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Barrier mechanisms in neonatal stroke
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Clinical data continue to reveal that the incidence of perinatal stroke is high, similar to
that in the elderly. Perinatal stroke leads to significant morbidity and severe long-term
neurological and cognitive deficits, including cerebral palsy. Experimental models of
cerebral ischemia in neonatal rodents have shown that the pathophysiology of perinatal
brain damage is multifactorial. Cerebral vasculature undergoes substantial structural and
functional changes during early postnatal brain development. Thus, the state of the
vasculature could affect susceptibility of the neonatal brain to cerebral ischemia. In
this review, we discuss some of the most recent findings regarding the neurovascular
responses of the immature brain to focal arterial stroke in relation to neuroinflammation.
We also discuss a possible role of the neonatal blood-CSF barrier in modulating
inflammation and the long-term effects of early neurovascular integrity after neonatal
stroke on angiogenesis and neurogenesis.
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INTRODUCTION
The blood-brain barrier (BBB) protects the central nervous sys-
tem (CNS) and prevents non-specific leakage of molecules and
cells from the blood into the brain. Stroke can disintegrate
the BBB in many ways by disrupting cell-cell communication
between endothelial cells (ECs), pericytes, and astrocytes, cumu-
latively referred to as the “neurovascular unit” (NVU), and by
affecting neurons and microglial cells, thereby enhancing injury.
Reperfusion and re-oxygenation of previously ischemic brain
regions further affect BBB function, restoring or disrupting,
depending on various factors such as the extent, length of initial
cerebral blood flow (CBF) disruption, genetic background, sex,
age, and the presence of other confounding factors.

The timing of injury during brain development has a major
impact on determining the pathophysiology of ischemic brain
damage. Maturation of individual cell types, individual compo-
nents of the NVU and of the extracellular matrix (ECM), and
of individual brain regions is not synchronized, contributing to
the existence of “windows of susceptibility” to ischemia during
particular fetal and postnatal periods. Here we discuss some of
the most recent findings regarding the neurovascular responses
of the immature brain to focal arterial stroke in relation to
neuroinflammation and long-term effects on repair.

AGE AT THE TIME OF CEREBRAL ISCHEMIA AS A
DETERMINANT OF THE PATHOPHYSIOLOGY OF BRAIN
DAMAGE: PRETERM vs. TERM
In preterm human babies (23–32-weeks of gestation) intracere-
bral hemorrhage (ICH), intraventricular hemorrhage (IVH), and
periventricular white matter injury (PWMI) are the most com-
mon types of ischemia-related injuries (Volpe, 2009). Clinical
aspects of perinatal stroke have been extensively discussed
(Ferriero, 2004; Nelson and Lynch, 2004). Vulnerability of oligo-
dendrocyte progenitor cells (OPCs) to ischemia and hypoxia

including a concomitant loss of subplate neurons, a transient
neuronal subpopulation important in corticogenesis and proper
wiring of the developing brain, contribute to PWMI (McQuillen
et al., 2003; Volpe, 2009). The germinal matrix with its weak, leaky
vasculature, high local production of vascular endothelial growth
factor (VEGF), angiopoietin-2 (Angpt2), and matrix metallo-
proteinases (MMPs) also make the preterm brain prone to ICH
and IVH (Ballabh, 2010). Low pericyte coverage and ensheath-
ement of astrocytic endfeets along blood vessels, together with
immaturity of the basal membrane (BM), also make the preterm
brain susceptible to ischemia-related injury (El-Khoury et al.,
2006; Braun et al., 2007). At term (between birth and 28 days of
life), ischemia-related white matter injury does occur (Rothstein
and Levison, 2005; Van Den Broeck et al., 2008), but injury
predominantly affects gray matter (Ferriero, 2004).

Several models were developed to understand the pathophysi-
ological mechanisms of hypoxic-ischemic encephalopathy (HIE)
and focal arterial stroke at term (Yager and Ashwal, 2009). A
model of hypoxia-ischemia (HI) consists of a unilateral ligation
of the common carotid artery (CCA) followed by a variable dura-
tion of exposure to 8% O2 in postnatal day 7 (P7) rats (Rice et al.,
1981), and P9 mice and mimics HIE, whereas transient middle
cerebral artery occlusion (tMCAO) model in P7 rats (Derugin
et al., 1998), P10 rats (Mu et al., 2003), and P9 mice (Woo et al.,
2012), and a combined permanent MCAO and transient CCA
occlusion in P7 rats (Renolleau et al., 1998) mimic focal arterial
stroke. The HI is associated with increased CBF during systemic
hypoxia whereas CBF is disrupted after MCAO. Models of HI
were also developed in rabbit and sheep (Marks et al., 1999;
Derrick et al., 2007).

Studies in these age-appropriate ischemic models revealed
several features unique to neonatal brain injury. First,
excitotoxicity-induced neuronal death is a significant injury
component (Ikonomidou et al., 1989). Second, neonatal brain is
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prone to reactive oxygen species (ROS) after HI (Sheldon et al.,
2004). Third, apoptosis, a major neuronal cell death mode during
this period, coexists with necrosis and necroptosis, creating a
“continuum” with features of both cell death types (Blomgren
et al., 2007; Northington et al., 2011). Finally, inflammation
associated with failure to complete apoptosis is pivotal to
ischemia-induced injury (Vexler and Yenari, 2009). Figure 1
outlines identified differences in ischemic injury mechanisms
between adults and neonates.

BRAIN MATURATION-DEPENDENT SUSCEPTIBILITY OF THE
BBB AFTER STROKE
The BBB undergoes major disruption early after adult stroke.
Depending on initial stroke severity BBB opening can be bi-
phasic or gradual (Knowland et al., 2014). The timing, extent of
leukocyte-mediated BBB disturbances and redistribution of tight
junctions (TJs) can vary. Degradation of TJ proteins occludin,
claudin-5, and of a TJ-associated protein, zonula occludens
1 (ZO-1), is increased after stroke in part due to activation
and/or de novo synthesis of MMPs (Yang et al., 2007a; Liu
et al., 2012). TJ proteins can also internalize into the cytosol
by caveolin-1-mediated endocytosis or redistribute to other

FIGURE 1 | Inflammatory mechanisms following acute cerebral

ischemia-reperfusion injury. There are both common and distinct features
of the inflammatory response to cerebral ischemia between adults and
neonates. However, neonatal brain is more susceptible to
excitotoxic-damage and oxidative injury by ROS, resulting in necrosis and
apoptosis continuum. The induction of cytokine/chemokine production,
activation of microglial cells, and the systemic inflammatory response lead
to neuroinflammation. Differences of adhesion molecule expression on ECs
and on peripheral leukocytes exist between the injured adult and neonatal
brain. Among the inflammatory mediators, activated matrix
metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS), and
further cytokine and ROS accumulation also contribute to the variance in
magnitude and spatial distribution of BBB disruption, brain edema and injury
between neonatal and adult stroke. (modified from Vexler et al., 2006).

membrane domains after cerebral ischemia, coinciding with the
early post-ischemic BBB opening. Adherens junction proteins
support BBB properties (Petty and Lo, 2002) and their altered
composition after stroke changes TJ stability, affecting BBB per-
meability (Dejana and Giampietro, 2012; Wacker et al., 2012).

Surprisingly little is known about BBB function after neona-
tal ischemic injury. Major differences in functional BBB response
to acute ischemia-reperfusion between neonates and adults have
been recently identified (Fernandez-Lopez et al., 2012). While
BBB permeability to albumin or intravascular tracers of a sim-
ilar size is significantly increased after acute tMCAO in adult
rats, BBB permeability remains low in injured neonatal rats. Gene
and protein expression of occludin, claudin-5 and ZO-1 are bet-
ter preserved in injured neonatal brain than in injured adult
brain, whereas gene expression of the efflux transporters ATP-
binding cassette, subfamily G2 (Abcg2) and P-glycoprotein (P-gp)
is reduced in both ages 24 h after reperfusion (Fernandez-Lopez
et al., 2012). Transcript levels of several adhesion molecules and
ECM components are differentially affected by injury in imma-
ture and adult brain, including E-selectin and P-selectin. Gene
expression of Mmp-9 is significantly upregulated in injured adults
and, while high transcript levels of collagen type IV α1 (Col4a1),
and Col4a2 remain unaltered in neonates, a significant increase of
these two genes is evident in injured adult rats. Interestingly, tran-
scripts of angiogenic regulators Vegfr-2, and Angpt2 are increased
after stroke in adults but not in neonates (Fernandez-Lopez et al.,
2012). Figure 2 summarizes these findings. In contrast, a tran-
sient leakage of much smaller tracers, sucrose and inulin, was
observed in a mouse HI model, with the peak at 6 h and normal-
ization by 24 h (D’Angelo et al., 2012), conveying that size and
chemical structure of molecules affect leakage and highlighting
the need for future BBB studies in injured immature brain.

The ECM proteins and their corresponding receptors on
ECs and astrocytes provide both physical and biochemical glial-
vascular “scaffolding” while BM components laminin, collagen
IV (Col-IV), fibronectin, and perlecan provide proper cell-cell
interactions. Endothelial-ECM interaction via β1 integrins regu-
lates the expression of claudin-5 and BBB tightness whereas other
ECM proteins, like galectin-3 mediate integrin-induced stabiliza-
tion of focal adhesions, and activate cytokine receptors to enhance
actions of growth factors (Goetz et al., 2008). Homozygous muta-
tions in Col-IV are lethal in mid-gestation due to blockage of
capillary bed development, and mutations in the COL4A1 gene
cause ICH both in newborn mouse and human (Gould et al.,
2005; Labelle-Dumais et al., 2011). Laminin degradation after
focal stroke in adults causes detachment of astrocytic endfeet,
disrupts BBB and induces ICH (Fukuda et al., 2004), while in
neonates expression of this ECM protein is not reduced acutely
(Fernandez-Lopez et al., 2012). The role of other ECM proteins
in injured neonates is less studied but opposite effects of galectin-
3 in adult stroke and HI has been demonstrated (Doverhag et al.,
2010; Lalancette-Hebert et al., 2012).

PARENCHYMAL BRAIN CELLS AS MODULATORS OF BBB
INTEGRITY AFTER NEONATAL STROKE
Neuroinflammation is a characteristic feature of stroke
progression and a major contributor to brain injury
(Iadecola and Anrather, 2011). Multiple cell types (i.e. neurons,
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FIGURE 2 | Differences in the gene expression of the BBB

components between adults and neonates 24 h after tMCAO. On a
diagram of the NVU, arrows demarcate the gene expression changes in
injured vs. matching contralateral region (ratio, ipsilateral/contralateral) in
adult (orange arrows), and neonatal rats (green arrows) subjected to 3 h
of MCAO followed by 24 h of reperfusion. Arrows pointing upwards
demarcate increased gene expression in injured regions vs. matching
contralateral regions (statistically significant > 2-fold change). Downward
arrows show reduced expression in injured regions vs. matching
contralateral regions (statistically significant > 2-fold change).

Double-sided arrows indicate no changes between injured and
contralateral regions. Abbreviations: Ad: adult, P7: postnatal 7-days-old,
EC, endothelial cell; angiopoetin 2, Angpt2; Kdr, Vegfr-2; Cldn, claudin;
Ocln, occludin; ZO, zonula occludens; JAM, junctional adhesion
molecules; TJ, tight junction; Pgp, P-glycoprotein; Abcg2, ATP-binding
cassette transporter, subfamily G 2; Col4a1, collagen, type IV, alpha 1;
Col4a2, collagen, type IV, alpha 2; Lama5, laminin, alpha 5; Mmp-9,
matrix metalloproteinase 9. Original data are published in
Fernandez-Lopez et al. (2012). The NVU contains fragments from Eichler
et al. (2011).

astrocytes, ECs, and microglia) increase production of inflam-
matory mediators post-ischemia, which can adversely affect BBB
integrity and propagate injury.

ECs are sensitive to oxidative stress (Freeman and
Keller, 2012). Excessive ROS accumulation generated by
ischemia/reperfusion contributes to damage of TJs and other
EC components, and promotes activation of cell death pathways
(Rizzo and Leaver, 2010). Although less sensitive to cerebral
ischemia than neurons, ECs also undergo cell death via several
mechanisms (Rizzo and Leaver, 2010). Our comparison of gene
expression in ECs from injured and contralateral cortex in
neonatal and adult rats after tMCAO (endothelial transcriptome)
revealed a markedly distinct signature of up-regulated and
down-regulated transcripts in injured regions between two ages
(Fernandez-Lopez et al., 2012).

Astrocytes are rather resistant to ischemic injury but impair-
ment of water fluxes through astrocytic swelling and increased
expression of aquaporin 4 (AQP4) leads to edema after adult focal
ischemia (Loreto and Reggio, 2010). No edema was observed in
injured P10 pups in brain regions with greatest AQP4 expression
(Badaut et al., 2007), suggesting that enhanced water clearance at
border regions can protect.

Microglial cells have been considered toxic after cerebral
ischemia due to production of inflammatory mediators. However,
phagocytotic ability and production of growth factors by
microglia can be beneficial via several mechanisms, including
support of neuronal and endothelial survival (Baburamani et al.,

2012; Luo and Chen, 2012). Microglial cells have several direct
modulatory effects on the vasculature. During brain development
they mediate vasculogenesis (Arnold and Betsholtz, 2013), and
act as a physical bridge that guides vascular anastomosis, facilitat-
ing normal angiogenesis, and vascular sprouting. Microglia patrol
the vasculature in the naïve brain (Davalos et al., 2012) and, upon
BBB disruption, rapidly extend their processes, shielding injured
sites (Nimmerjahn et al., 2005). Depletion of microglia wors-
ens parenchymal injury in neonatal rats after tMCAO, increases
levels of inflammatory mediators in acutely injured regions,
and induces hemorrhagic transformation (Faustino et al., 2011;
Fernandez Lopez et al., 2014) perhaps due to differing cell pheno-
types in the immature brain.

Pericytes are important regulators of vessel contractility.
Pericyte loss or dissociation from vessels lead to edema (Peppiatt
et al., 2006) and impaired reflow (Yemisci et al., 2009). Lower than
in adult pericyte coverage in the neonatal brain (Daneman et al.,
2010) may differentially affect CBF regulation and BBB function
after injury but this is yet to be demonstrated.

OPCs support EC survival but they are sensitive to ROS and
can adversely affect BBB integrity via release of inflammatory
mediators. Mast cells contribute to early ischemic brain swelling,
BBB leakage and neutrophil infiltration (Strbian et al., 2006).
Their stabilization protects and reduces hemorrhage formation
(Strbian et al., 2007). Degranulation of mast cells is injurious in
neonatal HI (Jin et al., 2007) and stroke (Biran et al., 2008) but
direct effects on BBB have not been studied.
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SYSTEMIC INFLAMMATION ALTERS BBB PERMEABILITY
AFTER NEONATAL STROKE
Parenchymal, perivascular and peripheral circulating cells inde-
pendently and in concert contribute to stroke-induced pro-
duction of inflammatory mediators, upregulation of integrins
and adhesion molecules on ECs and leukocytes (Iadecola and
Anrather, 2011).

Neutrophils rapidly, often transiently infiltrate ischemic tis-
sue and exacerbate reperfusion injury in adults by priming the
endothelium, causing “no-reflow” phenomenon, releasing ROS
and proteolytic enzymes, and stimulating cytokine release (Mori
et al., 1992; Amantea et al., 2009; Engelhardt and Liebner, 2014).
Both loosely attached and infiltrated leukocytes can contribute
to generation of pro-inflammatory molecules in the CNS (Denes
et al., 2010). Neutropenia or treatments that prevent leukocyte
adhesion and infiltration are neuroprotective (Kochanek and
Hallenbeck, 1992; Yamasaki et al., 1995). Compared to adults,
in neonates neutrophil infiltration is markedly lower in response
to HI (Hudome et al., 1997; Bona et al., 1999), and tMCAO
(Fernandez-Lopez et al., 2012). Neutralization of cytokine-
induced neutrophil chemoattractant 1 protein (CINC-1) follow-
ing tMCAO in adults holts neutrophil transmigration, reduces
brain edema and protects (Yamasaki et al., 1997) whereas it pro-
motes neutrophil infiltration following tMCAO and disrupts the
BBB in neonates (Fernandez-Lopez et al., 2012).

Monocytes have been recently shown to have a dual role,
elicit both inflammatory effects and maintain NVU integrity fol-
lowing cerebral ischemia. Monocyte depletion, chemokine (C-C
motif) receptor 2 (CCR2) knockout, and bone marrow chimeric
approach in murine stroke models demonstrated that CCR2 in
bone marrow-derived cells alters injury and hemorrhagic trans-
formation (Gliem et al., 2012). The stabilizing effects of mono-
cytes are transforming growth factor beta 1 (TGF-β1)-dependent
(Gliem et al., 2012). Compared to adult stroke, infiltration of cir-
culating monocytes across the BBB is relatively low during the
acute injury phase in neonates (Denker et al., 2007). It remains
poorly understood whether leukocyte immaturity at the time
of insult or a distinct gene expression pattern of selectins, and
cytokines/chemokines account for the difference.

T and B cell infiltration may be less profound (Bona et al.,
1999) or transient (Benjelloun et al., 1999) in injured neonates
than in adults (Catania and Lipton, 1998; Chu et al., 2014).

INDIVIDUAL INFLAMMATORY SIGNALING MECHANISMS
Evidence is growing that the inflammatory responses after stroke
are different in neonates and adults (Vexler and Yenari, 2009).
Genetic deletion of various inflammatory mediators, including
NADPH oxidase (Doverhag et al., 2008), or interleukin 1 (IL-1)
β, IL-1α, or both αβ (Hedtjarn et al., 2005) are not neuroprotec-
tive in the neonatal brain compared to adults. Some mediators
that are upregulated and injurious during the acute injury phase,
such as nitric oxide (NO), MMPs, macrophage inflammatory
protein 1 alpha (MIP-1α), monocyte chemoattractant protein 1
(MCP-1), and complement, may be beneficial and mediate repair
(Fernandez-Lopez et al., 2014).

MMPs degrade TJ and BM proteins, including collagen,
laminin and fibronectin, thereby leading to brain edema, BBB

leakage and leukocyte infiltration. MMP upregulation after
stroke contributes to ECM breakdown and acute brain dam-
age (Rosenberg et al., 1998; Asahi et al., 2000). MMP-2 and
MMP-9, the two most studied MMPs in stroke, play different
roles in BBB disruption (Asahi et al., 2001). MMP-3 targets sev-
eral ECM components, including laminin and proteoglycans, and
propagates injury by mediating BBB opening by inflammatory
mediators (Cunningham et al., 2005). While activated microglia,
macrophages and infiltrating leukocytes are the major sources
of MMPs early after injury (Gidday et al., 2005; McColl et al.,
2008), over time activated astrocytes and neurons begin produc-
ing MMPs, enhancing repair (Zhao et al., 2006). MMP-9 was
shown to predict HIE in human newborns (Bednarek et al., 2012).
Cerebrovascular ECs from neonates in culture contain more tis-
sue plasminogen activator (t-PA) and gelatinases upon glutamate
challenge than adult cells (Omouendze et al., 2013). MMP inhibi-
tion is protective after HI (Chen et al., 2009) but long-term MMP
inhibition may holt ECM remodeling, as shown in adult stroke
(Zhao et al., 2006).

The patterns of monocyte and neutrophil recruitment are
cytokine- and chemokine-specific. The multifaceted roles for α,
β, and δ classes of chemokines were shown in adult stroke models
(Yamasaki et al., 1995). Integrins are central for cell communica-
tion within the NVU and for leukocyte recruitment after stroke
(Iadecola and Anrather, 2011) but information on the role of
integrins in neonatal stroke is scant.

BLOOD-CSF BARRIER (BCSFB)
The choroid plexuses (CPs), forming the BCSFB, are involved
in immune cell entry after brain injury (Shechter et al., 2013).
CPs express chemokines and support transepithelial trafficking
of neutrophils, monocytes and T cells (Szmydynger-Chodobska
et al., 2009, 2012; Kunis et al., 2013). Engraftment of CPs in
adult stroke models reduced infarct size and improved neuro-
logical function, in part via secretion of glial cell line-derived
neurotrophic factor (GDNF), brain-derived neurotrophic factor
(BDNF), and nerve growth factor (NGF) (Borlongan et al., 2004).
CPs have unique functions in the developing brain (Dziegielewska
et al., 2001) but their role in protection of the immature brain
after stroke is unknown.

NEUROVASCULAR RESPONSES AND REPAIR AFTER
NEONATAL STROKE
Long-term neural repair is less studied after neonatal stroke than
after adult stroke. Cell proliferation in the subventricular zone
(SVZ) after ischemia is triggered in both adults (Ohab et al.,
2006), and neonates (Plane et al., 2004; Yang et al., 2007b).
The dynamic changes within the SVZ neurogenic niche permit
neuroblast migration into the ischemic striatum (Young et al.,
2011) in the adult, where they express phenotypic region-specific
mature neuronal markers (Parent et al., 2002), and into peri-
infarct striatum after neonatal HI (Plane et al., 2004; Yang et al.,
2007b). Niche astrocytes and SVZ microglia are also involved
in neuroblast migration (Young et al., 2011). The newborn SVZ
contains numerous cell types, including unipotential astrocytes
and OPCs as well as bipotential glial progenitors (Levison and
Goldman, 1997).
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Given the dynamic nature of postnatal brain development one
would expect robust repair processes in neonatal stroke but a 1–2
week delay in induction of angiogenesis was shown after tMCAO
in P7 and P10 rats (Shimotake et al., 2010; Dzietko et al., 2013;
Fernandez-Lopez et al., 2013) despite induction of VEGF (Mu
et al., 2003). Another obstacle for endogenous repair is that pro-
liferating cells in the postnatal SVZ differentiate into astrocytes,
rather than neurons or oligodendrocytes, and astrogliosis holts
the repair (Spadafora et al., 2010; Gonzalez et al., 2013). Changing
the neural stem cell fate to route the differentiation into neurons
and oligodendrocytes after stroke, for example, with erythropoi-
etin, enhances the repair (Iwai et al., 2010; Gonzalez et al., 2013).
Cell based therapies, including mesenchymal stem cells, improve
functional outcomes after neonatal HI (Van Velthoven et al.,
2010) and arterial stroke (Van Velthoven et al., 2013) by chang-
ing the microenvironment and stimulating Angpt1 and VEGF
signaling, which amplify angiogenesis and “loosen” the barrier,
allowing vessel remodeling and neuroblast migration.

TRANSLATIONAL ASPECTS AND FUTURE DIRECTIONS
A broad range of therapeutic agents was used in neonatal ischemic
brain injury models to target the excitotoxic, oxidative, and
inflammatory injury components, but, as in adult stroke, stud-
ies revealed limits in protection. To date, hypothermia is the only
neuroprotective treatment for perinatal HIE with efficacy limited
to moderate injury (Azzopardi et al., 2009; Edwards et al., 2010).

Importantly, recent studies have improved our understanding
of the events at the BBB after neonatal ischemia by revealing that
the developmental stage of the BBB at the time of ischemic insult
is of prime importance and that careful consideration should
be given to whether the BBB is in fact disrupted or it limits
therapies from reaching an injured neonatal brain. The role of
local parenchymal cells, microglia, as modulators of neurovas-
cular integrity after neonatal stroke was also uncovered. Future
studies should shed light on relationships between neurovascular
integrity and interaction with neuroprogenitors, endogenous, or
engrafted, including the migration and differentiation of neural
progenitors during stroke-induced neurogenesis.
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