn; �Þ that

can yield the same compound distribution, ~qðn;hÞ, but which are generated by different mecha-

nisms, that is noise distributions, f ð�;hÞ. The second, perhaps more subtle, challenge is that, even

for a fixed family of distributions ~pðn; �Þ it may be possible that different choices of the noise distribu-

tion f ð�;hÞ could still yield the same compound distribution ~qðn;hÞ. In these situations, we cannot

hope to infer a unique solution for the noise distribution. This belongs to the important class of iden-

tifiability problems Villaverde, Villaverde and Banga, 2017; it has important ramifications for the

Table 1. Summary of the non-identifiability results.

in lines 1, 3, and 5 are our contributions, while the remaining representations (lines 2 and 4) are known

and can be obtained as special cases of our results. Note that here we use Teleðl; �;KÞ to denote a

Telegraph distribution with parameters l; �;K. In lines 3 and 4, the parameter b>0 can be chosen

freely and determines the mean burst intensity in the resulting compound system. In line 5, the

parameters b; �>0 are again mean burst intensities, and b can be chosen freely in the determination

of the distribution of q.

Copy no. distribution ~qðn;hÞ Underlying distribution ~pðn; �Þ Noise distribution f ð�;hÞ

Teleðl; �0;K 0Þ Teleðl; �;KÞ K ~BetaK 0 ðlþ �; �0 � �Þ

Teleðl; �0;K 0Þ PoisðKÞ K ~BetaK 0 ðl; �0Þ

NegBinðl; b
bþ1

Þ Teleðl; �;KÞ K ~Gammaðlþ �;bÞ

NegBinðl; b
bþ1

Þ PoisðKÞ K ~Gammaðl;bÞ

NegBinðl0; b
bþ1

Þ NegBinðl; �
�þ1

Þ �~BetaPrimebðl� l0;l0Þ
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interpretability of parameter estimates obtained from experimental data Ingram et al., 2008.

Indeed, if two or more model parameterisations are observationally equivalent (in this case, in the

form of the transcript abundance distribution ~qðn;hÞ), then not only does this cast doubt upon the

suitability of the model to represent (and subsequently predict) the system, but it also obstructs our

ability to infer mechanistic insight from experimental data.

An example of the first identifiability problem arises from a well-known example of a compound

distribution, (2): when f ð�;hÞ is a gamma distribution and ~pðn; �Þ is a Poisson distribution, corre-

sponding to constitutive gene expression, the resulting compound distribution ~qðn;hÞ is a negative

binomial distribution Greenwood and Yule, 1920. But this is the same distribution as that arising

from instantaneously bursty gene expression Ham et al., 2020a. Such identifiability instances may

be circumvented if there is confidence in the basic mode of gene activity, that is, if there is reason to

believe that a gene is not constitutively active, for example. We find, however, that there are numer-

ous instances that can present insurmountable identifiability problems.

Bursty gene expression
We first observe that any Telegraph distribution with fixed parameters can be identically obtained

from a Telegraph distribution with parameter variation. As shown in the supplementary material

(Appendix Pathway dynamics can delineate the sources of transcriptional noise in gene expression),

any Telegraph distribution ~pTðn; l; �
0;K 0Þ can be written as,

~pTðn;l;�
0;K 0Þ ¼

Z K0

0

~pTðn;l;�; tÞfK 0ðt;lþ�;�0 ��Þdt; (3)

where �<�0 and fK 0ðt;lþ�;�0 ��Þ is the probability density function for a scaled beta distribution

BetaKðlþ�;�0��Þ with support ½0;K 0�. Thus, any Telegraph distribution can be obtained by varying

the transcription rate parameter on a narrower Telegraph distribution (i.e. with a smaller off-rate)

according to a scaled beta distribution. Figure 2A (top panel) compares the representation obtained

in (3) with the corresponding fixed-parameter Telegraph distribution for two different sets of param-

eters. When �¼ 0 the representation given in (3) simplifies to the well-known Poisson representation

of the Telegraph distribution in terms of the scaled beta distribution Srividya et al., 2009.

Instantaneously bursty gene expression
The previous result extends to instantaneously bursty systems. The copy number distribution of an

instantaneously bursty system can be obtained from both bursty and instantaneously bursty dynam-

ics, provided that there is appropriate parameter variation. The supplementary material contains the

relevant derivations; refer to Appendix Pathway dynamics can delineate the sources of transcrip-

tional noise in gene expression. In the following, we let ~pNBðn; r;bÞ denote the probability mass func-

tion of a NegBinðr; b
bþ1

Þ distribution, where b>0. Then for any negative binomial distribution of the

form NegBinðl; b
bþ1

Þ we have,

~pNBðn;l;bÞ ¼

Z
¥

0

~pTðn;l;�; tÞf ðt;lþ�;bÞdt; (4)

where f ðt;lþ�;bÞ is the probability density function of a Gammaðlþ�;bÞ distribution. This result

generalises the aforementioned well-known representation of the negative binomial distribution

Greenwood and Yule, 1920, which corresponds to the particular case of �¼ 0. In Figure 2A (middle

panel), we compare the representation obtained in (4) with the corresponding fixed-parameter nega-

tive binomial distribution for two different sets of parameters.

We also obtain the following representation for a negative binomial distribution in terms of a

scaled beta prime distribution,

~pNBðn;l
0;bÞ ¼

Z
¥

1

b

~pNBðn;l; �Þfbðb�� 1;l�l0;l0Þd�; (5)

where fbðb�� 1;l�l0;l0Þ is the probability mass function of a scaled beta prime BetaPrimebðl�l0;lÞ

distribution, where b>0 and l>l0. This equivalently corresponds to scaled beta noise Betabðl�l0;l0Þ

on the inverse of the expected burst intensity. Thus, the distribution of any instantaneously bursty

Ham et al. eLife 2021;10:e69324. DOI: https://doi.org/10.7554/eLife.69324 6 of 37

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.69324


system with mean burst intensity b can be obtained from one with greater burst frequency, by vary-

ing the mean burst intensity q according to a shifted beta prime distribution. Figure 2A (bottom

panel), compares the representation obtained in (5) with the associated fixed-parameter negative

binomial distribution for two different sets of parameters.

An exception: constitutive expression
It has long been known Feller, 1943 that a compound Poisson distribution uniquely determines the

compounding distribution. In the context of (2), this means the full extrinsic noise distribution f ð�;hÞ

is identifiable from ~qðn;hÞ. As we will demonstrate in related work (Ham et al., in preparation) , it is

therefore possible to extract the extrinsic noise distribution, f ð�;hÞ, from transcript copy number

measurements.

Figure 2. Accuracy of our integral representations for the Telegraph and negative binomial distribution. (A) For each of the results in (3 - 5), we

compare the (fixed-parameter) Telegraph and negative binomial distributions with their respective compound representations for two different sets of

parameter values. The top panel (pink) shows comparisons for (3), with parameter values (left) l ¼ 2, �0 ¼ 12, K 0 ¼ 100, � ¼ 3, and K ~BetaK 0 ð5; 9Þ, and

(right) l ¼ 1, �0 ¼ 20, K 0 ¼ 100, � ¼ 2 and K ~BetaK0 ð3; 18Þ. The middle panel (green) gives comparisons for (4), with parameter values (left) l ¼ 10,

b ¼ 2, � ¼ 2 and K ~Gammað12; 2Þ and (right) l ¼ 1, b ¼ 1, � ¼ 2 and K ~Gammað3; 1Þ. The bottom panel (coral) gives comparisons for (5). The

parameter values (left) are l0 ¼ 10, l ¼ 15 and c ¼ 2 and (right) are l0 ¼ 2, l ¼ 5 and c ¼ 3. (B) The top figure compares a Telegraphð2; 4; 60Þ distribution

with samples from a compound Telegraph distribution with normal noise Normð37; 10Þ on the transcription rate parameter. The middle figure compares

a NegBinð5; 0:5Þ with samples from a compound Telegraph distribution with normal noise Normð5:5; 2:3Þ on the transcription rate parameter. The

bottom figure compares a NegBinð5; 1Þ distribution with samples from a compound negative binomial distribution with normal noise Normð2:3; 0:6Þ on

the burst intensity parameter.
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Implications for parameter inference
Estimates of kinetic parameters from experimental data suggest that gene expression is often either

bursty or instantaneously bursty (i.e., � � l). In turn, the assumption that gene-inactivation events

occur far more frequently than gene-activation events is often used to derive other models of sto-

chastic mRNA dynamics Jia and Grima, 2020; Cao and Grima, 2020; Beentjes et al., 2020. The

representations given in (3 – 5), however, show that both estimating parameters and the underlying

dynamics from the form of the copy number distribution alone can be misleading. Noise on the tran-

scription rate will invariably produce copy number data that is suggestive of a more bursty model.

To illustrate this, consider an example in which the underlying process is a (mildly) bursty Telegraph

system with distribution ~pTðn; 2; 3;KÞ. Now assume that noise on the transcription rate parameter K

follows the scaled Beta distribution on the interval ½0; 100� with a ¼ lþ � ¼ 2þ 3 ¼ 5 and

b ¼ �0 � � ¼ 12� 3 ¼ 9. The shape of this noise distribution closely resembles a slightly skewed

Gaussian distribution, with the majority of transcription rates between around 10 and 60. This noise

on the transcription rate K within the Telegraph system ~pTðn; 2; 3;KÞ will present identically to the

significantly burstier system ~pTðn; 2; 12; 100Þ.

It is of practical importance to recognise that, while the non-identifiability results (summarised in

Table 1) are dependent on specific noise distributions, for practical purposes any similar distribution

will produce a similar effect. To demonstrate this, we replace the various noise distributions required

for the representations in (3 – 5), with suitable normal distributions truncated at 0. In each case, we

sample 1000 data points from the corresponding compound distribution, and compared this with

the associated fixed-parameter copy number distribution. The results are shown in Figure 2B. The

truncated normal distribution is not chosen on the basis of biological relevance, but rather to dem-

onstrate that even a symmetric noise distribution (except for truncation at 0) produces qualitatively

similar results to the distributions used in the precise non-identifiability results. In every case, the

effect of varying the transcription rate or burst intensity parameter according to a unimodal noise

distribution is to produce copy number distributions that are generally consistent with systems that

appear burstier.

Finally, we note that our results explain previous empirical observations that static measurements

of mRNA are not always sufficient to infer the underlying dynamics of gene activity. Skinner et al.,

2016 address some of these limitations by quantifying both nascent and mature mRNA in individual

cells, as well incorporating cell-cycle effects into their analysis of two mammalian genes. A more

developed treatment of model identifiability is given in Gorin and Pachter, 2020a, where it shown

how a stochastic model incorporating the downstream processing of mRNA can be used to distin-

guish a particular instance of non-identifiability. More specifically, the authors consider the non-iden-

tifiability problem noted in Ham et al., 2020a, arising from the Gamma-Poisson compound

representation of the negative binomial distribution; a particular case of (4) above. Despite identical

distributions at the nascent level, the marginal distributions of the processed (mature) mRNA are

found to be substantially different. It is likely that a similar analysis will be valuable in the context of

the other identifiability problems we have given in Table 1. In the next section, we take a more gen-

eral approach to resolving non-identifibiality and exploit the properties of complex gene expression

dynamics to determine not only the presence of extrinsic noise, but also estimate its magnitude.

Resolving non-identifiability
The results of the previous section show that additional information, beyond the observed copy

number distribution, is required to constrain the space of possible dynamics that could give rise to

the same distribution. One way to narrow this space of possibilities, is to determine the intrinsic and

extrinsic contributions to the total variation in the system.

The dual-reporter method
The total gene expression noise, as measured by the squared coefficient of variation h2, can be

decomposed exactly into a sum of intrinsic and extrinsic noise contributions Swain et al., 2002. The

decomposition applies to dynamic noise Hilfinger and Paulsson, 2011, and generalises to higher

moments in Hilfinger et al., 2012. Sets of dual reporters at multiple levels of the transcriptional

pathway has been shown to achieve a finer breakdown of noise into subcategories Bowsher and

Swain, 2012. As shown in Hilfinger and Paulsson, 2011, the noise decomposition is equivalent to
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the normalised Law of Total Variance (Ross, 2014). Indeed, if X is the random variable denoting the

number of molecules of a certain species (e.g. mRNA or protein) in a given cell, then we can decom-

pose the total noise by conditioning X on the state Z ¼ ðZ1; . . . ; ZnÞ of the environmental variables

Z1,. . .,Zn,

h2

X ¼
EðVarðX;ZÞÞ

EðXÞEðYÞ
þ
VarðEðX;ZÞÞ

EðXÞEðYÞ
� h2

int þh2

ext: (6)

It has been shown Swain et al., 2002; Hilfinger and Paulsson, 2011 that if X1 and X2 are random

variables denoting the expression levels of independent (conditional on Z) and identically distributed

gene reporters, then the extrinsic noise contribution h2

ext in (6) can be identified by the normalised

covariance between X1 and X2,

h2

ext ¼
CovðX1;X2Þ

EðX1ÞEðX2Þ
: (7)

Decomposing noise with non-identical reporters
The dual-reporter method requires distinguishable measurements of transcripts or proteins from two

conditionally independent and identically distributed reporter genes integrated into the same cell. In

practice, however, dual reporters rarely have identical dynamics, which is widely considered to be a

significant challenge to interpreting experimental results Quarton et al., 2020. We show that, under

certain conditions, the decomposition in (6) can alternatively be obtained from non-identically dis-

tributed and not-necessarily independent reporters.

Our result relies on the observation that the covariance of any two variables can be decomposed

into the expectation of a conditional covariance and the covariance of two conditional expectations

(the Law of Total Covariance Ross, 2014). If X and Y denote, for example, the numbers of molecules

of two chemical species (eg. mRNA and protein) in a given cell, then the covariance of X and Y can

be decomposed by conditioning on the state Z ¼ ðZ1; . . . ; ZnÞ of the environmental variables Z1,. . .,

Zn,

CovðX;YÞ ¼EðCovðX;Y;ZÞÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

intrinsic

þCovðEðX;ZÞ;EðY;ZÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

extrinsic

: (8)

We will see that in many cases of interest the random variable EðX;ZÞ (as a function of Z) splits

across common variables with EðY;ZÞ. By this we mean that EðX;ZÞ ¼ f ðZXÞhXðZ
0Þ and

EðY;ZÞ ¼ gðZYÞhYðZ
0Þ, where ZX are the variables of Z that appear in EðX;ZÞ but not in EðY;ZÞ, and

dually, ZY are those in EðY ;ZÞ that are not in EðX;ZÞ. The variables Z0 are those variables from Z not

in ZX [ZY . In these cases, the component of CovðX;YÞ that is contributed by the variation in Z (the

extrinsic component) may be written as the covariance of the functions hXðZ
0Þ and hYðZ

0Þ. Conve-

niently, in the cases of interest here, the two functions hX and hY coincide, and this is the form we

use in the following decomposition principle. The supplementary material (Appendix A) contains the

proof of this result.

The noise decomposition principle (NDP)
Assume that there are measurable functions f , g, and h such that EðX;ZÞ and EðY;ZÞ split across

common variables by way of EðX;ZÞ ¼ f ðZXÞhðZ
0Þ and EðY ;ZÞ ¼ gðZYÞhðZ

0Þ. Then, provided that the

variables Z1; . . . ; Zm are mutually independent, the normalised covariance of EðX;ZÞ and EðY ;ZÞ will

identify the total noise on hðZ0Þ (i.e. h2

hðZ0Þ).

As we show in the next section, there are many situations where the random variable EðX;ZÞ is

precisely the common part of EðY;ZÞ and EðX;ZÞ (i.e., hðZ0Þ ¼ EðX;ZÞ), and the normalised intrinsic

contribution to the covariance is either zero or negligible. In these cases, the normalised covariance

of X and Y will identify precisely the extrinsic noise contribution h2

ext to the total noise h2

X . To see

this, consider the situation where EðY ;ZÞ ¼ f ðZYÞEðX;ZÞ. Then provided f ðZYÞ and ðX;ZÞ are inde-

pendent random variables, the extrinsic contribution to the covariance of X and Y is given by,
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CovðEðX;ZÞ;EðY ;ZÞÞ ¼CovðEðX;ZÞ; f ðZYÞEðX;ZÞÞ

¼Eðf ðZYÞÞCovðEðX;ZÞ;EðX;ZYÞÞ

¼Eðf ðZYÞÞVarðEðX;ZÞÞ:

(9)

If the normalised intrinsic contribution to the covariance is either zero or is negligible, it follows

from (8) that

CovðX;YÞ

EðXÞEðYÞ
»
VarðEðX;ZÞÞ

EðXÞ2
¼ h2

ext: (10)

Thus, under certain conditions, measuring the covariance between two non-identically distributed

and not-necessarily independent reporters can replace dual reporters.

The pathway-reporter method
We show that for some reporters X and Y belonging to the same biochemical pathway, the covari-

ance of X and Y continues to identify the extrinsic, and subsequently intrinsic, noise contributions to

the total noise. The basis of the pathway-reporter method depends on the emergent covariances

between the various species (e.g. nascent/mature mRNA and protein) in the gene expression path-

way. Qualitatively, this effect can be seen in Figure 3, which compares simulated sample distribu-

tions of a simple four-stage model of gene transcription (refer to the model M4 below) in the case of

moderate extrinsic noise to the case with no extrinsic noise. The plots are the bivariate distributions

for nascent-mature, nascent-protein, and mature-protein levels, respectively. This will be made more

Figure 3. A comparison of joint distributions in the case of moderate extrinsic noise and no extrinsic noise. The plots are generated from a three-stage

model of gene transcription, incorporating the production of nascent mRNA, mature mRNA and protein. Details of the model can be found in Figure 4

(model M4) and the associated text. The top panel shows nascent-mature, nascent-protein and mature-protein joint distributions in the case of extrinsic

noise, while the bottom panel displays the corresponding plots in the case of no extrinsic noise. Extrinsic noise produces a visibly more correlated joint

distribution, which forms the basis of the pathway-reporter method.
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precise below, where we find that it is possible to extract quantitative information about the extrinsic

noise distribution itself from this data.

Figure 4. Stochastic models of gene expression. (A) The model M1 is the simplest model of mRNA maturation. Here, nascent (unspliced) mRNA are

shown in red/blue wavy lines; the blue segments represent introns and the red segments represent the exons. Nascent mRNA are synthesised at the

rate KN , and spliced into mature mRNA (blue wavy lines) at rate KM . Degradation of the mature mRNA occurs at rate dM . The model M2 is the well-

known two-stage model of gene expression. The model M3 is the extension of the two-stage model to include promoter switching. The nodes A

(active) and I (inactive) represent the state of the gene, with transitions between states occurring at rates l and m. The remaining parameters are the

same as those in the model M2. The model M4 extends the model M3 by incorporating mRNA maturation. Here, KN is the transcription rate parameter,

and KM is the maturation rate. All other parameters are the same as in M3. (B) Time series simulation of the copy number and activity state of a gene

modelled by M4. For ease of visualisation, the parameters were artificially chosen as l ¼ 2, � ¼ 2:5, KN ¼ 40, KM ¼ 4, Kp ¼ 4 and dp ¼ 1, with all

parameters scaled relative to dm ¼ 1. (C) As l approaches 0, we see a higher correlation in the copy numbers of nascent mRNA, mature mRNA and

protein. Again, the parameters are artificially chosen to be l ¼ 0:1, � ¼ 2:5, KN ¼ 80, KM ¼ 4, Kp ¼ 4 and dp ¼ 1, with all parameters scaled relative to

dm ¼ 1.
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Throughout this section, we assume that extrinsic noise sources act independently i.e., the envi-

ronmental variables Z1; . . . ; Zn of Z are mutually independent. Additionally, our modelling focuses

only on a single gene copy, although the same analysis applies to multiple but indistinguishable

gene copies; we refer to the supplementary material (Appendix B) for more details.

Measuring noise from a constitutive gene
We consider first the simplest case where the underlying process is constitutive. We begin with a

stochastic model of mRNA maturation, which we denote by M1; Figure 4A (top left) gives a sche-

matic of the constitutive model. In this model, the gene continuously produces nascent mRNA

according to a Poisson process at constant rate KN , which are subsequently spliced into mature

mRNA according at rate KM . Degradation of mature mRNA occurs as a first-order Poisson process

with rate dM . The model M1, together with its extensions, has been considered in a number of recent

studies Gorin and Pachter, 2020a; Cao and Grima, 2020; La Manno et al., 2018; Gorin and

Pachter, 2020b; Bergen2020, and has a known solution for the stationary joint probability distribu-

tion Jahnke and Huisinga, 2007 given by,

~pðn;m;�Þ ¼
e
�Kn

KM ðKN

KM
Þn

n!

e�
Kn
d ðKN

dM
Þm

m!
; (11)

where n is the number of nascent mRNA, m is the number of mature mRNA, and the parameter

�¼ ðKN ;KM ;dMÞ. We use XN to denote the number of nascent mRNA, XM the number of mature

mRNA produced from the same constitutive gene, and Z¼ ðKN ;KM ;dMÞ. To simplify notation, we

abbreviate the variables in ZXN
as ZN , and similarly for ZXM

. It follows immediately from (11) that XN

and XM are independent conditional on Z, and so the intrinsic contribution to the covariance of XN

and XM (the first term of (8)) is 0. It is also easy to see from (11) that ðXN ;ZÞ ¼ f ðZNÞKN and

ðXM ;ZÞ ¼ gðZMÞKN , where f ðZNÞ ¼
1

KM
and gðZMÞ ¼

1

dM
. Since the extrinsic noise sources are assumed to

act independently, it follows that the Noise Decomposition Principle (NDP) of the previous section

holds. We then have that CovðXN ;XMÞ ¼ h2

KN
, where h2

KN
is the total noise on the transcription rate

parameter KN . Thus, measuring CovðXN ;XMÞ can replace dual reporters to decompose the gene

expression noise at the transcriptional level.

To support our mathematical results, we simulate the model M1 subject to parameter variation

using the stochastic simulation algorithm (SSA). Table 2 compares the extrinsic noise contributions

found from various simulations with the corresponding theoretical values. In each simulation, the

degradation rate dm is fixed at 1, with the other parameters scales accordingly. The maturation rate

KM is sampled according to a Gammað8; 0:0125Þ distribution, which has coefficient of variation 0.125.

We consider different noise distributions on KN , producing a range of noise strengths. Our theory

predicts that pathway-reporters will identify the total noise on KN . Overall, we observe an excellent

agreement between the results obtained by the pathway-reporter method, the dual-reporter

method and the theoretical noise. There is consistently slightly more variation in the pathway-

reporter results compared with the dual-reporter results.

To explore the pathway-reporter method more widely, we consider 60 different parameter com-

binations to produce a range of mean copy numbers consistent with those reported experimentally.

We also consider different noise distributions taken from the scaled Beta distribution family in order

to produce a range of noise strengths; refer to Supplementary file 1. The pathway-reporter method

performs favourably compared to the dual-reporter method calculated from mature mRNA, and con-

sistently outperforms the dual-reporter method on nascent mRNA.

Next, we consider the simplest stochastic model of gene expression that includes both mRNA

and protein dynamics: the well-known ‘two-stage model’ of gene expression, which, together with

its three-stage extension to include promoter switching has been widely studied Raser and O’Shea,

2005; Raj et al., 2006; Thattai and van Oudenaarden, 2001; Friedman et al., 2006; Singh and

Hespanha, 2007; Shahrezaei and Swain, 2008a; Bokes et al., 2012; Molina et al., 2013. We

denote this model by M2; see Figure 4A (top right) for a schematic of this model. In this model,

mRNA are synthesised according a Poisson process at rate Km, which are then later translated into

protein at rate Kp. Degradation of mRNA and protein occur as first-order Poisson processes with

rates dm and dp, respectively. If Xm denotes the number of mRNA, Xp the number of proteins
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produced from the same constitutive gene, and if Z ¼ ðKm;Kp; dm; dpÞ, then the stationary means and

covariance are given by Thattai and van Oudenaarden, 2001; Singh and Hespanha, 2007:

EðXm;ZÞ ¼
Km

dm
; EðXp;ZÞ ¼

Kp

dp

Km

dm
and CovðXm;Xp;ZÞ ¼

KmKp

dmðdmþ dpÞ
: (12)

It is easily verified that EðXp;ZÞ ¼ f ðZpÞEðXm;ZÞ, where f ðZpÞ ¼
Kp

dp
. Thus, it follows from the NDP

that the normalised contribution of CovðXm;XpÞ contributed by Z will identify the extrinsic noise con-

tribution to the total noise on Xm. Now, if we assume that dm is fixed across the cell-population, and

all parameters are scaled so that dm ¼ 1, we have the following expression for the intrinsic contribu-

tion to the covariance of Xm and Xp; refer to the supplementary material (Appendix B) for details.

EðCovðXm;Xp;ZÞÞ

EðXmÞEðXpÞ
¼

a

EðKmÞ
; where a¼

Eð1=ðdpþ 1ÞÞ

Eð1=dpÞ
: (13)

Since mRNA tends to be less stable than protein, we have dp<1, and often dp � 1Bernstein et al.,

2002; Schwanhäusser et al., 2011. So, we can expect a� 1. Further, for many genes we can expect

the number of mRNA per cell (Km) to be in the order of tens, so 1=EðKmÞ<1. It follows that

EðCovðXm;Xp;ZÞÞ� ~1, so that CovðXm;XpÞ will closely approximate the extrinsic noise at the tran-

scriptional level.

We test our theory using stochastic simulations of the model M2 subject to parameter variation.

Table 3 gives a comparison of the results of the mRNA-protein reporters and dual reporters. In each

case, we varied Kp according to a Gammað5; 0:4Þ distribution and dp according to a Gammað8; 0:125Þ

distribution; the corresponding noise strengths are 0.20 and 0.125, respectively. We consider differ-

ent noise distributions on Km, which produce a range of noise strengths, and the noise distribution

parameters are selected to produce a mean mRNA of approximately 50 and a mean number of

approximately 1000 proteins in each simulation. As our theory predicts, the mRNA-protein reporters

identify the extrinsic noise contribution to the total noise on Xm. Again, we can see from Table 3

that there is excellent agreement between the results of the pathway reporters and the dual report-

ers, with slightly more variation in the pathway-reporter results. A larger exploration of the parame-

ter space reveals similar results; these are provided in Supplementary file 1. Thus, despite mRNA

and protein numbers not being strictly independent, they can, for practical purposes, replace dual

reporters to decompose the noise at the transcriptional level.

Table 2. A comparison of the pathway-reporter method and the dual-reporter method for

constitutive expression under the model M1.

Here, PR (NM) gives the results of the nascent and mature pathway reporters, while DR (Mat) gives

the results of dual reporters calculated from the mature mRNA. We considered noise on both the

transcription rate (KN ) and the maturation rate (KM ). The decay rate is fixed at one, with the other

parameters scaled accordingly. In each case, the maturation rate KM is varied according to a

Gammað8; 1:25Þ distribution, which has coefficient of variation 0.125. The values given are the average

of 100 simulations, each calculated from 500 copy number samples, and the errors are ± one standard

deviation. Our theory predicts that pathway-reporters will identify the noise on the nascent transcrip-

tion rate KN (h2

ext). The noise distribution parameters are chosen to produce an average nascent

mRNA copy number of approximately five and an average mature mRNA copy number of approxi-

mately 50.

Theory Simulation

(r)1-2 h2

ext Noise (KN ) Pr (NM) DR (Mat)

0.00 KN ¼ 50 0:00� 0:01 0:00� 0:00

0.10 Beta
133: _3ð6; 10:5Þ 0:10� 0:01 0:10� 0:01

0.20 Gammað5; 10Þ 0:20� 0:02 0:20� 0:01

0.50 Beta300ð1:5; 7:5Þ 0:49� 0:04 0:50� 0:03

The online version of this article includes the following source data for Table 2:

Source data 1. This is an Excel spreadsheet containing the data used to produce the final values in Table 2.

Ham et al. eLife 2021;10:e69324. DOI: https://doi.org/10.7554/eLife.69324 13 of 37

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.69324


We note that both the pathway-reporter (nascent-mature or mature-protein) and dual-reporter

methods show slower convergence when copy numbers are low. Pathway reporters usually show

fractionally slower convergence and fractionally more variation than a dual reporter, as suggested by

the standard deviations in Tables 2 and 3. A more detailed exploration of convergence is given in

the supplementary material (Appendix C).

Measuring noise from a facultative (bursty) gene
The most common mode of gene expression that is reported experimentally is burstiness Jones and

Elf, 2018; Raj et al., 2006; Bahar Halpern et al., 2015; Suter et al., 2011; Larsson et al., 2019;

Golding et al., 2005, in which mRNA are produced in short bursts with periods of inactivity in

between. One example is gene regulation via repression, which naturally leads to periods of gene

inactivity. Here, we consider a four-stage model of bursty gene expression, which incorporates both

promoter switching and mRNA maturation; we denote this model by M4; see Figure 4A (bottom

left). This model has recently been considered in Cao and Grima, 2020, where the marginal distribu-

tions are solved in some limiting cases. In this model, the gene switches probabilistically between an

active state (A) and an inactive state (I), at rates l (on-rate) and m (off-rate), respectively. In the active

state, nascent mRNA is synthesised according to a Poisson process at rate KN , while in the inactive

state transcription does not occur. Nascent mRNA is spliced into mature mRNA at rate KM ; this in

turn is later translated into protein, with rate KP. Degradation of mRNA and protein occur indepen-

dently of the promoter state at rates dM and dP, respectively.

For this model, we have three natural candidates for pathway reporters: (a) nascent and mature

mRNA (b) mature mRNA and protein, and (c) nascent mRNA and protein reporters. Below we show

that nascent mRNA–protein reporters yield consistently good estimates of the extrinsic noise contri-

bution h2

ext to the total gene expression noise, while nascent–mature and mature RNA–protein

reporters are reliable in some restricted cases. We begin by showing that each of the reporter pairs

(a), (b), and (c) satisfy the Noise Decomposition Principle. We then demonstrate computationally,

that despite a lack of independence between these reporter pairs, the pathway-reporter method

can still be used to decompose the total gene expression noise at the transcriptional level. Through-

out, we let XN denote the number of nascent mRNA, we let XM denote the number of mature

mRNA, and let XP denote the number of proteins produced from the same gene. We also let

Z ¼ fl; �;KN ;KM ;KP; dM ; dPg.

Table 3. A comparison of the pathway-reporter method and the dual-reporter method for

constitutive expression under the model M2.

Here PR (MP) gives the results of the mRNA-protien pathway reporters, while DR (Mat) gives the

results of dual reporters calculated from the mature mRNA. We considered noise on the transcription

rate (Km), the protein synthesis rate (Kp), and the protein decay rate (dp). The mRNA decay rate is fixed

at one. In each case, we varied Kp according to a Gammað5; 0:4Þ distribution and dp according to a

Gammað8; 0:125Þ distribution; the corresponding noise strengths are 0.20 and 0.125, respectively. We

considered different noise distributions on Km, which produce a range of noise strengths. The noise

distribution parameters are selected to produce a mean mRNA of approximately 50 and a mean num-

ber of approximately 1000 proteins in each simulation. The values given are the average of 100 simu-

lations, each calculated from 500 copy number samples, and the errors are ± one standard deviation.

As our theory predicts, the mRNA-protein reporters identify the noise on the transcription rate param-

eter Km (h2

ext).

Theory Simulation

(r)1-2 h2

ext Noise (Km) Pr (MP) DR (Mat)

0.00 Km ¼ 50 0:00� 0:01 0.00 ± 0.00

0.10 Beta
133: _3ð6; 10:5Þ 0:10� 0:01 0.10 ± 0.01

0.20 Gammað5; 10Þ 0:20� 0:02 0:20� 0:01

0.50 Beta300ð1:5; 7:5Þ 0:51� 0:04 0:50� 0:03

The online version of this article includes the following source data for Table 3:

Source data 1. This is an Excel spreadsheet containing the data used to produce the final values in Table 3.
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Following Raj et al., 2006, we assume that the transcription rate KN is large relative to the other

parameters. We further assume that the maturation rate KM is large (i.e. KM>dM ), which is supported

by experiments Cao and Grima, 2020. Then, using the results of Raj et al., 2006 and arguments

similar to those in Cao and Grima, 2020, it can be shown that the stationary averages for the

nascent mRNA, mature mRNA and protein levels are given by,

EðXN ;ZÞ ¼
KN

KM

l

ðlþ�Þ
; EðXM ;ZÞ ¼

KN

dM

l

ðlþ�Þ
and EðXP;ZÞ ¼

KP

dP

KN

dM

l

ðlþ�Þ
; (14)

respectively. The supplementary material (Appendix B) provides more detail on how these expres-

sions can be obtained.

We consider first the nascent-mature pathway reporters, case (a). From (14), it is easily seen that

EðXN ;ZÞ ¼ f ðZNÞKN
l

ðlþ�Þ and EðXM ;ZÞ ¼ gðZMÞKN
l

ðlþ�Þ, where f ðZNÞ ¼
1

KM
and gðZMÞ ¼

1

dM
. So the NDP

holds, and the normalised covariance of EðXN ;ZÞ and EðXM ;ZÞ will identify the extrinsic noise on the

transcription component KN
l

ðlþ�Þ. Consider now the mature-protein reporters, case (b). Again, we

can see from (14) that EðXM ;ZÞ ¼ f ðZPÞEðX;ZÞ, where f ðZPÞ ¼
KP

dP
. Thus, the NDP holds, and so the

normalised covariance of EðXM ;ZÞ and EðXP;ZÞ will identify the total noise on EðXM ;ZÞ (the extrinsic

noise on XM ). For the nascent-protein reporters, case (c), it is easy to see that

EðXN ;ZÞ ¼ f ðZNÞKN
l

ðlþ�Þ, where f ðZNÞ ¼
1

KM
, and EðXP;ZÞ ¼ gðZPÞKN

l
ðlþ�Þ, where gðZPÞ ¼

KP

dMdP
. Thus,

again the NDP holds, and the normalised covariance of EðXN ;ZÞ and EðXP;ZÞ will identify the noise

on the transcriptional component KN
l

ðlþ�Þ.

In order for the pathway-reporter method to provide a close approximation to the extrinsic noise

in cases (a), (b), and (c), we require that the normalised intrinsic contribution to the covariance is

either zero or negligible. This condition will hold provided there is sufficiently small correlation

between the reporter pairs. In the case of (prokaryotic) mRNA and protein, this lack of correlation

has been been verified experimentally in E. coli (Taniguchi et al., 2010). More generally, it is possi-

ble to provide an intuition about the conditions under which the lack of correlation might hold. The

time series of copy numbers for each of nascent mRNA, mature mRNA and protein broadly follow

each other, each with delay from its predecessor (Figure 4B). Parameter values that reduce this

delay will tend to increase correlation, and thereby increase the normalised intrinsic contribution to

the covariance. The primary example of this effect is seen when dp approaches, or even exceeds dm

(or for nascent-mature reporters, when dM approaches the maturation rate). A further contributor to

high correlation between mRNA and protein, is when the system undergoes long timescale changes.

In this situation, the copy numbers tend to drop to very low values for extended periods. The pri-

mary parameter influencing this type of behaviour is the active-rate l, specifically, when l tends to 0

(Figure 4C). An illustrative example of this can be seen by considering a Telegraph system in the

limit of slow switching, which produces a copy number distribution that converges to a scaled Pois-

son-Bernoulli compound distribution: even without any extrinsic noise, the pathway reporter method

will identify the h2 value of the corresponding scaled Bernoulli distribution.

An extensive computational exploration of the parameter space (Supplementary file 2) supports

our intuition, though the strength of the effect varies across the three different reporter pairs. This is

further corroborated by the heatmaps shown in Figure 5, which for three fixed values of m and a

broad spectrum of dp and l values, give the intrinsic term h2

int in (8), for fixed Z. Thus, the heatmaps

provide an estimate for the overshoot error in the pathway-reporter approach. Note that blue pixels

represent an overshoot estimate of less than 0.05.

For nascent-protein reporters, the normalised intrinsic contribution to the covariance is satisfacto-

rily small (less than 0.05) except for (a) high values of dp in unison with (b) low values of l (less than

1, although lower values are acceptable if dp is small). The assumption (a) that dP<dM is known to be

true for a large number of genes, and is justified by the difference in the mRNA and protein life-

times. While there is of course variation across genes and organisms, values of dP � 0:5dM and even

dP � 0:2dM seem reasonable for the majority of genes. In E. coli Taniguchi et al., 2010 and yeast

Belle et al., 2006, for example, mRNA are typically degraded within a few minutes, while most pro-

teins have lifetimes at the level of 10 s of minutes to hours. For mammalian genes

Schwanhäusser et al., 2011, it has been reported that the median mRNA decay rate dM is (approxi-

mately) five times larger than the median protein decay rate dP, determined from 4200 genes.
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Assumption (b) requires that the gene is sufficiently active. In a recent paper by Larsson et al.,

2019, the promoter-switching rates l, m, and the transcription rate K of the Telegraph model are

estimated from single-cell data for over 7000 genes in mouse and human fibroblasts. Of those genes

with mean mRNA levels greater than 5, we found that over 90% have a value for l of at least 0.5,

and over 65% have a value for l greater than 1. In Cao and Grima, 2020, a comprehensive list of

genes (ranging from yeast cells through to human cells) with experimentally inferred parameter val-

ues are sourced from across the literature (see Table 1 in Cao and Grima, 2020). After scaling the

parameter values of the 26 genes reported there, we find that around 88% have a value for l of at

least 0.5, and approximately 58% have a value for l greater than 1. Thus, the heatmaps given in Fig-

ure 5 (top panel) suggest that nascent-protein reporters will provide a satisfactory estimate of the

extrinsic noise level for a substantial fraction of genes.

The mature nRNA–protein reporters are less reliable, with the requirement of slow protein decay

and higher on-rate being more pronounced than for the nascent mRNA–protein reporters; this is evi-

dent from Figure 5 (second panel). The performance of the nascent–mature reporter is of course

independent of dp, but is only viable in the case of a large on-rate (see Figure 5—figure supplement

1).

Figure 5. Heatmaps for the intrinsic contribution to the covariance. These heatmaps estimate the level of overshoot in the pathway-reporter approach

for the nascent-protein and mature-protein reporters; blue regions show an overshoot of less than ’ 0:05. Here, the intrinsic contribution is

calculated using stochastic simulations of the model M4. For the mature-protein and nascent-protein reporters, we consider three different values of

the parameter m, specifically � ¼ 2, � ¼ 10, and � ¼ 20. In all cases, the parameter dp and the on-rate l are varied between 0.01 and 0.5, and 0.5 and 5,

respectively. The parameters of the model M4 are scaled so that dM ¼ 1. The maturation rate is fixed at 20, with the parameters KN and KP chosen to

produce a mean protein level of 1000, a mean nascent mRNA level of 5 and a mean mature mRNA level of 50. Each individual pixel is generated from a

sample of size 3000, although there is still some instability in the convergence for the nascent-protein reporter, particularly as the overshoot estimation

starts to increase, and particularly as m is larger. To produce more accurate values, the case of � ¼ 2 was averaged over two full experiments while

� ¼ 20 was averaged over three. This was also done for the mature-protein reporter, however for these images there was almost no visible difference

between the various runs of the experiment and their averages. Each of the three m values takes approximately 7–10 hr of computation, depending on

lead in time before sampling within a simulation. Figure 5—figure supplement 1 gives a heatmap for the overshoot in the pathway-reporter approach

for nascent-mature pathway reporters.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Heatmap for the intrinsic contribution to the covariance for nascent-mature pathway reporters.
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We test our approach for each of the pathway reporter pairs (a), (b), and (c) against dual reporters

using stochastic simulations. Table 4 shows the results from six simulations across a spectrum of

behaviours from moderately slow switching, to fast switching as well as a range of levels of bursti-

ness. For each of the parameters �; l;KP; dP, we selected a scaled Betað5; 6Þ distribution, with

squared coefficient of variation h2 ¼ 0:1; the scaling is chosen in each case to achieve a mean value

equal to the parameter value given in Table 4. It is routinely verified that scaling these distributions

does not change the value of h2. The parameter KN is given the noise distribution Betað3; 6Þ, which

has a slightly higher coefficient of variation h2 ¼ 0:2. In order to achieve direct benchmarking against

the dual reporters, the parameter KM is fixed; we select KM ¼ 10. This is because the nascent-protein

pathway reporter estimates noise on the value of KN
l

lþ�, while the mature mRNA dual-reporter

measures noise on KN

KM

l
lþ�, and these coincide only when KM is fixed. The mean values of KN and KP

are chosen to achieve approximate average nascent mRNA levels, mature mRNA levels and protein

levels at 5, 50, and 1000 respectively, given the chosen values of l; �; dP.

The results for the nascent mRNA–protein reporters, case (c), given in Table 4 show comparable

performance to dual reporters, with only modest overshoot; even in the worst performing case of

l ¼ 0:5, � ¼ 1 the result of the pathway reporters is within one standard deviation, in a very tight dis-

tribution. The error heatmaps of Figure 5 provide an accurate estimate of the overshoot in the

nascent-protein results in Table 4. As an example, the first row is most closely matched by the heat-

map at top left of Figure 5, which at l ¼ 0:5 and dP ¼ 0:1 is suggestive of an error around the

boundary between blue and red (around 0.06). The same accuracy is obtained for the other rows. As

predicted, the mature-protein reporters show significantly more overshoot, especially with the less

active genes. Improved accuracy can again be obtained by subtracting the estimated overshoot

given in the error heatmaps from the obtained value. Thus for example, the error heatmap for � ¼ 2

(Figure 5 lower left) gives an error approximately 0.07 for l ¼ 1; dP ¼ 0:1, which agrees very closely

to the actual overshoot of 0.07 shown in the corresponding row of Table 4. An overshoot of approx-

imately 0.06 is suggested by the heatmap for � ¼ 2, when l ¼ 2; dP ¼ 0:3, which leads to a correction

from 0.35 in Table 4 to a value of 0.29. This is quite consistent with the dual reporter benchmark of

0.27. As expected (based on Figure 5—figure supplement 1), nascent-mature reporters do not per-

form well on bursty systems except for high l and so the values are not included in Table 4; only in

Table 4. A comparison of the pathway-reporter method and dual-reporter method for bursty

expression.

Here PR (NP) gives the results of the nascent and protein pathway reporters, PR (MP) gives the results

of the mRNA and protein reporters, while DR (Mat) gives the results of the dual reporters calculated

from the mature mRNA. We consider noise on all of the parameters except for dM and KM ; see discus-

sion in main text. The values given are the average of 100 simulations, each calculated from 500 copy

number samples, and the errors are ± one standard deviation. Our theory predicts that pathway-

reporters will identify the noise at both the promoter level (l; �) and transcriptional level (KN ); the total

extrinsic noise in each case is given by h2

ext. As before, the noise distribution parameters are chosen

to produce an average nascent mRNA copy number of 5 and an average mature mRNA copy number

of 50, and an average number of 1000 proteins.

Mean Simulation

(r)1-5 l m KN KP dP Pr (MP) Pr (NP) DR (Mat)

0.5 1 150 2 0.1 0:46� 0:06 0:38� 0:07 0:32� 0:07

1 2 150 2 0.1 0:39� 0:05 0:34� 0:07 0:32� 0:05

1 20 1050 2 0.1 0:66� 0:15 0:52� 0:22 0:50� 0:15

2 2 100 6 0.3 0:35� 0:04 0:29� 0:05 0:27� 0:03

2 20 550 6 0.3 0:61� 0:09 0:47� 0:15 0:47� 0:09

10 10 100 6 0.3 0:29� 0:03 0:27� 0:04 0:27� 0:02

The online version of this article includes the following source data for Table 4:

Source data 1. This is an Excel spreadsheet containing the data used to produce the final values in Table 4.
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the case of l ¼ � ¼ 10 does the result begin to approach the dual reporter value, returning

0:32� 0:03.

Generality of the pathway reporter method
To test the robustness of our pathway reporter approach, we validate our theoretical results on vari-

ous other gene expression dynamics. (1): We begin by considering a more detailed model of the

mRNA maturation process, where the nascent mRNA maturate after a fixed amount of time. The

assumption of a fixed maturation time is sometimes taken to approximate the combined effect of

intermediate maturation processes such as initiation, elongation, and release Xu et al., 2016. More

specifically, we consider the model M4 above (Figure 4D) in the case of constitutive expression

(l ¼ 1, � ¼ 0), and replacing the first-order reaction KM by a fixed interval of time. Additionally, we

explore maturation times sampled from Erlang distributions, to account for the fact that maturation

can involve several shorter stochastic processes. We find that the extrinsic noise contribution

obtained using the nascent and mature mRNA reporters match closely to the true (dual reporter) val-

ues across a range of maturation times; refer to the supplementary material for details.

(2): Next we consider an extension of a model of transcriptional bursting given in Bartman et al.,

2019; Cao et al., 2020. The model we consider is the same as in Bartman et al., 2019; Cao et al.,

2020, however, is extended to include protein synthesis and degradation. This model captures the

transcriptional process at a finer level of detail, and is argued in Cao et al., 2020 to be the model

most closely matching experimental observations. In this more nuanced ‘multiscale’ model, the gene

stochastically switches between three states: two active states S10 and S11, and one inactive state S0.

The activation of the gene occurs in two steps, initially by the binding of transcriptional factors (tran-

sition from S0 to S10 at rate l1, and reversible at rate �1), and then as a secondary step, by the bind-

ing and pause of the mRNA polymerase (transition from S10 to S11 at rate l2). Transitions from S11 to

S0 also occur at rate �1, due to detachment of both the transcriptional factors and polymerase. Tran-

scription of nascent mRNA (at rate KN ) occurs only in state S11 and results in immediate transition to

state S10. Nascent mRNA maturate at rate KM , and are subsequently translated into protein at rate

Kp. Degradation of mRNA and protein occur with rates dm and dp, respectively. All reactions are con-

sidered to be first-order with exponentially distributed waiting times between successive reactions.

A schematic of the model is given in Figure 6 (inner rectangle). In this case, we are again able to

prove that the Noise Decomposition Principle holds for all reporter pairs taken from this pathway

using existing formulæ derived in Cao et al., 2020 for the marginal means. For details refer to the

supplementary material (Appendix Convergence of Pathway and Dual Reporters).

(3): We combine models (1) and (2) above, incorporating the fixed time maturation of (1) with the

multiscale approach of (2).

(4): The cell cycle is a major contributing factor to extrinsic noise, introducing population hetero-

geneity (as cells are at different stages of the cell cycle), as well as internal dynamics to parameter

values. Here we incorporate the salient features of the cell cycle into model (3), which is measurable

as extrinsic noise by our methodology. Specifically, we model the effects of (i) gene replication, (ii)

dosage compensation, (iii) binomial partitioning of products due to cell division, as well as (iv) cell-

cycle length variability. Refer to Figure 6 for a schematic. This model is an extension of that solved

in Cao and Grima, 2020. Our model further incorporates the multi-scale dynamics of model (3) and

the Erlang-distributed maturation times of model (1). As far as we are aware, this model has not

been explored even by stochastic simulations before. A detailed description of how the above cell-

cycle effects are captured in our model is given as follows. (i) Replication results in a doubling of the

gene from one to two at the replication time, tr. This replication occurs over a period which is much

shorter than the length of the cell cycle, and we follow the assumptions in Cao and Grima, 2020 by

considering it to occur instantaneously. (ii) Dosage compensation changes the rate at which the

gene switches from inactive to active (l1) upon replication at time tr. Again following Cao and

Grima, 2020, the activation rate after replication is 70% of the rate prior to replication. (iii) Binomial

partitioning of nascent mRNA, mature mRNA and protein at cell division. We assume that nascent

mRNA, mature mRNA, and protein segregate into the two daughter cells, with independent proba-

bility 1=2. We follow just one of the daughter cells, chosen at random with equal probability. (iv)

Cell-cycle length variability. The time between successive cell divisions is stochastic, and is assumed

to be sampled from an Erlang distribution. This has been shown to be consistent with experimental

data Cao and Grima, 2020. The time to replication, and subsequently to cell division, are both
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chosen from an Erlang distribution with shape parameter 12, which produces a total cell cycle length

distributed according to Erlangð24; lÞ; this matches the Erlangð24; lÞ cell cycle length in Cao and

Grima, 2020, where replication is at the exact halfway point. We similarly choose a rate parameter

l ¼ l1 chosen at a commensurate proportion to our mRNA decay rate of d ¼ 1.

In each of the cases (1 – 4) above, we find that the correlations between reporter pairs is negligi-

ble, and the predicted contribution of extrinsic noise matches those obtained from the dual reporter

method across a range of parameter combinations. Details of the simulation methods and results

can be found in the supplementary material (Appendix Convergence of Pathway and Dual Report-

ers). In summary, the results show that our pathway reporter approach is remarkably insensitive to

the specific dynamics of mRNA and protein synthesis. In particular, the correlations between

reporter pairs do not strongly depend on the details of the gene expression model used.

Figure 6. Multiscale model of transcriptional bursting with additional features of the cell cycle. In this model, the gene stochastically switches between

three states: two active states, S10 and S11, and one inactive state S0. Gene activation occurs in two steps, initially by the binding of transcription factors

(at rate l1, reversible at rate �1), and then as a secondary step by the binding and pause of the mRNA polymerase (at rate l2). Transitions from S11 to S0
also occur at rate �1, due to detachment of both the transcriptional factors and polymerase. Transcription of nascent mRNA (at rate KN ) occurs only in

state S11 and results in immediate transition to state S10. Nascent mRNA mature at rate KM , and are subsequently translated into protein at rate Kp.

Degradation of mRNA and protein occur with rates dm and dp, respectively. We verify our pathway reporter method on three variations of the multiscale

model. First, we assume all reactions are first-order Poisson processes (Case (2) in the main text). We then incorporate further details of the mRNA

maturation process, where nascent mRNA occurs after a fixed amount of time (Case (3)). Finally, we incorporate features of the cell-cycle such as gene

replication, dosage compensation, cell division, and cell-cycle length variability, as well as incorporating more realistic Erlang distributed maturation

times (Case (4)).
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Discussion
Despite the proliferation of experimental methods for single-cell profiling, the ability to extract tran-

scriptional dynamics from measured distributions of mRNA copy numbers is limited. In particular,

the multiple factors that contribute to mRNA heterogeneity can confound the measured distribution,

which hinders analysis. Theoretical innovations that allow us to quantify and help in identifying the

causes of these observable effects are therefore of great importance. In this work, we have demon-

strated, through a series of mathematical results, that it is impossible to delineate the relative sour-

ces of heterogeneity from the measured transcript abundance distribution alone: multiple possible

dynamics can give rise to the same distribution. Our approach involves establishing integral repre-

sentations for distributions that are commonly encountered in single-cell data analysis, such as the

negative binomial distribution and the stationary probability distribution of the Telegraph model.

We show that a number of well-known representations can be obtained from our results. A particular

feature of our non-identifiability results is that population heterogeneity inflates the apparent bursti-

ness of the system. It is therefore necessary to collect further information, beyond measurements of

the transcripts alone, in order to constrain the number of possible theoretical models of gene activity

that could represent the system. In particular, additional work may be required to determine the

true level of burstiness of the underlying system.

We have developed a theoretical framework for estimating levels of extrinsic noise, which can

assist in resolving non-identifiability problems. The dual reporter method of Swain et al., 2002

already provides one such approach; but it is experimentally challenging to set up in many systems,

and requires strictly identical and conditionally independent pairs of gene reporters. Our Noise

Decomposition Principle directly generalises the theoretical underpinnings of the dual reporter

method and related approaches Bowsher and Swain, 2012; Jetka et al., 2018; here we have used

it to identify a practical approach—the pathway-reporter method—for obtaining an effective and

experimentally more easily implementable noise decomposition. Our approach allows us to use

measurements of two different species from the transcriptional pathway of a single gene copy

instead of having to set up a more cumbersome dual reporter assay. The accuracy of the pathway-

reporter method is provably identical for constitutive gene expression, and in the case of nascent-

mature mRNA reporters, the measurements are readily obtainable from current single-cell data

Shah et al., 2018; La Manno et al., 2018; Skinner et al., 2016. For bursty systems, the method in

general provides only an approximation of the extrinsic noise. We are, however, able to demonstrate

computationally, that one of the proposed pathway reporters provides a satisfactory estimate of the

extrinsic noise for most genes. The other pathway reporters also provide viable estimates of the

extrinsic noise in some cases. We further validate our theoretical framework on synthetic data for

genes with various underlying gene expression dynamics. Our results show that the pathway

reporter method is independent of the specific dynamics of mRNA and protein synthesis, and there-

fore should be applicable to a broad range of experimental scenarios.

Despite the generality of our theoretical contribution, our pathway-reporter approach has some

caveats. In particular, the approach relies on the assumption that extrinsic noise sources act indepen-

dently. Experimentally, however, these may be correlated. For example, it has been suggested

Hilfinger et al., 2016; Cole and Luthey-Schulten, 2017 that the transcription and translation rates

in E. coli anticorrelate. Additional work is required to determine degree to which the independence

of noise sources is a reasonable assumption.

Recent developments in single-cell profiling now allow simultaneous measurements of transcripts

and proteins in thousands of single cells Stoeckius et al., 2017; Peterson et al., 2017;

Reimegård et al., 2019. As discussed in Gorin and Pachter, 2020a, experimental improvements

that would additionally allow measurements of nascent transcripts, coupled with theoretical develop-

ments such as those presented here, will allow for identification of noise sources on a genome-wide

scale. Our work reveals that extrinsic noise distorts the multivariate copy number distribution of the

different species in the gene expression pathway. We have exploited this to yield reliable estimates

of noise strength, which we are confident will assist in setting better practices for model fitting and

inference in the analysis of single-cell data. A more nuanced analysis of this multivariate distribution

may offer even further insight into model and noise identifiability.

Ham et al. eLife 2021;10:e69324. DOI: https://doi.org/10.7554/eLife.69324 20 of 37

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.69324


Acknowledgements
The authors gratefully acknowledge Rowan D Brackston for helpful discussions in the early stages of

this research. We thank Lior Pachter and Gennady Gorin for fruitful discussions on noise identifiabil-

ity. We also wish to thank Arjun Raj for providing valuable feedback on this work. LH. and MPHS.

were supported by the University of Melbourne Driving Research Momentum initiative.

Additional information

Funding

Funder Grant reference number Author

University of Melbourne DRM Lucy Ham
Michael PH Stumpf

Volkswagen Foundation 93 062 Michael PH Stumpf

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Lucy Ham, Conceptualization, Resources, Software, Formal analysis, Validation, Investigation, Visuali-

zation, Methodology, Writing - original draft, Writing - review and editing; Marcel Jackson, Concep-

tualization, Software, Formal analysis, Validation, Investigation, Methodology, Writing - original

draft, Writing - review and editing; Michael PH Stumpf, Conceptualization, Supervision, Funding

acquisition, Methodology, Writing - original draft, Project administration, Writing - review and

editing

Author ORCIDs

Lucy Ham https://orcid.org/0000-0001-5177-4434

Marcel Jackson https://orcid.org/0000-0002-8149-1141

Michael PH Stumpf https://orcid.org/0000-0002-3577-1222

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.69324.sa1

Author response https://doi.org/10.7554/eLife.69324.sa2

Additional files
Supplementary files
. Supplementary file 1. Simulation results of the pathway-reporter method for constitutive genes

across 60 different parameter values. We consider noise on all of the parameters except mRNA

decay in a constitutive model with mRNA maturation and protein translation. Refer to the excel

spreadsheet ConstitutiveaResults.xlsx for full details of the simulation, including the chosen noise

distributions and parameters.

. Supplementary file 2. Simulation results for the overshoot estimate in the pathway-reporter

method for bursty genes across 448 different parameter values. Refer to the excel spreadsheet

NoiseFreeaResults.xlsx for full details of the simulation, including the chosen noise distributions and

parameters.

. Transparent reporting form

Data availability

All methods and simulation results are shared via a github site https://github.com/leham/PathwayRe-

porters (copy archived at https://archive.softwareheritage.org/swh:1:rev:269e0fffe4fc716db6991cc-

f78ad2191e509c2e1). There is no original data associated with this manuscript.

Ham et al. eLife 2021;10:e69324. DOI: https://doi.org/10.7554/eLife.69324 21 of 37

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://orcid.org/0000-0001-5177-4434
https://orcid.org/0000-0002-8149-1141
https://orcid.org/0000-0002-3577-1222
https://doi.org/10.7554/eLife.69324.sa1
https://doi.org/10.7554/eLife.69324.sa2
https://github.com/leham/PathwayReporters
https://github.com/leham/PathwayReporters
https://archive.softwareheritage.org/swh:1:rev:269e0fffe4fc716db6991ccf78ad2191e509c2e1
https://archive.softwareheritage.org/swh:1:rev:269e0fffe4fc716db6991ccf78ad2191e509c2e1
https://doi.org/10.7554/eLife.69324


References
Abramowitz M, Stegun IA. 1965. Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Massachusetts, United States: Courier Corporation.

Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L, Hutzler A, Nizhberg A, Itzkovitz S. 2015. Bursty gene
expression in the intact mammalian liver. Molecular Cell 58:147–156. DOI: https://doi.org/10.1016/j.molcel.
2015.01.027, PMID: 25728770

Bartman CR, Hamagami N, Keller CA, Giardine B, Hardison RC, Blobel GA, Raj A. 2019. Transcriptional burst
initiation and polymerase pause release are key control points of transcriptional regulation. Molecular Cell 73:
519–532. DOI: https://doi.org/10.1016/j.molcel.2018.11.004, PMID: 30554946

Beentjes CHL, Perez-Carrasco R, Grima R. 2020. Exact solution of stochastic gene expression models with
bursting, cell cycle and replication dynamics. Physical Review. E 101:032403. DOI: https://doi.org/10.1103/
PhysRevE.101.032403, PMID: 32290003

Belle A, Tanay A, Bitincka L, Shamir R, O’Shea EK. 2006. Quantification of protein half-lives in the budding yeast
proteome. PNAS 103:13004–13009. DOI: https://doi.org/10.1073/pnas.0605420103, PMID: 16916930

Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN. 2002. Global analysis of mRNA decay and
abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. PNAS 99:
9697–9702. DOI: https://doi.org/10.1073/pnas.112318199, PMID: 12119387

Bokes P, King JR, Wood AT, Loose M. 2012. Exact and approximate distributions of protein and mRNA levels in
the low-copy regime of gene expression. Journal of Mathematical Biology 64:829–854. DOI: https://doi.org/10.
1007/s00285-011-0433-5, PMID: 21656009

Bowsher CG, Swain PS. 2012. Identifying sources of variation and the flow of information in biochemical
networks. PNAS 109:1320–1328. DOI: https://doi.org/10.1073/pnas.1119407109, PMID: 22529351

Cao Z, Filatova T, Oyarzún DA, Grima R. 2020. A stochastic model of gene expression with polymerase
recruitment and pause release. Biophysical Journal 119:1002–1014. DOI: https://doi.org/10.1016/j.bpj.2020.07.
020, PMID: 32814062

Cao Z, Grima R. 2020. Analytical distributions for detailed models of stochastic gene expression in eukaryotic
cells. PNAS 117:4682–4692. DOI: https://doi.org/10.1073/pnas.1910888117, PMID: 32071224

Cole JA, Luthey-Schulten Z. 2017. Careful accounting of extrinsic noise in protein expression reveals correlations
among its sources. Physical Review. E 95:062418. DOI: https://doi.org/10.1103/PhysRevE.95.062418, PMID: 2
8709241

Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:1183–
1186. DOI: https://doi.org/10.1126/science.1070919, PMID: 12183631

Feller W. 1943. On a general class of "Contagious" Distributions. The Annals of Mathematical Statistics 14:389–
400. DOI: https://doi.org/10.1214/aoms/1177731359

Filippi S, Barnes CP, Kirk PD, Kudo T, Kunida K, McMahon SS, Tsuchiya T, Wada T, Kuroda S, Stumpf MP. 2016.
Robustness of MEK-ERK dynamics and origins of Cell-to-Cell variability in MAPK signaling. Cell Reports 15:
2524–2535. DOI: https://doi.org/10.1016/j.celrep.2016.05.024, PMID: 27264188

Friedman N, Cai L, Xie XS. 2006. Linking stochastic dynamics to population distribution: an analytical framework
of gene expression. Physical Review Letters 97:168302. DOI: https://doi.org/10.1103/PhysRevLett.97.168302,
PMID: 17155441

Golding I, Paulsson J, Zawilski SM, Cox EC. 2005. Real-time kinetics of gene activity in individual bacteria. Cell
123:1025–1036. DOI: https://doi.org/10.1016/j.cell.2005.09.031, PMID: 16360033

Goodrich JA, Kugel JF. 2006. Non-coding-RNA regulators of RNA polymerase II transcription. Nature Reviews.
Molecular Cell Biology 7:612–616. DOI: https://doi.org/10.1038/nrm1946, PMID: 16723972

Gorin G, Pachter L. 2020a. Intrinsic and extrinsic noise are distinguishable in a synthesis – export – degradation
model of mrna production. bioRxiv. DOI: https://doi.org/10.1101/2020.09.25.312868

Gorin G, Pachter L. 2020b. Special function methods for bursty models of transcription. Physical Review. E 102:
022409. DOI: https://doi.org/10.1103/PhysRevE.102.022409, PMID: 32942485

Greenwood M, Yule GU. 1920. An inquiry into the nature of frequency distributions representative of multiple
happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents.
Journal of the Royal Statistical Society 83:255–279. DOI: https://doi.org/10.2307/2341080

Ham L, Brackston RD, Stumpf MPH. 2020a. Extrinsic noise and Heavy-Tailed laws in gene expression. Physical
Review Letters 124:108101. DOI: https://doi.org/10.1103/PhysRevLett.124.108101, PMID: 32216388

Ham L, Schnoerr D, Brackston RD, Stumpf MPH. 2020b. Exactly solvable models of stochastic gene expression.
The Journal of Chemical Physics 152:144106. DOI: https://doi.org/10.1063/1.5143540, PMID: 32295361

Hilfinger A, Chen M, Paulsson J. 2012. Using temporal correlations and full distributions to separate intrinsic and
extrinsic fluctuations in biological systems. Physical Review Letters 109:248104. DOI: https://doi.org/10.1103/
PhysRevLett.109.248104, PMID: 23368387

Hilfinger A, Norman TM, Paulsson J. 2016. Exploiting natural fluctuations to identify kinetic mechanisms in
sparsely characterized systems. Cell Systems 2:251–259. DOI: https://doi.org/10.1016/j.cels.2016.04.002,
PMID: 27135537

Hilfinger A, Paulsson J. 2011. Separating intrinsic from extrinsic fluctuations in dynamic biological systems. PNAS
108:12167–12172. DOI: https://doi.org/10.1073/pnas.1018832108, PMID: 21730172

Huh D, Paulsson J. 2011. Random partitioning of molecules at cell division. PNAS 108:15004–15009.
DOI: https://doi.org/10.1073/pnas.1013171108, PMID: 21873252

Ham et al. eLife 2021;10:e69324. DOI: https://doi.org/10.7554/eLife.69324 22 of 37

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.1016/j.molcel.2015.01.027
https://doi.org/10.1016/j.molcel.2015.01.027
http://www.ncbi.nlm.nih.gov/pubmed/25728770
https://doi.org/10.1016/j.molcel.2018.11.004
http://www.ncbi.nlm.nih.gov/pubmed/30554946
https://doi.org/10.1103/PhysRevE.101.032403
https://doi.org/10.1103/PhysRevE.101.032403
http://www.ncbi.nlm.nih.gov/pubmed/32290003
https://doi.org/10.1073/pnas.0605420103
http://www.ncbi.nlm.nih.gov/pubmed/16916930
https://doi.org/10.1073/pnas.112318199
http://www.ncbi.nlm.nih.gov/pubmed/12119387
https://doi.org/10.1007/s00285-011-0433-5
https://doi.org/10.1007/s00285-011-0433-5
http://www.ncbi.nlm.nih.gov/pubmed/21656009
https://doi.org/10.1073/pnas.1119407109
http://www.ncbi.nlm.nih.gov/pubmed/22529351
https://doi.org/10.1016/j.bpj.2020.07.020
https://doi.org/10.1016/j.bpj.2020.07.020
http://www.ncbi.nlm.nih.gov/pubmed/32814062
https://doi.org/10.1073/pnas.1910888117
http://www.ncbi.nlm.nih.gov/pubmed/32071224
https://doi.org/10.1103/PhysRevE.95.062418
http://www.ncbi.nlm.nih.gov/pubmed/28709241
http://www.ncbi.nlm.nih.gov/pubmed/28709241
https://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/pubmed/12183631
https://doi.org/10.1214/aoms/1177731359
https://doi.org/10.1016/j.celrep.2016.05.024
http://www.ncbi.nlm.nih.gov/pubmed/27264188
https://doi.org/10.1103/PhysRevLett.97.168302
http://www.ncbi.nlm.nih.gov/pubmed/17155441
https://doi.org/10.1016/j.cell.2005.09.031
http://www.ncbi.nlm.nih.gov/pubmed/16360033
https://doi.org/10.1038/nrm1946
http://www.ncbi.nlm.nih.gov/pubmed/16723972
https://doi.org/10.1101/2020.09.25.312868
https://doi.org/10.1103/PhysRevE.102.022409
http://www.ncbi.nlm.nih.gov/pubmed/32942485
https://doi.org/10.2307/2341080
https://doi.org/10.1103/PhysRevLett.124.108101
http://www.ncbi.nlm.nih.gov/pubmed/32216388
https://doi.org/10.1063/1.5143540
http://www.ncbi.nlm.nih.gov/pubmed/32295361
https://doi.org/10.1103/PhysRevLett.109.248104
https://doi.org/10.1103/PhysRevLett.109.248104
http://www.ncbi.nlm.nih.gov/pubmed/23368387
https://doi.org/10.1016/j.cels.2016.04.002
http://www.ncbi.nlm.nih.gov/pubmed/27135537
https://doi.org/10.1073/pnas.1018832108
http://www.ncbi.nlm.nih.gov/pubmed/21730172
https://doi.org/10.1073/pnas.1013171108
http://www.ncbi.nlm.nih.gov/pubmed/21873252
https://doi.org/10.7554/eLife.69324


Ingram PJ, Stumpf MP, Stark J. 2008. Nonidentifiability of the source of intrinsic noise in gene expression from
single-burst data. PLOS Computational Biology 4:e1000192. DOI: https://doi.org/10.1371/journal.pcbi.
1000192, PMID: 18846201

Jahnke T, Huisinga W. 2007. Solving the chemical master equation for monomolecular reaction systems
analytically. Journal of Mathematical Biology 54:1–26. DOI: https://doi.org/10.1007/s00285-006-0034-x,
PMID: 16953443

Jetka T, Nienałtowski K, Filippi S, Stumpf MPH, Komorowski M. 2018. An information-theoretic framework for
deciphering pleiotropic and noisy biochemical signaling. Nature Communications 9:4591. DOI: https://doi.org/
10.1038/s41467-018-07085-1, PMID: 30389942

Jia C, Grima R. 2020. Small protein number effects in stochastic models of autoregulated bursty gene expression.
The Journal of Chemical Physics 152:084115. DOI: https://doi.org/10.1063/1.5144578, PMID: 32113345

Jones DL, Brewster RC, Phillips R. 2014. Promoter architecture dictates cell-to-cell variability in gene expression.
Science 346:1533–1536. DOI: https://doi.org/10.1126/science.1255301, PMID: 25525251

Jones D, Elf J. 2018. Bursting onto the scene? exploring stochastic mRNA production in bacteria. Current
Opinion in Microbiology 45:124–130. DOI: https://doi.org/10.1016/j.mib.2018.04.001

Khammash M. 2009. Stochastic gene expression: modeling, analysis, and identification. IFAC Proceedings
Volumes 42:1022–1028. DOI: https://doi.org/10.3182/20090706-3-FR-2004.00170

Ko MS. 1991. A stochastic model for gene induction. Journal of Theoretical Biology 153:181–194. DOI: https://
doi.org/10.1016/s0022-5193(05)80421-7, PMID: 1787735

Komorowski M, Costa MJ, Rand DA, Stumpf MP. 2011. Sensitivity, robustness, and identifiability in stochastic
chemical kinetics models. PNAS 108:8645–8650. DOI: https://doi.org/10.1073/pnas.1015814108,
PMID: 21551095

La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg
P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X, Barker R, Sundström E, Castelo-Branco G,
Cramer P, et al. 2018. RNA velocity of single cells. Nature 560:494–498. DOI: https://doi.org/10.1038/s41586-
018-0414-6, PMID: 30089906

Larsson AJM, Johnsson P, Hagemann-Jensen M, Hartmanis L, Faridani OR, Reinius B, Segerstolpe Å, Rivera CM,
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Appendix 1

Derivations of the non-identifiability results
In the main text we provide a number of examples of when the compound distribution does not

have a unique representation. We here provide the full details of the derivations of these results.

Bursty expression: telegraph representation
Consider first a Telegraph distribution ~pTðn; l; �

0;K 0Þ and the probability density function of the

scaled beta distribution BetaK0ðlþ �; �0 � �Þ, given by

fK0ðt;lþ�;�0��Þ ¼
Gðlþ�0Þ

Gðlþ�ÞGð�0��Þ
K 01�l��0

tlþ��1ðK 0 � tÞ�
0���1:

Note that this distribution has support ½0;K 0�. In the main text, we claim that the Telegraph distri-

bution ~pTðn;l;�
0;K 0Þ can be obtained from compounding a Telegraph distribution by a scaled beta

distribution with pdf f ðt;lþ�;�0��Þ. In other words, that ~pTðn;l;�
0;K 0Þ can be written as:

~pTðn;l;�
0;K 0Þ ¼

Z K0

0

~pTðn;l;�; tÞfK 0ðt;lþ�;�0 ��Þdt: (15)

This is Equation (3) in the main text. Starting from the right hand side of (15), we have

Z K 0

0

~pTðn;l;�; tÞfK0ðt;lþ�;�0��Þdt

¼
1

n!

Gðlþ�0Þ

Gðlþ�ÞGð�0��Þ

Gðlþ nÞ

GðlÞ

Gðlþ�Þ

Gðlþ�þ nÞ
Z K0

0

1F1ðlþ n;lþ�þ n;�tÞðK 0Þ1�l��0

tlþ�þn�1ðK 0 � tÞ�
0���1

dt:

(16)

Substituting t¼K 0T and simplifying, the right hand side of (16) becomes

1

n!

Gðlþ�0Þ

Gð�0��Þ

Gðlþ nÞ

GðlÞ

ðK 0Þn

Gðlþ�þ nÞ
Z

1

0

1F1ðlþ n;lþ�þ n;�KTÞTlþ�þn�1ð1�TÞ�
0���1

dT:

Now, using the integral representation Olver et al., 2010 [13.4.2] of the confluent hypergeomet-

ric function (with a¼ lþ n, b¼ lþ�0 þ 1 and c¼ lþ�þ 1), this becomes

1

n!

Gðlþ�0Þ

Gð�0 ��Þ

Gðlþ nÞ

GðlÞ

ðK 0Þn

Gðlþ�þ nÞ

Gðlþ�þ nÞGð�0 ��Þ

Gð�0þlþ nÞ
1F1ðlþ n;lþ�0 þ n;�K 0Þ

¼
Gðlþ�0Þ

Gðlþ�0þ nÞ

Gðlþ nÞ

GðlÞ

ðK 0Þn

n!
1F1ðlþ n;lþ�0þ n;�K 0Þ ¼ ~pTðn;l;�

0;K 0Þ;

which is the left hand side of (15). Hence, we have that (15) holds.

Instantaneously bursty expression: negative binomial representations
We consider first the representation given in Equation (4) in the main text. Recall that we let

~pNBðn; r;bÞ denote the probability mass function of a NegBinðr; b
bþ1

Þ distribution, where b> ~ 0. In the

main text, we claim that for any negative binomial distribution of the form NegBinðl; b
bþ1

Þ (where

b>0) we have,

~pNBðn;l;bÞ ¼

Z
¥

0

~pTðn;l;�; tÞf ðt;lþ�;bÞdt; (17)

where f ðt;lþ�;bÞ is the probability mass function of a Gammaðlþ�;bÞ distribution. Beginning with

the right hand side of (17) we have,
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Z
¥

0

~pTðn;l;�; tÞf ðt;lþ�;bÞdt

¼
1

n!

Gðlþ nÞ

GðlÞ

Gðlþ�Þ

Gðlþ�þ nÞ

bðlþ�Þ

Gðlþ�Þ

Z
¥

0

1F1ðlþ n;lþ�þ n;�tÞtlþ�þn�1e�bt dt:

(18)

We now apply the following identity given in Saad and Hall, 2003 [Appendix 1] with a¼ lþ n,

b¼ lþ�þ n, k¼�1, d¼ lþ�þ n and h¼ b.

Z
¥

0

1F1ða;b;ktÞt
d�1e�ht ¼

GðdÞ

hd
ð1�

k

h
Þ�a: (19)

So the left hand side of (18) becomes

1

n!

Gðlþ nÞ

GðlÞ

Gðlþ�Þ

Gðlþ�þ nÞ

bðlþ�Þ

Gðlþ�Þ

Gðlþ�þ nÞ

blþ�þn
ð1þ

1

b
Þ�ðlþnÞ

¼
1

n!

Gðlþ nÞ

GðlÞ

bl

ðbþ 1Þlþn
¼ ~pNBðn;l;bÞ;

which is the right hand side of (17). Hence, we have that (17) holds. We now consider the repre-

sentation given in Equation (5) of the main text. Here we claim that any negative binomial distribu-

tion of the form NegBinðl0; b
1þb

Þ (where b>0) can be written as,

~pNBðn;l
0;bÞ ¼

Z
¥

1

b

~pNBðn;l; �Þfbðb�� 1;l�l0;l0Þd�; (20)

where fbðb�� 1;l�l0;l0Þ is the probability mass function of a scaled beta prime BetaPrimebðl�

l0;lÞ distribution, where b>0 and l>l0. Starting from the right hand side of (20), we have

Z
¥

1

b

~pNBðn;l; �Þfbðb�� 1;l�l0;l0Þd�

¼

Z
¥

1

b

Gðlþ nÞ

Gðnþ 1ÞGðlÞ
1�

�

�þ 1

� �n �

�þ 1

� �l
bGðlÞ

Gðl� �ÞGð�Þ

ðb�� 1Þl�l0�1

ðb�Þl

¼
b1�lGðlþ nÞ

Gðnþ 1ÞGðl0ÞGðl�l0Þ

Z
¥

1

b

ðb�� 1Þl�l0�1

ð1þ �Þlþn
:

Now substituting H ¼ b�� 1 and simplifying, we obtain

bnGðlþ nÞ

Gðnþ 1ÞGðl0ÞGðl�l0Þ

Z
¥

0

Hl�l0�1

ðHþ bþ 1Þlþn
dH; (21)

and letting y¼ bþ 1 and simplifying we have that

Z
¥

0

Hl�l0�1

ðHþ bþ 1Þlþn
dH ¼

1

ðbþ 1Þl
0þn

Z
¥

0

yl�l0�1

ðyþ 1Þlþn
dy (22)

¼
1

ðbþ 1Þl
0þn

Gðl�l0ÞGðl0 þ nÞ

Gðlþ nÞ
: (23)

Here, we used the fact that the integral in the variable y is the probability density function of a

BetaPrimeðl�l0;l0 þ nÞ distribution. Thus, Equation (21) simplifies to

Gðl0þ nÞ

Gðnþ 1ÞGðl0Þ

bn

ðbþ 1Þl
0þn

¼ ~pNBðl
0;bÞ; (24)

which is the right hand side of (20). Thus, we have that (20) holds.
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Appendix 2

Proof of the Noise Decomposition Principle
Here we provide the proof of the Noise Decomposition Principle given in the main text. For conve-

nience we restate the principle below.

The Noise Decomposition Principle (NDP)

Assume that there are measurable functions f , g and h such that EðX;ZÞ and EðY;ZÞ split across com-

mon variables by way of EðX;ZÞ ¼ f ðZXÞhðZ
0Þ and EðY ;ZÞ ¼ gðZYÞhðZ

0Þ. Then provided that the varia-

bles Z1; . . . ; Zm are mutually independent, the normalised covariance of EðX;ZÞ and EðY ;ZÞ will

identify the total noise on hðZ0Þ (i.e., h2

hðZ 0Þ).

Consider first the covariance of EðX;ZÞ and ðY;ZÞ. We have

CovðEðX;ZÞ;EðY ;ZÞÞ ¼Covðf ðZXÞhðZ
0Þ;gðZYÞhðZ

0ÞÞ

¼Eðf ðZXÞgðZYÞðhðZ
0ÞÞ2Þ�Eðf ðZXÞhðZ

0ÞÞEðgðZYÞhðZ
0ÞÞ

¼Eðf ðZXÞÞEðgðZYÞÞ EððhðZ0ÞÞ2Þ� ðEðhðZ0ÞÞÞ2
h i

:

(25)

Note that here we used the fact that the variables in Z¼ ðZ1; . . . ;ZnÞ are mutually independent.

Now using the fact that EðXÞ ¼EðEðX;ZÞÞ and EðYÞ ¼EðEðY ;ZÞÞ (the Law of Total Expectation), and

then normalising we obtain

CovðEðX;ZÞ;EðY ;ZÞÞ

EðXÞEðYÞ
¼

Eðf ðZXÞÞEðgðZYÞÞ EððhðZ0ÞÞ2Þ�ðEðhðZ0ÞÞÞ2½ �
Eðf ðZXÞÞEðgðZYÞÞðEððhðZ

0ÞÞÞ2

¼ VarðhðZ0ÞÞ

ðEðhðZ0ÞÞÞ2

¼ h2

hðZ0Þ:

(26)

Hence, under certain conditions the normalised covariance of EðX;ZÞ and EðY;ZÞ will identify the

total noise on hðZ0Þ.
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Appendix 3

Pathway reporters
Justification for simulating only one copy of the gene

Our simulations and theory have been based over reporters from a single gene copy, whereas in

practice there may be multiple copies of the gene that contribute to the overall mRNA. If there are

mechanisms in place to distinguish the mRNA or protein of one gene copy from another then the

theory and analysis we have developed in main paper holds without change. In the case where it is

not possible to distinguish mRNA and protein (respectively) from the multiple gene copies, then we

now observe that the general theory continues to hold, provided there is independence between

the gene copies; this assumption has been verified experimentally Skinner et al., 2016. Here, we

demonstrate this in the case of two gene copies, though the general case for more than two genes

is essentially identical but is notationally cumbersome. We are considering a situation where the vari-

able X in the Noise Decomposition Principle is the sum of two independent variables X1;X2 and Y is

the sum of two independent variables Y1; Y2. We assume common dependence on the environmental

variables Z so that EðX1;ZÞ ¼ EðX2;ZÞ, EðY1;ZÞ ¼ EðY2;ZÞ. Using these equalities and the indepen-

dence of X1;X2 and Y1; Y2 in X ¼ X1 þ X2, Y ¼ Y1 þ Y2, we find the numerator of

CovðEðX;ZÞ;EðY ;ZÞÞ

EðXÞEðYÞ

is simply 4CovðEðX1;ZÞ;EðY1;ZÞÞ, while the denominator is 4EðX1ÞEðY1Þ. Thus the noise decomposi-

tion coincides with that for the single copy X1;Y1. Further work may be required to consider systems

where there is independence between, or there is significant deviations in the gene copies.

Upper bound for the intrinsic contribution to the covariance: constitutive
expression

In the main text, we claim that the error in the pathway-reporter approach in the case of mRNA-pro-

tein reporters is negligible (i.e. the error is � 1); refer to Equation (13) in the main text. We here

provide full details of the derivation of this expression. First let Xm and Xp be the number of mRNA

and protein produced from the same constitutive gene modelled by the ’two-stage’ model, M2 (see

Figure 4A (top right) of the main text). Also, let Z ¼ fKm; dm;Kp; dpg.

We restate here the expression for the intrinsic contribution to the covariance of Xm and Xp given

as Equation (13) of the main text.

ECovðXm;Xp;ZÞÞ

EðXmÞEðXpÞ
¼

a

EðKmÞ
; where a¼

Eð1=ðdp þ 1ÞÞ

Eð1=dpÞ
: (27)

We require the following expressions for the stationary mean mRNA level and protein level of

the two-stage model Thattai and van Oudenaarden, 2001; Singh and Hespanha, 2007.

EðXm;ZÞ ¼
Km

dm
; EðXp;ZÞ ¼

Kp

dp

Km

dm
and CovðXm;Xp;ZÞ ¼

KmKp

dmðdmþ dpÞ
: (28)

Assuming that dm is fixed across the cell-population, and all parameters are scaled so that dm ¼ 1,

it follows from (28), that

EðCovðXm;Xp;ZÞÞ ¼E
1

dp þ 1

� �

EðKmÞEðKpÞ: (29)

Using the Total Law of Expectation, we also have,

EðXmÞ ¼EðKmÞ and EðXpÞ ¼E
1

dp

� �

EðKmÞEðKpÞ: (30)

Thus, it follows that
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EðCovðXm;Xp;ZÞÞ

EðXmÞEðXpÞ
¼

a

EðKmÞ
; where a¼

Eð1=ðdpþ 1ÞÞ

Eð1=dpÞ
: (31)

Determination of the marginal means for model M4

In order to establish the Noise Decomposition principle in the case of bursty gene expression, we

rely on expressions for the marginal stationary means of the model M4; see Figure 4A (bottom left)

and the associated caption for more details. To derive the marginal means for nascent and mature

mRNA and for protein (Equation (14) of the main text), we first observe that the nascent mRNA

population may treated identically to that of mRNA in general (that is, no distinction between

nascent and mature), as in Peccoud and Ycart, 1995, except that mRNA decay is replaced by the

sum of decay and maturation. As in the work of Cao and Grima, 2020, the assumption of fast matu-

ration allows us to ignore decay completely in the nascent phase, so that the marginal distribution is

identical to that of Peccoud and Ycart, 1995, except with decay replaced by maturation. This leads

to a marginal nascent mRNA mean of

EðXN ;ZÞ ¼
KN

dM

l

ðlþ�Þ

The marginal means for mature mRNA and protein are derived in Raj et al., 2006 under the

assumption that the transcription rate parameter KN is large relative to the other parameters. The

expressions are given by

EðXM ;ZÞ ¼
KN

dM

l

ðlþ�Þ
and EðXP;ZÞ ¼

KP

dP

KN

dM

l

ðlþ�Þ
:

Formally, the marginal means in Raj et al., 2006 are for the three-stage model M3, which ignores

the downstream processing of mRNA, such as splicing. The assumption of fast maturation however,

justifies the treatment of the nascent phase of mRNA as an ephemeral step within the Poissonian

modelling of mRNA transcription.

There are a number of possibly compounding assumptions on the parameters here, but simula-

tions show that there is a lot of tolerance, with even only moderate maturation and transcription still

returning sample means consistent with the formulas.

Measuring noise from an instantaneously bursty gene

Here we use the simple stochastic model of Singh and Bokes, 2012 that includes both instanta-

neous transcriptional bursting and mRNA maturation. This model can be obtained as a limiting case

of the model M4 (Figure 4A (top left) in the main text), where the off-rate � has tended toward infin-

ity, while the on-rate l remains fixed. Under this condition, transcription is rare enough to be consid-

ered instantaneous, leading to ‘bursts’ of transcriptional activity. The intensity of the bursts M is

known to be geometrically distributed with mean burst size B ¼ KN

� .

If we let XN and XM denote the number of nascent and mature mRNA, respectively, then accord-

ing to Singh and Bokes, 2012, the steady-state marginal means and covariance are given by

EðXN ;ZÞ ¼
lB

KM

; EðXM ;ZÞ ¼
lB

dM
and CovðXN ;XMÞ ¼

lB2

KM þ dM
: (32)

It is easily seen from (32) that EðXN ;ZÞ ¼ f ðZNÞBl and EðXM ;ZÞ ¼ gðZMÞBl, where f ðZNÞ ¼
1

KM
and

gðZMÞ ¼
1

dM
. Thus, the Noise Decomposition Principle holds. Using arguments similar to those given

in the above section, it is straightforward to derive the following expression for the error in the path-

way reporter approach:

EðCovðXN ;XM ;ZÞÞ

EðXNÞEðXMÞ
¼

a

EðlÞ
ðh2

Bþ 1Þ; where a¼
Eð1=ðKM þ 1ÞÞ

Eð1=KMÞ
: (33)
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We can expect that a»1, so that unless the burst frequency is substantial, that is l� 1, the over-

shoot in the the nascent-mature pathway-reporter approach is significant.
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Appendix 4

Convergence of pathway and dual reporters

Appendix 4—figure 1. Comparison of convergence of h2 estimates for low and high mRNA levels

by way of nascent-mature reporters and mature-mature reporters. Low level corresponds to mean

nascent mRNA level of 0.5, and mean mature mRNA level of 5. High level corresponds to mean

nascent mRNA level of 5, and mean mature mRNA level of 50. In both cases, the simulated genes

are constitutive and noise is on all parameters except for dM ¼ 1. The green line gives the squared

coefficient of variation for KN , set to 0.2, which is the value the various reporters are expected to

estimate. (A) Convergence of the h2 estimate over the first 2000 samples in the low- and high-

output genes. (B) Convergence of the h2 estimate over 100; 000 samples in the low-output gene

only.

Convergence of both pathway reporters and dual reporters in low output genes is slower than for

high output genes, and this affect is most pronounced for reporters taken from nascent mRNA. Fig.

Convergence of Pathway and Dual Reporters compares convergence in some low output genes and

high output genes for nascent-mature pathway reporters and the mature-mature dual reporter, in

the case of constitutive expression. From Equation (11) of the main text and the NDP, these should

measure precisely the extrinsic noise on the transcription rate parameter KN . In the low output gene,

both the dual reporter and pathway reporters are yet to show accurate measurement of the overall

extrinsic noise after 1000 samples (Figure Convergence of Pathway and Dual ReportersA), although

they are providing rough estimates after as little as a few hundred samples. Pathway reporters for

nascent-mature typically exhibit slightly slower convergence than mature-mature dual reporter; the

difference is marginal, but can be seen for both the high output gene (compare the values after 500

samples) and the low output gene (compare the values after 1000 samples). In this figure, all param-

eters (except the reference parameter dM ) were given scaled Beta distribution noise. The noise on

KN is a Betað3; 6Þ distribution scaled to achieve EðKNÞ ¼ 5 in the low output case and EðKNÞ ¼ 50 in

the high output case. The squared coefficient of variation is 0.2, and is shown in green in the figure.
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Appendix 4—figure 2. Comparison of convergence for low and high mRNA levels by way of

mature-protein and mature-mature reporters. Low level corresponds to mean nascent mRNA level

of 0.5, and mean mature mRNA level of 5. High level corresponds to mean nascent mRNA level of 5,

and mean mature mRNA level of 50. In both cases the simulated genes are constitutive and noise is

on all parameters except for dM ¼ 1. The noise on KN has squared coefficient of variation equal to

0.2, which is shown as the red horizontal line. Our theory shows that mature-protein reporters will

return an overshoot that is negligible in the high-output gene (the blue horizontal line), but larger in

the low output gene (light blue horizontal line); these values are calculated in the text. (A)

Comparison of convergence for low and high mRNA levels over the first 2000 samples. (B)

Convergence of the h2 estimate over 20; 000 samples in the case of the low-output gene only. Two

examples of each are given, to show the variation in behaviour.

Convergence for the mature-protein reporters is considered in Figure Convergence of Pathway

and Dual Reporters. Here, Equation (13) of the main text shows that we should expect an overshoot

in comparison to the mature-mature dual reporter. We have again compared a low output gene

with a high output gene, and with all parameters (except dM ) experiencing noise. The transcription is

again given scaled Betað3; 6Þ distribution, having squared coefficient of variation 0.2, with scaling to

achieve EðKNÞ ¼ 5 in low output and EðKNÞ ¼ 50 in the high output. The noise distribution for dP is a

Betað8; 6Þ distribution, scaled to achieve a mean value of 0.2. Computational sampling from 107 sam-

ples finds the value of
Eð1=ðdpþ1ÞÞ

Eð1=dpÞ
as approximately 0.1573. The high output gene then expects an

overshoot of 0.003146 from the mature-protein reporters, while the low output gene expects an

overshoot of approximately 0.03146. Figure Convergence of Pathway and Dual ReportersA shows

comparison of convergence over the first 2000 samples, with the theoretical values accommodating

the calculated overshoot. Figure Convergence of Pathway and Dual ReportersB shows the same

over 20,000 samples; this time two low-output two high-output genes are considered, so that the

variation around the expected long term value can be seen. It is evident that reasonable estimates

are given after a relatively modest number of samples, but there is a very long delay to a highly

accurate convergence for the pathway reporters in the low output gene.

Ham et al. eLife 2021;10:e69324. DOI: https://doi.org/10.7554/eLife.69324 32 of 37

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.69324


Appendix 4—figure 3. Convergence for reporter pairs for low gene activity. In each case, the mean

nascent mRNA level is 0.5, the mean mature mRNA level of 5, and the mean protein level is 500.

The simulated genes are constitutive and noise is on all parameters except for dM ¼ 1. Each graph

shows the convergence of 600 individual reporter simulations, for each combination of reporters

from nascent mRNA, mature mRNA and protein. Each reporter simulation is from 10; 000 samples,

with the reporter estimates calculated at intervals of 100. The noise on KN has squared coefficient of

variation equal to 0.2, which should be identified by both the nascent-mature reporter and mature-

mature dual reporter. As in Figure Convergence of Pathway and Dual Reporters, the mature-protein

reporter should converge to an estimate of approximately 0.2315. Nascent-nascent and protein-

protein reporters identify combined noise on more parameters, so do not converge to 0.2. The

lower graph shows each of nascent-mature, mature-mature, mature-protein and nascent-protein in

the same plot for direct comparison.
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Appendix 5

Generality of the pathway reporter method: model and simulation
details
We verify our pathway reporter approach on synthetic data for genes with various underlying gene

expression dynamics. In the main text, we consider four different scenarios, beyond the standard

four-stage model of gene transcription. Below we give details of these models, and their method of

simulation.

(1): First, we consider a more detailed model of the mRNA maturation process, where the nascent

mRNA maturate after a more finely controlled time interval. Specifically we adjust the constitutive

model of gene transcription (M4 of the main text with l ¼ 1 and � ¼ 0) to include a fixed-duration of

maturation. We also explore time-intervals sampled from Erlang distributions, to account for the fact

that maturation can involve several shorter stochastic processes. The process is simulated using an

adaptation of SSA, whereby the time of maturation of an individual nascent mRNA is calculated (by

sample from the chosen distribution) at the point it is transcribed, and this timepoint is queued in a

register of maturation times; this can be trivially adapted to other distributions; generalised-Erlang

for example. At each iteration of the simulation, determination of the next event involves taking the

smallest of the various exponentially sampled Markov processes (on, off, mRNA transcription, etc)

and the next maturation event (the minimum of the maturation register). In the case that maturation

is the next event, the corresponding maturation time is removed from the maturation register.

(2): We next consider a model of transcriptional bursting given in Bartman et al., 2019;

Cao et al., 2020. In this ‘multiscale’ model, gene activation occurs in two steps, initially by the bind-

ing of transcription factors, and then as a secondary step by the binding and pause of the mRNA

polymerase. For details of the model refer to Figure 6 and the surrounding paragraphs in the main

text. We here show that our Noise Decomposition Principle holds for all reporters taken from this

gene pathway, and verify computationally that correlations between some of the reporter pairs are

negligible; the process is simulated by the SSA. In the following, we assume all reactions are first-

order, characterised by exponential waiting times between successive reactions. Let XN denote the

number of nascent mRNA, let XM denote the number of mature mRNA, and let XP denote the num-

ber of proteins produced from the same gene. Also let Z ¼ fl1; �1; l2;KN ;KM ;KP; dM ; dPg. We

assume that the maturation rate KM is large (i.e. KM>dM ), which is supported by experiments

Cao and Grima, 2020. Then using the results of Cao et al., 2020, the stationary averages for the

nascent mRNA, mature mRNA and protein levels are given by,

EðXN ;ZÞ ¼
KN

KM

l1l2

g1g2

; EðXM ;ZÞ ¼
KN

dM

l1l2

g1g2

and EðXP;ZÞ ¼
KP

dP

KN

dM

l1l2

g1g2

; (34)

respectively. Here g1 ¼ l1 þ�1 and g2 ¼KN þl2 þ�1. We begin by considering the nascent-

mature pathway reporters. From (34), it is easily seen that EðXN ;ZÞ ¼ f ðZNÞKN
l1l2
g1g2

and

EðXM ;ZÞ ¼ gðZMÞKN
l1l2
g1g2

, where f ðZNÞ ¼
1

KM
and gðZMÞ ¼

1

dM
. So the NDP holds, and the normalised

covariance of EðXN ;ZÞ and EðXM ;ZÞ will identify the extrinsic noise on the transcriptional component

KN
l1l2
g1g2

. For the mature-protein reporters, we can again see from (34) that EðXM ;ZÞ ¼ f ðZPÞEðX;ZÞ,

where f ðZPÞ ¼
KP

dP
. Thus the NDP holds, and so the normalised covariance of EðXM ;ZÞ and EðXP;ZÞ

will identify the strength of extrinsic noise in the mRNA copy number distribution. For the nascent-

protein reporters, it is easy to see that EðXN ;ZÞ ¼ f ðZNÞKN
l1l2
g1g2

, where f ðZNÞ ¼
1

KM
, and

EðXP;ZÞ ¼ gðZPÞKN
l1l2
g1g2

, where gðZPÞ ¼
KP

dMdP
. Thus, again the NDP holds, and the normalised covari-

ance of EðXN ;ZÞ and EðXP;ZÞ will identify the noise on the transcriptional component KN
l1l2
g1g2

.

(3): We combine models (1) and (2) above, incorporating the fixed time maturation of (1) with the

fine-level transcriptional approach of (2). Again, we employ the adaptation of the SSA described in

(1).

(4): We incorporate the salient features of the cell-cycle into model (3), as well as introducing

Erlang-distributed maturation times. Specifically, the model accounts for the effects of gene replica-

tion, dosage compensation, binomial partitioning of products due to cell division, as well as cell-

cycle length variability. Within each phase of the cell cycle, the handling of maturation times for a
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given gene copy is exactly as in Case (1) above, but within the overall system described in Case (3).

To capture the cell cycle, the SSA is now further modified to handle the two key sporadic changes:

gene replication and cell division. After gene replication, we perform two independent modified

SSA simulations, with common parameter values. The final copy numbers are obtained as a sum of

those from each gene copy. At cell division, we follow just one daughter cell, selecting the inherited

copy numbers by way of binomial partitioning from the mother cell values at the point of division

(including the maturation register). The length of these cell-cycle phases is sampled from the chosen

Erlang distribution, on commencement of the simulation of the phase.

The results of pathway reporters for each of the Cases (1 – 4) above are given in Appendix 5—

tables 1–8 below. In all cases, the values given are the average of 20 simulations, each calculated

from 500 copy number samples, and the errors are ± one standard deviation. For each model, we

consider two parameter sets, each without extrinsic noise (Subcase A) and with extrinsic noise (Sub-

case B). For Case (1), the model parameters are chosen to produce an average nascent mRNA copy

number of 10, and an average number of 2000 proteins; the average mature mRNA copy number

varies according to the maturation time. We find that all of the pathway reporters accurately predict

the true extrinsic noise levels (as given by dual reporters) across a range of maturation times; refer

to Appendix 5—table 1, 2. For Cases (2 – 4), the model parameters are chosen to produce an aver-

age nascent mRNA copy number of 5 and an average mature mRNA copy number of 100, and an

average number of 2000 proteins. We verify computationally that the mature-protein and nascent-

protein reporter pairs provide accurate predictions of extrinsic noise contributions across a range of

noise levels. For these results refer to Appendix 5—tables 3–8. We mention that the results of Case

(4)B (Appendix 5—tables 8) may suggest a slight undershoot in the pathway reporter values in com-

parison to dual reporters. The difference is, however, within one standard deviation, and are calcu-

lated from a relatively small sample size due to the complexity of the simulation and corresponding

run time. Investigating the presence and possible causes of this marginal effect for this model and

other complicated models may be of interest in further work.

Appendix 5—table 1. A comparison of the pathway-reporter method and dual-reporter method for

constitutive gene expression with Erlang-distributed maturation times (Case (1)A).

Here, PR (NP) gives the results of the nascent and protein pathway reporters, PR (MP) gives the results

of the mRNA and protein reporters, while DR (Mat) gives the results of the dual reporters calculated

from the mature mRNA. The maturation time Tmat is chosen to be Erlang distributed with mean

length 1=30; 0:05, and 0.1, respectively. We consider the rate parameters for the remaining exponen-

tially distributed times to be constant, so that there is no extrinsic noise. The pathway-reporters cor-

rectly identify the zero extrinsic noise contribution.

Parameters Simulation

(r)1-6 KN TmatðmeanÞ KP dP Pr(NM) Pr (MP) Pr (NP) DR (Mat)

300 0:0 _3 0:0 _6 0.1 0:00� 0:001 0:00� 0:0001 0:00� 0:0003 0:00� 0:0001

200 0.05 1 0.1 0:00� 0:001 0:00� 0:0001 0:00� 0:0004 0:00� 0:0001

100 0.1 2 0.1 0:00� 0:001 0:00� 0:0002 0:00� 0:0001 0:00� 0:0004

Appendix 5—table 2. A comparison of the pathway-reporter method and dual-reporter method for

constitutive gene expression and fixed maturation time (Case (1)B).

For each of the parameters KP; dP we selected a scaled Betað5; 6Þ distribution, with squared coeffi-

cient of variation h2 ¼ 0:1; the scaling is chosen in each case to achieve a mean value equal to the

parameter value. The parameter KN is given the noise distribution Betað3; 6Þ, which has a slightly

higher coefficient of variation h2 ¼ 0:2. In order to benchmark against dual reporters, the maturation

time was fixed in each case. The extrinsic noise contribution predicted by the pathway-reporters

matches well with the dual reporter values.

Mean Simulation

(r)1-4 Tmat KN KP dP Pr(NM) Pr (MP) Pr (NP) DR (Mat)

Continued on next page
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Appendix 5—table 2 continued

Mean Simulation

(r)1-4 Tmat KN KP dP Pr(NM) Pr (MP) Pr (NP) DR (Mat)

0.05 200 1 0.1 0:20� 0:01 0:20� 0:02 0:20� 0:03 0:20� 0:01

0.1 100 2 0.1 0:20� 0:01 0:21� 0:03 0:21� 0:03 0:20� 0:01

Appendix 5—table 3. A comparison of the pathway-reporter method and dual-reporter method for

the multiscale model (Case (2)A above).

We consider fixed parameters values (that is, no extrinsic noise). As our theory predicts, the pathway-

reporters correctly identify zero extrinsic noise.

Parameters Simulation

(r)1-6 l1 �1 l2 ¼ KN KM KP dP Pr (MP) Pr (NP) DR (Mat)

2 2 400 20 2 0.1 0:02� 0:003 0:00� 0:01 0:00� 0:002

4 20 1210 20 2 0.1 0:02� 0:003 0:01� 0:01 0:00� 0:01

Appendix 5—table 4. A comparison of the pathway-reporter method and dual-reporter method for

the multiscale model (Case 2.B).

For each of the parameters l1; �1;KP; dP we selected a scaled Betað5; 6Þ distribution, with squared

coefficient of variation h2 ¼ 0:1; the scaling is chosen in each case to achieve a mean value equal to

the parameter value. The parameter l2 ¼ KN is given the noise distribution Betað3; 6Þ, which has a

slightly higher coefficient of variation h2 ¼ 0:2. In order to benchmark against dual reporters, the mat-

uration rate was fixed at 20. As our theory suggests, the extrinsic noise contribution predicted by the

pathway reporters matches well with the dual-reporter values.

Mean Simulation

(r)1-5 l1 �1 l2 ¼ KN KP dP Pr (MP) Pr (NP) DR (Mat)

2 2 400 2 0.1 0:18� 0:03 0:16� 0:04 0:16� 0:02

4 20 1210 2 0.1 0:29� 0:04 0:27� 0:07 0:28� 0:03

Appendix 5—table 5. A comparison of the pathway-reporter method and dual-reporter method for

the multiscale model with a fixed duration of maturation (Case (3)A).

Here the time to maturation Tmat is chosen to be consistent with the mean of the stochastic matura-

tion time used in our other models (where the maturation time is exponentially distributed). We con-

sider all rate parameters to be constant, that is, there is no extrinsic noise. Pathway-reporters

correctly identify the zero extrinsic noise contribution.

Parameters Simulation

(r)1-6 l1 �1 l2 ¼ KN Tmat KP dP Pr (MP) Pr (NP) DR (Mat)

2 2 400 0.05 2 0.1 0:02� 0:004 0:00� 0:01 0:00� 0:01

4 20 1210 0.05 2 0.1 0:02� 0:003 0:00� 0:01 0:00� 0:01

Appendix 5—table 6. A comparison of the pathway-reporter method and dual-reporter method for

the multiscale model with a fixed duration of maturation (Case (3)B).

Here the maturation time, Tmat, is set to 0.05. For each of the parameters l1; �1;KP; dP, we selected a

scaled Betað5; 6Þ distribution, with squared coefficient of variation h2 ¼ 0:1; the scaling is chosen in

each case to achieve a mean value equal to the parameter value. The parameter l2 ¼ KN is given the
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noise distribution Betað3; 6Þ, which has a slightly higher coefficient of variation h2 ¼ 0:2. The extrinsic

noise values given by pathway reporters match well with those obtained by dual reporters.

Mean Simulation

(r)1-5 l1 �1 l2 ¼ KN KP dP Pr (MP) Pr (NP) DR (Mat)

2 2 400 2 0.1 0:18� 0:02 0:17� 0:04 0:15� 0:02

4 20 1210 2 0.1 0:30� 0:05 0:30� 0:12 0:28� 0:05

Appendix 5—table 7. A comparison of the pathway-reporter method and dual-reporter method for

the multiscale model with Erlang-distributed maturation times and cell-cycle effects (Case (4)A).

Here, the time to maturation, Tmat, is chosen to be consistent with the mean of the stochastic matura-

tion time used in our other models (where the maturation time is exponentially distributed). Specifi-

cally, we choose Tmat ~Erlangð3; 60Þ, with mean length 3=60 ¼ 0:05, matching our earlier

benchmarking using exponentially-distributed maturation time, with mean length 0.05. We consider

the rate parameters for the remaining exponentially distributed times to be constant, that is, there is

no extrinsic noise beyond that contributed by the cell-cycle effects.

Parameters Simulation

(r)1-5 l1 �1 l2 ¼ KN KP dP Pr (MP) Pr (NP) DR (Mat)

2 2 400 2 0.1 0:04� 0:01 0:02� 0:001 0:04� 0:01

4 20 1210 2 0.1 0:02� 0:003 0:01� 0:01 0:02� 0:01

Appendix 5—table 8. A comparison of the pathway-reporter method and dual-reporter method for

the multiscale model with Erlang-distributed maturation times and cell-cycle effects (Case (4)B).

The Erlang distributed maturation time is chosen as in Appendix 5—tables 7. For each of the param-

eters l1; �1;KP; dP, we selected a scaled Betað5; 6Þ distribution, with squared coefficient of variation

h2 ¼ 0:1; the scaling is chosen in each case to achieve a mean value equal to the parameter value.

The parameter l2 ¼ KN is given the noise distribution Betað3; 6Þ, which has a slightly higher coefficient

of variation h2 ¼ 0:2.

Means Simulation

(r)1-6 l1 �1 l2 ¼ KN Tmat KP dP Pr (MP) Pr (NP) DR (Mat)

2 2 400 0.05 2 0.1 0:21� 0:04 0:18� 0:04 0:23� 0:02

4 20 1210 0.05 2 0.1 0:34� 0:05 0:30� 0:12 0:36� 0:02
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