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A B S T R A C T   

The re-emergence of monkeypox (MPX), in the era of COVID-19 pandemic is a new global menace. Regardless of 
its leniency, there are chances of MPX expediting severe health deterioration. The role of envelope protein, F13 
as a critical component for production of extracellular viral particles makes it a crucial drug target. Polyphenols, 
exhibiting antiviral properties have been acclaimed as an effective alternative to the traditional treatment 
methods for management of viral diseases. To facilitate the development of potent MPX specific therapeutics, 
herein, we have employed state-of-the-art machine learning techniques to predict a highly accurate 3-dimen
sional structure of F13 as well as identify binding hotspots on the protein surface. Additionally, we have 
effectuated high-throughput virtual screening methodology on 57 potent natural polyphenols having antiviral 
activities followed by all-atoms molecular dynamics (MD) simulations, to substantiate the mode of interaction of 
F13 protein and polyphenol complexes. The structure-based virtual screening based on Glide SP, XP and MM/ 
GBSA scores enables the selection of six potent polyphenols having higher binding affinity towards F13. Non- 
bonded contact analysis, of pre- and post- MD complexes propound the critical role of Glu143, Asp134, 
Asn345, Ser321 and Tyr320 residues in polyphenol recognition, which is well supported by per-residue 
decomposition analysis. Close-observation of the structural ensembles from MD suggests that the binding 
groove of F13 is mostly hydrophobic in nature. Taken together, this structure-based analysis from our study 
provides a lead on Myricetin, and Demethoxycurcumin, which may act as potent inhibitors of F13. In conclusion, 
our study provides new insights into the molecular recognition and dynamics of F13-polyphenol bound states, 
offering new promises for development of antivirals to combat monkeypox. However, further in vitro and in vivo 
experiments are necessary to validate these results.   

1. Introduction 

The resurgence of monkeypox (MPX), a zoonotic disease, with an 
unknown animal reservoir is caused by a member of the Poxviridae 

family i.e. monkeypox virus (MPXV) and has put the public in distress 
[1]. While it was originally found in African rainforests, the recent 
outbreak (since May 2022) deals with the spread of this viral infection in 
other non-endemic countries which has the potential to cause a global 

Abbreviations: MD, Molecular Dynamics; MPX, Monkeypox; MPXV, Monkeypox Virus; EEV, Extracellular virions; EV, Enveloped virions; MM/GBSA, Molecular 
mechanics-Generalized Born Surface Area; CGenFF, CHARMM General Force Field; MM/PBSA, Molecular Mechanics Poissons-Boltzmann Surface Area; RMSD, Root 
Mean Square Deviation; RMSF, Root Mean Square Fluctuations; Rg, Radius of Gyration; SASA, Solvent Accessible Surface Area; PCA, Principal Component Analysis; 
PC, Principal Component; FEP, Free energy perturbation; TI, Thermodynamics Integration; LIE, Linear Interaction Energies; HKD, HxKxxxxD; pLDDT, Predicted Local 
Distance Difference Test. 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: budheswar.dehury@gmail.com (B. Dehury), drsanghamitra12@gmail.com (S. Pati).   
1 Contributed Equally. 

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2023.107116 
Received 3 April 2023; Received in revised form 12 May 2023; Accepted 30 May 2023   

mailto:budheswar.dehury@gmail.com
mailto:drsanghamitra12@gmail.com
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2023.107116
https://doi.org/10.1016/j.compbiomed.2023.107116
https://doi.org/10.1016/j.compbiomed.2023.107116
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2023.107116&domain=pdf


Computers in Biology and Medicine 162 (2023) 107116

2

epidemic [2]. This viral transmission through bodily fluids and respi
ratory droplets, exhibits symptoms similar to small pox such as fever, 
swollen lymph nodes and a body rash that lasts for a few weeks [3–5]. 
However, severe medical complications such as lymphadenopathy, 
which distinguishes MPX from chickenpox can be a leading cause of 
3–5% deaths [6]. The skin lesions in the eruptive phase, progresses to 
macules, papules, vesicles and pustules, which later develops crusts 
leading to hyper-pigmentation [7]. Most severe cases of MPX follows 
pitted facial scars, corneal ulceration, vision loss, cutaneous bacterial 
infections, bronchopneumonia, respiratory distress etc. Earlier studies 
also suggests the frequent occurrence of chickenpox and MPX 
co-infection [8–10]. 

In this scenario, due to lack of MPX specific therapeutics, three 
available drugs tecovirimat ST-246, brincidofovir and cidofovir are put 
to use as an emergency. However, as a consequence of limited effec
tiveness of these available drugs in human use and with the emergence 
of new viral variants, they are not considered as viable frontline treat
ment options. Evidences from literature demonstrate the inhibitory role 
of these drugs towards a viral structural protein F13. This palmitylated 
structural F13 protein, found in most of the orthopoxvirus is highly 
conserved in nature. F13 have been vividly studied to play a critical role 
in viral replication and transcription by producing extracellular virions 
(EEV) and attaching or releasing enveloped virions (EV) from the cell 
membrane [11]. The addition of 16-carbon fatty acid tails during pal
mitylation is indispensable for membrane association, proper localiza
tion and functioning of F13 protein. For that reason, F13 protein is 
considered as a promising drug target for discovery and development of 
anti-MPXV therapies. To effectively treat individuals infected with the 
virus, it may be necessary to use a combination of therapies. Owing to 
this solution, a recent study on Resveratrol, a natural polyphenol has 
been found to inhibit viral replication including MPX but its mechanism 
of action is poorly understood and needs further investigation [12]. 

The prevalence of plant-based polyphenols as potent antiviral agents 
is rising due to their potential health benefits with the ability of inhib
iting diverse stages of viral replication, wide availability, inexpensive 
production as well as low side-effects [11,13,14]. Depending on the 
nature of the virus (DNA or RNA), different polyphenols interacts with 
the viral particle [15,16]. Recent studies have provided evidences of 
natural polyphenols as important targets for development of effective 
therapeutics against various viral diseases. The effectiveness of 
plant-derived polyphenols observed against cardiovascular diseases, 
neurodegenerative diseases, diabetes, and cancer, among other things, 
makes them competent enough to be used as a functional food or in drug 
preparations [17–19]. Previous state-of-the-art studies demonstrate the 
multi-mechanistic antiviral nature of polyphenols that might be facili
tated due to their antioxidant activities, inhibition of viral replication, 
etc [20]. 

Given that the antiviral activities of these natural polyphenols needs 
more comprehensive study, herein, we have made an attempt to identify 
potent lead molecules exhibiting inhibitory pursuits against F13 as well 
as their plausible binding mode [21]. However, the lack of structural 
information for F13 protein hinders the development procedure of 
potent therapeutics. The current study utilizes the state-of-the-art ma
chine learning techniques implemented in AlphaFold2 for prediction of 
a high-quality protein structure. All-atoms MD simulations of the 
F13-polyphenol complexes, following high-throughput virtual 
screening, apprehends the function and behaviour of the protein as well 
as the bound polyphenols at an atomic level. Our research establishes a 
baseline for investigating the potential of machine learning approaches 
in structure prediction and provides direction for identifying conceiv
able molecular recognition mechanisms for ligands. As a whole, our 
study shed light on the dynamics of polyphenols-bound F13 conforma
tions, paving the way for the development of novel antivirals against a 
range of pharmacological targets. 

2. Materials and methods 

2.1. Nearly accurate structure of F13 protein by dint of state-of-the-art 
techniques 

Initially, the total reference proteome from three genomes of MPXV 
(Congo virus strain (1996), ID: NC_003310.1, West African strain 
(2018), ID: MT903345.1, and West African strain (2022), ID: 
ON563414.3) was obtained from NCBI protein database. Following 
collection of the F13 protein from three proteomes, we compared the 
similarities and differences of those sequences at amino acid level using 
MultAlin tool [22]. In the initial period of acquiring the 3-dimensional 
(3D) information of the F13 protein, the Congo viral F13 sequence, 
being the ancient strain (ID: NC_003310.1) was subjected to BLASTp 
[23] and PSI-Blast [24] search against PDB to identify potent structural 
homologs for protein modelling. Due to lack of suitable homologs in 
PDB, the state-of-the-art machine learning structure prediction protocol 
implemented in AlphaFold2, was used to generate high-quality protein 
models. Further validation of the predicted model from AlphaFold2 was 
carried out using the highest predicted local distance difference test 
(pLDDT) score, which indicates the confidence of the model [25]. In 
addition, we also deployed several standard protein model evaluation 
servers such as PROCHECK [26] and ERRAT [27] programs available in 
SAVEs server, ProSA [28], ProQ [29], and MolProbity [30] to assess the 
stereo-chemical qualities of the modelled F13. 

Post-F13 modelling using AlphFold2, the protein was subjected to 
all-atoms MD simulation to evaluate its structural stability and dynamics 
in apo state. In this study, a TIP3 water layer was added around the 
protein to create a fully hydrated and neutralized system with 0.15 M 
NaCl. Using GROMACS v2021.4, a MD simulation of 200 ns was per
formed in this neutralized system [31] (as explained in section 2.3 
below) in replicates. The simulation protocol was adapted from our 
earlier studies [32,33]. Subsequently, we used GROMOS-based clus
tering approach with a cut-off of 0.2 nm to select a representative 
snapshot from the top ranked cluster for further exercises. 

2.2. Prediction of F13 binding cavity and virtual screening of antiviral 
polyphenols 

To optimize the hydrogen bonds and ensure proper charged states for 
the ionizable amino acid residues, we prepared the modelled F13 pro
tein (obtained from the top ranked cluster post-MD) using the Protein 
Preparation Wizard of Maestro [34] with a pH of 7.0, which was deter
mined using the PROPKA module [35]. 

The deep PointSite model [36] was further availed to annotate the 
binding site residues of the F13 protein, where residues having values 
equivalent to 1 are more likely to be involved in the binding activity 
[37]. Following active site identification, the receptor grid was gener
ated by specifying active site residues using Maestro 12.8 (Schrödinger, 
LLC, New York, 2021-2). We screened 57 natural polyphenols having 
reported antiviral activity virtually, focusing on five residues (His115, 
Lys117, Asn132, His325, and Lys327) in the binding groove of the F13 
protein. To further validate our binding site residue prediction, we uti
lized another machine learning approach, PrankWeb [38]. 

To evaluate the efficacy of natural products, we selected 57 poly
phenols (Table S1) from the scientific literature with available structures 
in the public domain [39] and retained their structures in sdf format 
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). To 
undergo the process of molecular recognition, the ligands were prepared 
with the modelled F13 protein using the LigPrep tool available in 
Maestro 12.8 (Schrödinger, LLC, New York, 2021-2). The default pa
rameters (pH 7.0) were selected for generating tautomers as well as 
possible states of the molecules, where the pKa values of these states was 
calculated using the Epik module [35]. The final structures of the ligands 
were optimized using the OPLS4 force field to generate low-energy 3D 
ligand conformers [40]. 
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Following the preparation of the F13 protein and ligands, glide 
docking programme implemented in the Schrodinger suite 
(Schrödinger, LLC, New York, 2021–22) was used for studying the mo
lecular interactions between F13 and polyphenols. The docking calcu
lations were performed in SP (standard precision) mode followed by XP 
(extra precision) mode [41]. The docked F13-polyphenol complexes 
were visualised using PyMOL (http://www.pymol.org/pymol) and 
LigPlot+ [42]. 

Then, Molecular Mechanics-Generalized Born Surface Area (MM/ 
GBSA) method implemented in Prime (Schrödinger, LLC, New York, 
2021-2) was used to predict the binding free energy (ΔGbind) of the 
docked ligands at the ligand binding site of F13 protein [43]. The 
methodology for calculating MM/GBSA was adapted from Genheden 
et al. (2015) [44]– [45]. Finally, we screened the top ranked complexes 
from these generated poses based on their SP, XP, and ΔGbind scores 
(high) from MM/GBSA analysis. For further validation of our docking 
protocol employed in Glide, we docked the modelled F13 and poly
phenols using AutoDock Vina v1.5.7 [46]. 

2.3. Understanding the atomistic behaviour of the modelled F13 protein 
and screened polyphenols using all-atoms MD simulation 

To explore the intrinsic stability and conformational flexibility of the 
six (screened from molecular docking studies) docked F13-polyphenol 
complexes, we employed all-atoms MD simulations using a structure 
based balanced force field, CHARMM36m [47] in TIP3P [48] water 
model in GROMACS. Ligand topologies were generated using CHARMM 
General Force Field (CGenFF) [49]. To neutralise each system, 0.15M 
NaCl was added to each system. Following electro-neutralization, each 
system was subjected to energy minimization using steepest descent 
method for 5000 steps. The energy minimized systems were then 
equilibrated using NVT and NPT ensemble with periodic boundary 
conditions using a Berendsen thermostat [50] and Nose Hoover ther
mostat [51,52]. A production MD of 200 ns was run with constant 
pressure (1 bar) and temperature (303K) using the Parrinello-Rahman 
barostat algorithm [53]. 

2.4. MD trajectory analysis 

GROMACS utility toolkits were used to analyse the quality of the 
trajectories through determining their conformational stability and 
flexibility. To determine the dynamics and stability, various properties 
of the system including backbone root mean squared deviation (RMSD), 
Cα-root mean squared fluctuations (RMSF), radius of gyration (Rg), 
solvent accessible surface area (SASA) and intermolecular hydrogen 
bonds were computed using gmx rms, gmx rmsf, gmx gyrate, gmx sasa and 
gmx hbond respectively. The time dependent structural changes in the 
secondary structural elements of each system during MD simulations 
were mapped using VMD (in a timescale of 200 ns). XmGrace (https 
://plasma-gate.weizmann.ac.il/Grace/), PyMOL and BIOVIA Discovery 
Studio Visualizer (BIOVIA, San Diego, CA, USA) were used for visuali
zation of 2D graphs and structures respectively and the plots were 
generated in OriginPro and Adobe Illustrator 2.8. 

RMSD-based clustering analysis of all the systems was carried out by 
using gmx cluster with a cut-off of 0.2 nm using the last 100 ns MD tra
jectories. Principal component analysis (PCA) separates the collective 
motions from the local dynamics to a small subset comprised of principal 
components (PCs) that define the collective motion. To observe these 
collective motions within the F13-polyphenol complexes, PCA was 
performed using gmx covar and gmx anaeig built-in modules of GRO
MACS using the last 100 ns MD trajectories. 

2.5. Estimation of binding free energy by molecular mechanics/Poisson- 
Boltzmann surface area (MM/PBSA) approach 

The binding free energy of the F13-polyphenol complexes involved 

in their binding process, was calculated using the g_mmpbsa tool [54], 
which uses molecular-mechanics based Poisson–Boltzmann Surface 
Area (MM/PBSA) calculations [55]. A total of 200 snapshots were 
extracted from the last 100 ns MD trajectories at equal interval of time 
for determining the binding energy (ΔGbind). To better understand the 
contribution of individual amino acids to the binding free energy and 
per-residue decomposition analysis was performed. 

3. Results and discussion 

The rapid emergence of different MPXV variants and upsurge in the 
number of cases led to the growing demand for more effective treat
ments, concerning the limited number of current treatment options. F13 
is a crucial drug target for the development of potent antiviral drugs or 
inhibitors that lacks close human homologs. Studies have shown that 
targeting antiviral plant-based polyphenols against envelope proteins 
for designing effective inhibitors can trigger the development of effec
tive therapeutics [56–60]. Although polyphenols have been found to 
have various biological functions, their specific mechanism of action 
against viruses is not well-defined [61]. 

A recent research study has shed light on how polyphenols can 
inhibit viral entry, reproduction and DNA inhibition [21], which pro
vides valuable insights into their mechanism of exhibiting antiviral ac
tivity against viruses. In particular, herein, we highlight the importance 
of investigating the antiviral properties of polyphenols against MPXV 
and aims to identify potent antivirals against an AI-based model of F13 
using state-of-the-art computational methods. 

3.1. Optimization and structural dynamics of AlphaFold modelled F13 

To avail improved performances in molecular docking studies, 3D 
structures of the target protein plays a vital role. Mostly, the availability 
of experimentally solved structures in PDB provides adequate structural 
information related to the protein target. However, there still exists an 
abundance of non-redundant protein sequences, which are poorly 
characterized. Our target protein, F13, is a non-redundant protein, 
which lacks experimental structures. Therefore, to access its structural 
information as well as viability in different physiological conditions, we 
tried to obtain its 3D structure. Initially, we performed multiple 
sequence alignment of F13 protein encoded by the three available MPX 
genomes of different strains (as illustrated in Fig. S2A). The BLAST 
search for structural homologs yielded a structure of Serratia plymuthica 
phospholipase D (PDB ID: 7E0M) with an identity of 24.28% and 88% 
query coverage, which did not meet the 30% cut off value, required for 
obtaining a precise model. Therefore, we implemented the DeepMind’s 
AlphaFold2 [62–64] to predict a protein structure with higher accuracy 
with a backbone and side chain coordinates consistent with the expected 
structures in presence of ions. The precise AlphaFold2 predicted model 
of F13 protein acquired a high pLDDT score of 92.50% (Fig. S1A), 
suggesting its higher confidence score. The generated model from 
AlphaFold2 was further subjected to various model evaluation servers to 
examine its prediction accuracy and stereo-chemical qualities. The 
overall-quality of our modelled F13 was further supported by the ERRAT 
score of 90.12% which indicates acceptable protein environment and 
evaluated the non-bonded interactions between different atom types. 
The PROCHECK [65] analysis was used to assess the amino acid resi
dues’ placement in the Ramachandran plot [26]. The distributions of φ 
(phi) and ψ (psi) angles of the amino acid residues obtained by Ram
achandran plots showed that 88.10% were in most favoured regions, 
11.7% in additional allowed region and 0.3% in generously allowed 
region with no residues in disallowed region (Table S2). 

Furthermore, ProSA [28], ProQ [29], and MolProbity [30] servers 
were also used for stereochemical calculations. The ProQ analysis of the 
F13 model revealed an LG score of 7.17 (where, LG-score>4 signifies 
extremely good model). The ProSA-web tool was used for refinement 
and validation of the modelled protein by comparing the model’s energy 
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with the potential mean force derived from a large set of known protein 
structures to check for the native protein folding energy. Energy profile 
of the proposed model and the Z-score value (a measure of model quality 
as it measures the total energy of the structures) calculates the inter
action energy per residue using a distance-based pair potential. The 
ProSA analysis of the model F13 achieves a Z-score of − 9.15 kcal/mol 
(where the negative ProSA energy reflects reliability of the model) 
reflecting the quality of the model. The MolProbity web server provided 
a detailed atomic contact analysis to identify any steric problems or 
dihedral-angle diagnostics. Furthermore, analysis of the modelled F13 in 
MolProbity server showed no bad bonds and angles within the amino 
acid residues which additionally confirmed the reliability of our model 
(Fig. S2B). Altogether, these consistent results from our analysis exhibits 
the better performance of our AlphaFold2 modelled F13 protein. 

3.2. Exploring the structural reliability of the AlphaFold2 modelled F13 
protein 

As suggested from previous studies, the reliability of AlphaFold2 
modelled protein structures is non speculative without performing 
further post-modelling refinement techniques [66]. Hence, to further 
gauge the suitability of the AlphaFold2 modelled F13 in 
high-throughput drug discovery in a real-world scenario, refinement of 
the structure was done through all-atoms MD simulations in triplicates 
(Fig. 1) [66]. The modelled F13 and its close homolog phospholipase D 
from Serratia plymuthica shares a highly conserved HKD motifs including 
catalytic residues histidine (His115, His325) and lysine (Lys118 and 
Lys327), which is accountable for self-dimerization (Figs. S3A and B) 
[67]. The utilization of PointSite and PrankWeb (Fig. S4) tools identified 
key binding site residues His115, Lys117, Asn132, His325, and Lys327 
which is in correlation with other studies [68]. Upon structural super
imposition of the model structure with the reference structure (phos
pholipase D) (Fig. S1B) it was observed that replicate 1 and 3 had a lower 
RMSD of 1.0 Å than replicates 2 (1.15 Å). 

To assess the stability of MD simulated structures, we computed 
RMSD, RMSF, Rg and SASA profile for the triplicates. Based on Fig. 1A, it 
can be observed that replicate 1, 2 and 3 of the Apo state exhibited a 
consistent trend with an average RMSD value of 0.23 nm ± 0.03 nm, 
0.19 ± 0.02 nm and 0.20 ± 0.03 nm until 200 ns. This value is below the 
threshold of 0.25 nm, which is considered as a reliable indicator of a 

structure’s close resemblance to the reference structure according to the 
literature [69]. Analysis of the last 100 ns MD trajectories of each sys
tem, records the behavioural changes of F13 protein at amino acid level 
including the RMSF of Cα-atoms. The findings revealed that the N-ter
minal domain exhibited less fluctuation on contrary to the C-terminal 
domain in all replicates (Fig. 1B). 

The information concerning the system’s equilibrium measured with 
Rg, states the system compactness depending upon increased or 
decreased perturbation [70]. The mean Rg of the replicate 1, 2 and 3 
were recorded as 2.15 nm, 2.15 nm and 2.17 nm respectively (Fig. 1C). 
The lowest Rg value exhibited by the replicate 1 and 2 was maintained 
till 200 ns. The average SASA values for the replicates 1, 2 and 3 were 
calculated as 192 nm2, 193 nm2 and 198 nm2 respectively (Fig. 1D). 

On the top of mentioning that all the replicates yield overall good 
results, we concluded that replicate 1 showed the best structural dy
namics, hence was selected for further exercises. 

3.3. Molecular recognition of the antiviral polyphenols by optimized 
AlphaFold2 F13 protein 

Molecular docking analysis is a useful method for predicting protein- 
ligand binding activities and can be used to virtually screen large da
tabases of compounds [71]. In this study, screening of 57 polyphenols 
was conducted, resulting in the identification of 128 docked ligand 
conformations. These conformations were then screened based on their 
Glide XP and MM/GBSA scores, and the top 6 conformations were 
selected for further analysis of their intermolecular interactions, as 
detailed in Table 1 and Table S1. 

Moreover, we identified specific amino acid residues, such as 
Asn240, Trp280, Asn341, Val141, His325, and Leu423 that contributed 
towards the intermolecular interactions between the polyphenols and 
modelled F13 protein. Strong hydrogen bonds were observed in all the 
six complexes, including certain dominating hydrophobic contacts. A 2- 
dimensional representation of the non-bonded interactions between F13 
and polyphenols is depicted in Fig. S5, while a superimposed view of the 
top six docked complexes displaying the binding pocket of the F13 
protein and non-bonded interactions of the six highest-ranking com
plexes are shown in Fig. 2. Further validation of our docking protocol 
through AutoDock Vina also reveals that the binding mode of the 
screened ligands is similar to ones generated using Glide scoring 

Fig. 1. F13 protein modelled with AlphaFold2 and embedded in the TIP3P water model and phosphate groups for all-atoms MD simulations. And dy
namics of protein simulation plotted in box and whisker method using Origin Pro. (A) Backbone RMSD of MD simulated replicates of F13 in its Apo state (B) 
Root mean square fluctuations of the Cα-atoms of the triplicates. (C) Rg plot representing the compactness of the triplicates. (D) The SASA plot as a function of time 
for triplicates. 
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functions. Fig. S6 is the comparative illustration of the orientation of 
polyphenol binding to the modelled F13. The binding affinities of the 
screened polyphenols as generated by AutoDock Vina have been enlisted 
in Table S3. 

Myricetin, also known as 3,5,7-trihydroxy-2-(3′,4′,5′-trihydrox
yphenyl)-4H-chromen-4-one, belongs to the group of flavonoids, found 
in diverse groups of plants such as bayberry, vine tea, grape and 
pomegranate in the form of glycosides [72]. Earlier studies confirm the 
antiviral, antitumor [73], antioxidant [57], antibacterial [58] as well as 
anti-inflammatory effects of Myricetin for other viruses such as 
SARS-CoV-2 [74–76]. It is noteworthy to mention that Myricetin pre
vents viral infection by stimulating epithelial Cl− secretion [77]. The 
presence of 3′-OH, 4′-OH and 5′-OH on the B-ring of Myricetin makes 
them more effective in nature [78]. Studies have shown that the solu
bility rate of Myricetin in organic solvents is less in room temperature 
[79]. Most importantly, it is moderately membrane permeable with an 
apparent permeability coefficient, Papp = 1.7 × 10− 6 cm/s [80]. 

Demethoxycurcumin and Curcumin belongs to the curcuminoid 
group of polyphenols. Curcumin, also known as diferuloylmethan are 
extracted from ground rhizomes of the plant Curcuma longa L. (Zingi
beraceae) [81]. The antiviral activity of Curcumin against many envel
oped viruses has attracted a considerable group of researchers. 
Meanwhile, a study based on SARS-CoV-2 also highlights the inhibitory 
activity of Demethoxycurcumin [82]. Piceatannol and Matairesinol 
belong to stilbenes and lignans groups of polyphenols respectively. 
Though the antiviral properties of these groups of polyphenols including 
curcuminoids have not been thoroughly explored, however there are 
evidences on use of these phytocompounds for inhibition of viruses such 
as herpes simplex, HIV, influenza and human papilloma, etc. [59,60]. 
Ellagic Acid, being a member of phenolic acid group possesses high 
antioxidant and medicinal properties including anti-viral, anti-bacterial, 

anti-carcinogenic and anti-inflammatory activities [56]. Understanding 
the structural basis of the antiviral activity exhibited by these poly
phenols will provide new insights into their mode of action. 

3.4. Essential dynamics of F13-polyphenol complexes 

To understand the atomistic movement of each residue in each F13- 
polyphenol system governed by inter-atomic interactions, we further 
calculated the RMSD, RMSF, Rg, and SASA profiles of the entire MD 
simulated systems. The average RMSD values for Myricetin, Matair
esinol, Demethoxycurcumin, Piceatannol, Curcumin, and Ellagic Acid- 
F13 complexes were calculated as 0.2 nm, 0.26 nm, 0.17 nm, 0.18 
nm, 0.23 nm and 0.16 nm respectively (Fig. 3A). All F13-polyphenol 
complexes exhibited a distribution RMSD value of 0.2 nm, except for 
Piceatannol, which showed a RMSD of 0.1 nm over the 200 ns (Fig. S7A). 
These RMSD analyses showed that the complexes formed by Myricetin, 
Matairesinol, Demethoxycurcumin, Piceatannol, Curcumin and Ellagic 
Acid endured stability with minimal fluctuation over the 200 ns simu
lation time. However, we observed maximum stability in Ellagic Acid 
followed by Demethoxycurcumin, Piceatannol and Myricetin. 

The average ligand RMSD analysis showed a consistent trend with 
minimal fluctuation in Ellagic acid, indicating a stable complex with no 
significant movement or structural changes observed during the 200 ns 
simulation period. However, the ligand RMSD profiles of Myricetin, 
Matairesinol, Demethoxycurcumin, Piceatannol, and Curcumin, 
exhibited little higher RMSD over the simulation period (Fig. S7B). The 
increased RMSD of the ligands may be due to their change in orientation 
in the binding site cavity of the modelled F13 protein. 

The average RMSF profile of Cα-atoms of each system provides 
crucial insight into the degree of residual fluctuations in F13 upon ligand 
binding [33]. Our study displayed that the first five residues in the 
N-terminal region and residues Cys394 to Glu424 in the C-terminal re
gion shows higher mobility in all six systems. The loops connecting α-β-α 
units at the N-terminal domain and the loops connecting helices and 
strands at C-terminal region displayed high degree mobility, which 
might be resulted due to the low pLDDT score in the AlphaFold model, 
whereas, helices and strands had minimal fluctuation. Remarkably, we 
observed mixed loop/β-strand conformations around 244–254 amino 
acids in F13-polyphenol complexes (Fig. 3B). 

Compactness and folding mechanism of the F13-polyphenol com
plexes was assessed from their Rg [83]. The average Rg values for the 
above-mentioned systems were calculated as 2.14 nm, 2.18 nm, 2.16 
nm, 2.17 nm, 2.16 nm and 2.15 nm respectively. The F13-polyphenol 
complexes showed a minor deviation in Rg values, indicating towards 
their stability and compactness maintained over the time scale of 200 ns 
MD simulation (Fig. 3C). Also, the calculated solvent accessible surface 
area of these systems exhibited stable SASA (~193 nm2–197 nm2) 
throughout the MD simulation (Fig. 3D). Altogether, we can conclude 
that, among all the analyses performed on the F13-polyphenol com
plexes so far, Myricetin, Demethoxycurcumin and Ellagic Acid have 
maintained stable trend throughout the simulation which also compli
ment with the findings of docking analysis. 

3.5. All-atoms MD simulation in assessing mobility and flexibility of 
polyphenol bound F13 systems 

3.5.1. Flexibility/plasticity among the F13-polyphenol complexes 
As mentioned earlier, the RMSF profiles of the Cα-atoms in each 

system estimates the stability and plasticity of each MD simulated sys
tem as well as the role of each fluctuating residue in protein flexibility 
upon ligand binding. The average RMSF values for Myricetin, Matair
esinol, Demethoxycurcumin, Piceatannol, Curcumin, and Ellagic Acid- 
bound F13 complexes are 0.09 nm, 0.10 nm, 0.08 nm, 0.09 nm, 0.08 
nm and 0.09 nm respectively. We also observed a higher statistical re
sidual fluctuation of residues Cys394-Glu424 towards the C-terminal 
end with minimal residual fluctuations in the loop region from residue 

Table 1 
List of polyphenols used in this study with their docking scores, MM/GBSA 
binding free energy and amino acids forming important non-bonded contacts 
with AlphaFold2 modelled F13.  

Complex SP 
score 
(kcal/ 
mol) 

XP 
score 
(kcal/ 
mol) 

MM/ 
GBSA 
(kcal/ 
mol) 

Interaction 

Hydrogen 
Bonds 

Hydrophobic 
Interactions 

Myricetin − 6.71 − 8.40 − 36.56 Trp280, 
Glu424, 
Asn341, 
Asp134 

Met239, 
Leu423 

Matairesinol − 5.71 − 7.76 − 29.98 Asn240, 
Asn341 

Arg136, 
Val141, 
Trp280, 
Leu423 

Demethoxy- 
curcumin 

− 6.26 − 7.31 − 43.91 Ser137, 
Asn240, 
Trp280, 
Asn341, 
Ser130 

His325, 
Arg282, 
Leu423, 
Trp280, 
Val141 

Piceatannol − 6.00 − 7.30 − 38.82 Asn132, 
Asn240, 
Trp280, 
Asn341 

Leu423 

Curcumin − 5.47 − 5.92 − 31.89 Lys117, 
Asn240, 
Asn341 

Tyr48, Leu423, 
His325 

Ellagic Acid − 5.06 − 5.24 − 36.57 Trp280, 
Glu424, 
Asp134 

Trp280, 
His325, 
Val141 

Binding free energy of Matairesinol, Curcumin, Ellagic Acid, Demethox
ycurcumin, Piceatannol, and Myricetin attained as − 29.98 kcal/mol, − 31.89 
kcal/mol, − 36.57 kcal/mol, − 43.91 kcal/mol, − 38.82 kcal/mol, and − 36.56 
kcal/mol, XP scores − 7.76 kcal/mol, − 5.92 kcal/mol, − 5.24 kcal/mol, − 7.31 
kcal/mol, − 7.30 kcal/mol, and − 8.40 kcal/mol, respectively. These screened 
polyphenols have previously been reported to have antiviral activity by target
ing viral particles directly [21]. 
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Ile244-Phe254 (Fig. 4A). 
Hydrogen bonds and hydrophobic contacts are important for 

protein-ligand complexes [84] and increasing the number of hydro
phobic atoms can enhance the biological activity of a lead drug [85]. 
Intermolecular contact analysis can reveal differences between docked 
complexes and MD simulated systems, which may be due to structural 
rearrangements or ligand reorientation within the binding pocket of the 
protein. Table S4 enlists the key residues involved in forming important 
hydrophobic contacts as well as hydrogen bonds. Glu143, Asp134, 
Asn345, Ser321, Lys86, Lys117 and Tyr320 were identified as residues 
crucial for ligand recognition. The various non-bonded contacts 
including H-bonds formed between F13 and the screened plant-based 
polyphenols have been illustrated in Fig. 4B. Myricetin and Picea
tannol strongly binds to F13 in the binding pocket by forming an average 
of 4 hydrogen bonds per frame followed by Ellagic Acid, Demethox
ycurcumin, Curcumin and Matairesinol (~2–3 hydrogen bonds per 
frame). The hydrogen bond occupancies of donor and acceptor atoms of 
F13 and polyphenols are listed in Table S5. We observed that Glu143 
possesses the highest hydrogen bond occupancy of 97% in Myricetin 
complex followed by Glu424 (28.07%) in Piceatannol and Asp134 
(25.52) and Glu417 (12.74%) in Ellagic Acid. On the other hand, we 
noticed least percentage of hydrogen-bond occupancies in Demethox
ycurcumin, Curcumin and Matairesinol complexes. 

The B-factor/thermal fluctuation analysis of the top six polyphenols 

bound F13 complexes is consistent with the RMSF profile of F13-ligand 
complexes, showing high degree of fluctuation at the C-terminal region 
(Fig. 4C). 

3.5.2. Understanding the global motion of F13-polyphenol complexes 
The global motion of ligand-bound states can be captured by using 

the principal components (PCs) from the MD trajectories by diagonal
izing the covariance matrices of the main-chain atoms of the protein 
through the eigenvectors (EVs) or, the PCs and their eigenvalues [86, 
87]. A scatter plot was generated using the first two principal compo
nents (PC1 and PC2) obtained from PCA for each system, including 
Myricetin, Matairesinol, Demethoxycurcumin, Piceatannol, Curcumin 
and Ellagic Acid. The covariance matrices of the Cα-atoms revealed that 
trace values 24.58 nm2, 37.94 nm2, 21.76 nm2, 25.73 nm2, 18.74 nm2, 
and 26.62 nm2 for each system respectively. Curcumin, with least trace 
value followed by Demethoxycurcumin and Myricetin had fewer fluc
tuations in Cα-atoms in comparison with other systems, suggesting to
wards their more defined and stable conformation in the phase space as 
represented by PCA plot. The 2D projection of the first two eigenvectors 
in phase space supported the compactness of all polyphenols (Figs. S8A 
and B Supporting text). 

To understand the direction of movement captured by the eigen
vectors, porcupine plots were generated using the extreme projections 
on both PC1 and PC2 (Fig. 5). The direction of the arrow in main chain 

Fig. 2. Illustration of the superimposed view of top-ranked docked poses of polyphenols and the binding poses of polyphenols within the binding site of 
modelled F13.3-D interaction between F13 and the top six polyphenols (F13-Myricetin, F13-Matairesinol, F13-Demethoxycurcumin, F13-Piceatannol, F13-Cur
cumin, and F13-Ellagic Acid). 
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atom represents the direction of motion, while the length of the arrow 
characterizes the movement strength (Supporting Text). The N-terminal 
end and the larger loop in the C-terminal domain was found to 
contribute to the major movements observed in Matairesinol, Picea
tannol, Curcumin, and Ellagic Acid as indicated by larger cones in a cone 
plot. These results are consistent with the results of the RMSF analysis. 
Taking into consideration all the above-mentioned analyses, we can 
conclude that Myricetin and Demethoxycurcumin forms the most stable 
and compact complex with F13 possessing least fluctuation at the amino 
acid level. 

3.5.3. Structural heterogeneity among the F13-polyphenol complexes 
To understand the structural heterogeneity in the MD simulated 

ensembles, we implemented RMSD-based gmx cluster tool with a cut-off 
of 0.2 nm over the last 100 ns trajectories to generate structural en
sembles. Fig. 6A demonstrates the electrostatic surface potential map of 
the MD simulated F13-polyphenol complexes. The distribution of 
charges observed in the surface of the MD simulated F13 reveals that the 
polyphenols are buried inside a hydrophobic cavity formed by nega
tively charged residues. The structural superposition of the docked 
complexes with their respective cluster representatives obtained from 
clustering analysis have been displayed in Fig. 6 (B). The Cα-RMSD 
values for the protein-ligand complexes Myricetin, Matairesinol, 
Demethoxycurcumin, Piceatannol, Curcumin and Ellagic Acid are found 

to be 0.9 Å, 0.7 Å, 0.8 Å, 0.9 Å, 0.8 Å and 1.10 Å respectively. MD 
simulations revealed that the ligand binding orientation in the top 
cluster was slightly different from the docked state, but the overall 
ligand binding orientation remained relatively stable. We also observed 
the formation of β-strands in Tyr381-Tyr383 region in Myricetin and 
Ellagic Acid complexes, with formation of small 3–10 α-helices in re
gions Tyr107-Leu110 in Ellagic Acid and Gln209-Leu211 in Myricetin, 
Arg395-Leu397 in Myricetin, Matairesinol, Curcumin and Ellagic Acid 
complexes. The formation of β-strands can be observed in the loop in C- 
terminal region which has been observed to be a major contributor to
wards flexibility of the F13 protein structure (supported from the results 
of RMSF and PCA). These findings suggest that the F13-polyphenol 
complexes are stable during MD simulations and the binding orienta
tion of the ligand is maintained till 200 ns. 

VMD’s timeline viewer tool was used to analyse time-dependent 
changes in secondary structure elements of each F13 polyphenol com
plex system throughout the 200 ns MD simulation. Our analysis suggests 
that ligand interactions can alter conformational and structural changes 
in the protein (Fig. S9, supporting text). 

3.6. Binding free energy of F13-polyphenol complexes 

The quantitative understanding of the strength of any bio-molecular 
interaction involved in ligand recognition (in our case) or any catalytic 

Fig. 3. Box-whisker plot displaying backbone RMSD, Cα-RMSF profile, Rg and SASA of top six polyphenols bound with F13 over the time scale of 200 ns. 
(A) RMSD of backbone atoms of F13. (B) RMSF profiles of residues of F13 in complex with all top six polyphenols. (C) The compactness of top six F13-polyphenols 
bound states assessed by plotting the radius of gyration profile. (D) SASA plot for top six polyphenols bound with F13 during 200 ns MD. 
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process involves the use of diverse computational approaches such as 
free energy perturbation (FEP), thermodynamics integration (TI), linear 
interaction energies (LIE), molecular mechanics Poisson-Boltzmann 
surface area (MM/PBSA) and molecular mechanics Generalized Born 
surface area (MM/GBSA) approaches [55,88–94]. However, the use of 
simple scoring functions often ignores the contribution of important 
energy terms such as free energy of solvation. Therefore, the MM/PBSA 
approach has been used to compute the interaction energies and study 
biomolecular complexes. The binding free energy of each protein-ligand 
systems from the MD trajectories are computed using 200 snapshots 
through molecular mechanics based MM/PBSA method. The energetic 
terms contributing to the total binding free energy is summarized in 
(Table 2). 

It was observed that Curcumin, Demethoxycurcumin, Piceatannol 
and Myricetin complexes displayed higher binding free energy of 
− 48.53 ± 1.80 kJ/mol, − 64.86 ± 1.30 kJ/mol, − 49.44 ± 1.42 kJ/mol 
and − 35.50 ± 1.18 kJ/mol respectively. Among the energy compo
nents, van der Waals energy contributed mostly towards the binding 
process of polyphenols towards F13. The polar and apolar energetic 
contributions of these compounds towards binding free energy from the 
last 100 ns of equilibrated trajectories are depicted in Fig. S10. However, 
as binding free energy calculation does not reveal about the true 
entropic changes [95], per-residue decomposition analysis is conducted 
to understand the contributions of the critical or, ligand binding residues 
towards the binding process (Fig. 7). In all the ligand bound complexes 
Lys117, Glu143, Ser321 and Asn345 formed H-bonds, while, Trp280, 
Met239, His325, Val141 and Tyr346 contributed through pi-alkyl con
tacts. Most of the residues participating in ligand recognition contrib
uted towards negative free energy of the F13-ligand bound complexes. 

In this study, we performed a structure-based high-throughput vir
tual screening on 57 naturally available antiviral polyphenols that were 
published in the literature, against the AlphaFold2 modelled F13 pro
tein. The utility of state-of-the-art machine learning approach imple
mented in AlphaFold2 as well as all-atoms MD simulation elucidates the 
differential conformational states and mode of interaction of the F13- 

polyphenol complexes. Previous studies have shown the accuracy of 
protein backbone and side chain prediction of AlphaFold2 in active and 
inactive states, which could be a major limitation while studying the 
structural behaviour of the protein in any alternative conformation 
[96–99]. The antiviral activities of the diverse groups of polyphenols 
attract researches for their extensive study. Considering their stability, 
reactivity, synergism as well as bioavailability during their recovery, 
processing, storage and market applications are some of the important 
aspects that needs to be taken care of [100]. These polyphenols exert 
antiviral activities based on the nature of their interacting virus (DNA or 
RNA virus). In our study, we performed state-of-the-art all-atoms MD 
simulations on the top six screened polyphenols to get a clear vision on 
the mechanism of ligand recognition. Though we are confident about 
our results from the study, the use of 57 polyphenols with known anti
viral activity for virtual screening have limited our study to a small 
chemical space. The significance of experimental research and the 
valuable insights it can yield in the field of biological science, is well 
known. However, due to various constraints and limitations of re
sources, our study is solely based on computational approaches. The 
accuracy and efficacy of our screened polyphenols against F13 protein of 
MPXV can be further achieved through in vivo and in vitro experiments. 

4. Conclusion 

The major envelop protein F13 plays a crucial role in viral entry and 
formation of EEV, making it a promising target for drugs to treat 
poxvirus infections. To understand the dynamics and differential modes 
of interaction of plant-based antiviral polyphenols and F13, the imple
mentation of the state-of-the-art machine learning based AlphaFold2 in 
structure prediction succeeds in modelling a high precision F13 model in 
its apo state. Keen observation of the modelled protein reveals its 
resemblance with to the members of Phospholipase-D family, with a 
highly conserved HxKxxxxD (HKD) motif responsible for self- 
dimerization. The predicted structure of F13 adopts β-α-β-α-β sand
wich fold, which is composed of two distinct domains connected by a 

Fig. 4. The average B-factor/thermal-fluctuation profile of MD simulation and dynamics of intermolecular hydrogen bonds of the F13-ligand complexes 
over a timescale of 200 ns. (A) The average RMSF profile of F13-polyphenol complexes. (B) The superimposed F13 bounded top six polyphenols complex B-factor/ 
thermal-fluctuation profile shown in putty format (thicker region with high degree of mobility/flexibility). (C) Intermolecular H-bond dynamics in top six F13- 
polyphenol complexes during 200 ns MD simulation. 
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Fig. 5. Porcupine plot displaying the movement of main-chain atoms of each system corresponds to PC1 and PC2 obtained by performing PCA on MD 
trajectories. (A) Porcupine plot displaying the motion of top six polyphenol complex with modelled protein F13 obtained from PC1. (B) Porcupine plot displaying 
the motion of top six polyphenol complex with modelled protein F13 obtained from PC2. 
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flexible loop. 
The intermolecular contact analysis based on molecular docking and 

all-atoms MD simulations reveals that, Myricetin and Demethox
ycurcumin are the top two plant-based antiviral polyphenols that 
consistently interacts with the binding site residues of modelled F13 by 
forming strong hydrogen bonds as well as hydrophobic contacts. The 
above-mentioned findings perfectly corroborate with binding free en
ergy calculation. 

In the MD simulated polyphenol-F13 complexes, we have observed 
that minor structural changes in the protein structure have resulted from 
the high degree of fluctuation observed in the loop of the C-terminal 
domain. However, this fluctuation might have occurred due to the low 
pLDDT score acquired by the region during model prediction. 

Based on intermolecular contact analyses and molecular mechanics 
based binding free energy calculations, we have identified Glu143, 
Asp134, Asn345, Ser321, Lys86, Lys117 and Tyr320 as putative active 
site residues involved in ligand recognition and binding process. Our 
docking and MD simulations suggest that Myricetin and Demethox
ycurcumin could be the promising polyphenols for developing antivirals 
against MPXV by inhibiting F13. 

However, further in vitro and in vivo investigations are needed to 
confirm these results. Our study is the first attempt to understand the 
dynamics of F13 and plant-based polyphenols that exhibit antiviral 
properties, and further experimental validation is required to develop 
effective therapeutics against MPXV. 

Fig. 6. Structural superimposition of the top ranked cluster representatives of F13 bound polyphenol complexes obtained from the clustering analysis and 
their electrostatic surface potential map. (A) Distribution of charges noticed in the electrostatic surface potential map of the superposed MD simulated F13- 
polyphenol complexes. (B) Structural heterogeneity observed in the superposed structures of the docked as well as MD simulated F13-polyphenol complexes. 

Table 2 
MM/PBSA binding free energy of the F13-polyphenol complexes computed using 200 snapshots extracted at equal interval of time from the last 100 ns trajectories of 
each system.  

Complex Vander Waal energy (KJ/mol) Electrostatic energy (KJ/mol) Polar solvation energy (KJ/mol) SASA energy (KJ/mol) Binding energy (KJ/mol) 

Myricetin − 109.01 ± 0.96 − 103.50 ± 1.75 191.29 ± 2.41 − 14.29 ± 0.07 − 35.50 ± 1.18 
Matairesinol − 24.84 ± 2.11 − 4.36 ± 0.69 22.17 ± 4.05 − 3.32 ± 0.27 − 10.23 ± 4.02 
Demethoxycurcumin − 146.01 ± 2.13 − 54.17 ± 1.27 153.88 ± 2.72 − 18.51 ± 0.24 − 64.86 ± 1.30 
Piceatannol − 121.55 ± 0.78 − 36.46 ± 1.60 123.10 ± 2.13 − 14.63 ± 0.06 − 49.44 ± 1.42 
Curcumin − 88.32 ± 2.58 − 20.86 ± 1.30 72.79 ± 3.49 − 12.11 ± 0.34 − 48.53 ± 1.80 
Ellagic Acid − 79.53 ± 1.62 − 35.96 ± 2.68 97.47 ± 3.15 − 10.03 ± 0.12 − 28.25 ± 1.60  

Fig. 7. Per-residue decomposition analysis displaying the energetic contribu
tion of important amino acids towards binding free energy of F13- 
polyphenol complexes. 
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