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ABSTRACT

Coronaviruses, which have been known to cause diseases in animals since the 1930s, utilize 
cellular components during their replication cycle. Lipids play important roles in viral 
infection, as coronaviruses target cellular lipids and lipid metabolism to modify their host cells 
to become an optimal environment for viral replication. Therefore, lipids can be considered as 
potential targets for the development of antiviral agents. This review provides an overview of 
the roles of cellular lipids in different stages of the life cycle of coronaviruses. 
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Introduction 

Coronaviruses are a group of viruses that belong to the Coronaviridae family. This viral family 
is subdivided into 4 genera, including alpha-coronaviruses, beta-coronaviruses, gamma-
coronaviruses, and delta-coronaviruses [1]. Human coronaviruses (HCoVs) belong to the 
alpha-coronavirus or beta-coronavirus genera. Although HCoVs generally cause mild to severe 
respiratory diseases [2], some coronaviruses have evolved to cross the species barrier [3], 
giving rise to diseases such as severe acute respiratory syndrome coronavirus (SARS-CoV) and 
Middle East respiratory syndrome coronavirus (MERS-CoV), which caused viral outbreaks in 
2003 and 2012, respectively [4,5]. 

In late December 2019, a new member of Coronaviridae  family, named SARS-CoV-2, was 
discovered in China [6]. SARS-CoV-2, like SARS-CoV and MERS-CoV, is a zoonotic virus that has 
crossed the species barrier. Thus, SARS-CoV-2 is an emerging virus, and it causes coronavirus 
disease 2019 (COVID-19) [7,8]. As of September 14, 2021, the World Health Organization has 
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reported more than 200 million confirmed cases of 
COVID-19, including more than 4 million deaths [9]. 

Coronaviruses have a positive-strand RNA enclosed in 
a protein shell that is surrounded by a host cell-derived 
membrane [10]. Coronaviruses cross the host cell membrane 
at least twice in the cell entry and exit stages of viral particles 
during the replication cycle. Replication of coronaviruses 
depends on their interactions with cellular lipids, which  
are essential for the successful life cycle of coronaviruses 
[7,11].  

Cellular lipids play key roles in viral infections, particularly 
during the entry process and virion maturation. Lipid 
signaling and its synthesis machinery in host cells can be 
remodeled via proteins encoded by viruses [12]. Moreover, 
viruses alter cellular metabolism to promote proficient viral 
replication [13]. In this paper, we review the interactions 
of coronaviruses with the cellular lipids required for an 
effective viral life cycle. 

Lipids and Viral Infections 

Viruses have complex interactions with cells. According to 
recent studies, cellular lipids play important roles in the 
viral life cycle, such as viral-to-host cell membrane fusion, 
viral replication, and endocytosis and exocytosis [12]. Viral 
entry involves specific lipids, which vary among viruses 
[14]. The combination of lipids and proteins in the host cell 
membrane and the viral envelope plays a key role in viral 
infections [10]. In fact, viruses can alter the metabolism and 
signaling of lipids in host cells in order to facilitate their 
replication, and such viral interactions with cellular lipids 
have shown to be different among viruses [15]. The pathways 
of cellular lipid biogenesis are among the most important 
cellular pathways hijacked by viruses. Lipids play a crucial 
role in the formation of viral replication organelles, as well 
as energy production for viral replication. Lipids are also 
important for regulating the proper cellular arrangement of 
viral proteins and the assembly, trafficking, and release of 
viral particles [16–18]. 

Lipid rafts are specialized microdomains (10 to 200 nm) 
of the cell membrane that are found on the membranes of 
endosomes and exosomes in the endoplasmic reticulum 
(ER) and the Golgi complex [19]. These microdomains 
contain sphingolipids, cholesterol, various receptors, and 
other proteins [20]. Lipid rafts play important roles in viral 
infection, for instance in endocytosis or during different 
stages of pathogenesis [21]. A vital component of lipid rafts 
is cholesterol, which plays a major role in viral entry and 
release for enveloped viruses such as coronaviruses and 
influenza virus [22]. The major surface glycoproteins of 

influenza virus, hemagglutinin (HA) and neuraminidase, 
are associated with lipid rafts, and depletion of cholesterol 
by methyl-β-cyclodextrin (MβCD) can reduce the transport 
of HA from the trans-Golgi network to the cell membrane 
[23]. The requirement of cholesterol for viral pathogenesis 
may differ in respiratory RNA viruses, and the depletion of 
cholesterol by MβCD is involved in the increased budding 
of inf luenza A virus (IAV) from the host cells during 
pathogenesis [24]. In fact, cholesterol is essential as a vital 
component for sustaining IAV and respiratory syncytial 
virus (RSV) infectivity [25]. 

In a previous study, pretreatment of influenza virions 
with MβCD efficiently depleted cholesterol in the envelope 
and considerably reduced the infectivity of the virus in a 
dose-dependent manner [15]. In addition, the depletion 
of cholesterol by MβCD decreased RSV infection and 
interrupted lipid raft microdomains, implying that cholesterol 
in lipid rafts is essential for the interactions of viral proteins 
during infection [25]. According to prior research, human 
rhinovirus serotype 2 can enter into the cell through clathrin-
mediated endocytosis, and the depletion of cholesterol by 
MβCD can prevent clathrin-mediated endocytosis and 
decrease viral entry [26]. Some studies showed that 
ceramide-rich platforms play key roles in rhinovirus 
infections. This suggests a novel target to treat rhinovirus 
infections [27]. For hepatitis C virus (HCV), it is clear that 
the utilization of very low-density lipoprotein secretion 
machinery during HCV infection supports the exit of the 
virus from its cellular host [28]. 

The Genome of Coronaviruses 

Coronaviruses are enveloped positive-stranded RNA viruses 
with a genome size of about 27 to 30 kb, 5′-cap structure, 
and 3′-poly-A tail [29]. The genome of coronaviruses 
contains several segments—including untranslated regions 
(UTRs), the spike (S) protein, the envelope (E) protein, the 
membrane (M) protein, and the nucleocapsid (N) protein—
organized as follows: 5′-leader-UTR-replicase-S-E-M-
N-3′UTR-poly(A) tail [30,31]. There are 2 overlapping open 
reading frames (ORFs), referred to as ORF1a and ORF1b, in the 
replicase gene. These ORFs encode 2 polypeptides (pp1a and 
pp1ab), which are processed into 16 nonstructural proteins 
by viral-encoded enzymes including 3-chymotrypsin-like 
protease or main protease and 1 or 2 papain-like proteases 
(Figure 1) [31,32]. 

Structural Proteins of Coronaviruses 

The surface spike proteins of coronaviruses are formed by 

https://doi.org/10.24171/j.phrp.2021.0153

Milad Zandi et al.

279



trimers of S molecules. The S protein is a class I viral fusion 
protein that plays a major role in viral binding to cellular 
receptors in order to enter the host cell [33]. The S protein 
undergoes modification by N-linked glycosylation in the 
ER [34]. The S glycoprotein contains 2 subunits (S1 and 
S2). The S1 subunit is variable, whereas the S2 subunit is 
conserved among diverse isolates of a single coronavirus. 
The S1 subunit is responsible for the binding of the virus 
to the cell receptor, whereas S2 mediates the fusion of the 
viral envelope and cellular membranes [35]. The M protein, 
which is considered to be the most abundant structural 
protein in coronaviruses, is N-glycosylated [36], while some 
beta-coronaviruses are modified by O-linked glycosylation 
[37]. The glycosylation of the M protein inf luences the 
interferon-inducing ability of some coronaviruses and 
also shapes the virion envelope [36]. The E protein is the 
smallest protein and is found in virions in limited amounts. 
Furthermore, the E protein is essential for viral infectivity 
and also plays a key role in virion assembly [38]. Some 
studies have shown that the E protein plays a role in viral 
pathogenesis [39]. The N protein, which is the only protein 

located in the ribonucleoprotein core, is made up of 3 
domains, including the N-terminal domain and C-terminal 
domain, which are separated by an intrinsically disordered 
central region. The N protein is a phosphoprotein that binds 
to the RNA genome and is involved in the formation of the 
nucleocapsid [40]. In addition, HA esterase as a structural 
protein is encoded by beta-coronaviruses of lineage A, such 
as OC43-CoV. During viral infection, viruses can alter host 
cell metabolism and reprogram it to use cellular factors [13]. 

Lipids and Coronavirus Entry 

To initiate infection, coronaviruses need to enter into the 
cell through interactions between the viral spike proteins 
and the cellular receptors located on the surface of the 
host cell [33]. The cellular plasma membrane contains 
subdomains of lipid rafts composed of cholesterol and 
glycosphingolipids [41]. SARS-CoV-2 and SARS-CoV use 
the angiotensin-converting enzyme-2 (ACE2) receptor for 
cellular entry [42]. Interactions between the ACE2 receptor 
and the spike protein are facilitated by cholesterol-rich 

Figure 1. Replication of coronaviruses. 
S, spike; E, envelope; M, membrane; N, nucleocapsid; 
ER, endoplasmic reticulum.
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microdomains. Studies have shown that the depletion of 
cholesterol by MβCD in cells expressing ACE2 leads to a 
decrease in binding viral S glycoproteins in 50% of SARS-
CoV infections. Therefore, MβCD affects cholesterol levels 
and ACE2 receptor expression. The depletion of cholesterol 
by MβCD also prevents the attachment of coronaviruses to 
the cell membrane [43]. Human coronavirus 229E (HCoV-
229E) binds to the cellular receptor (aminopeptidase N or 
cluster of differentiation 13 [CD13]) for cellular infection, 
CD13 localized in lipid rafts, so the depletion of cholesterol 
by MβCD decreases the likelihood of HCoV-229E infection 
and prevents viral entry into host cells [44]. According to in 
vitro  experiments, cholesterol supplementation enhances 
the propensity of the virus to fuse with the cell membrane. 
Clathrins, caveolins, and dynamin in lipid rafts play an 
important role in viral entry [43]. Some coronaviruses 
utilize lipid rafts for the cellular entry process. It has been 
reported that lipid rafts are required in the attachment 
process during infectious bronchitis virus infection [45], 
and another study also showed that lipid rafts are required 

for the entry of SARS-CoV into Vero E6 cells [46]. 
Cholesterol in the plasma membrane of target cells is also 

important for SARS-CoV infection [47]. It has been reported 
that drugs causing cholesterol depletion can inhibit the 
entry of murine hepatitis virus and HCoV-229E into host 
cells [48]. Since coronaviruses are enveloped particles, 
fusion with the host cell membrane is necessary before 
the internalization of viral particles into cells [49], SARS-
CoV uses various endocytic routes including clathrin-
mediated dependent, lipid raft-dependent, and clathrin- 
and caveolae-independent endocytosis [50]. However, 
HCoVs such as human coronavirus OC43 (HCoV-OC43) 
use caveolae-dependent endocytosis as the entry pathway 
[51] and feline infectious peritonitis virus uses clathrin-
independent and caveolin-independent endocytosis to 
enter the host cell (Table 1) [33,44–46,48–60]. Therefore, it is 
necessary to investigate the entry pathways of coronaviruses 
and the mechanisms of those pathways in order to design 
selective inhibitors for the entry stage of coronaviruses. 

Table 1. Lipid interactions in the coronavirus life cycle

Virus Receptor
Steps of the  
coronavirus  
life cycle

Lipid interactions Endocytic pathway References

CCoV serotype 2 APN Entry Plasma membrane 
cholesterol

Unknown [54,55]

MHV CEACAM1 Entry Lipid rafts Clathrin-mediated endocytosis [33,48,49]
FCoV serotype 2 APN Entry Cholesterol Clathrin- and caveolae-

independent pathway that 
depends strongly on dynamin

[33,54]

PEDV APN Entry Cholesterol, lipid rafts Clathrin- and caveolae-mediated 
endocytosis pathways

[33,56]

TGEV APN Entry Cholesterol The route of entry is not yet 
known in terms of which 
endocytosis pathway occurs 
(clathrin- or non-clathrin-
dependent mechanism or both)

[57,58]

IBV Not recognized Entry Lipid rafts Macropinocytosis [45]
HCoV-229E APN 1. Entry 1. Cholesterol Caveolae-dependent endocytic [44,49,53,59]

2. Replication 2. LA and AA
HCoV-OC43 HLA class I, sialic 

acids, Neu5,9
Entry Cholesterol Caveolae- dependent 

endocytosis
[33,51]

MERS-CoV DPP4 or CD26 Replication LA and AA Clathrin-mediated endocytosis [51,53,60]
SARS-CoV ACE2 Entry Lipid rafts Clathrin- and caveolae-

independent mechanism; may 
involve a clathrin-mediated 
or clathrin-dependent 
mechanism

[46,50]

CCoV, canine coronavirus; APN, aminopeptidase N; MHV, murine hepatitis virus; CEACAM1, carcinoembryonic antigen-related cell adhesion molecule 
1; FCoV, feline coronavirus; PEDV, porcine epidemic diarrhea virus; TGEV, transmissible gastroenteritis virus; IBV, infectious bronchitis virus; HCoV-229E, 
human coronavirus 229E; LA, linoleic acid; AA, arachidonic acid; HCoV-OC43, human coronavirus OC43; HLA, human leukocyte antigen; MERS-CoV, Middle 
East respiratory syndrome coronavirus; DPP4, dipeptidyl peptidase 4; SARS-CoV, severe acute respiratory syndrome coronavirus; ACE2, angiotensin-
converting enzyme-2.
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Lipids and Proliferation of Coronaviruses 

The replication of most positive-strand RNA viruses occurs 
in the cytoplasm of the host cell. These viruses induce 
the formation of subcellular membranes known as virus 
factories or viroplasm, where they can efficiently replicate, 
recruit host components, and escape from the defense 
mechanisms of host cells [61,62]. 

Depending on the viral family and genus, these remodeled 
intracellular membranes may originate from various 
organelles, including the ER, late endosomes/lysosomes, 
or the mitochondrial outer membrane. Positive-sense 
RNA viruses induce the formation of 2 types of vesicles: (1) 
spherules, which are generated by viruses in the Togaviridae, 
Bromoviridae , and Nodaviridae  families; and (2) double-
membrane vesicles (DMVs), generated by the Coronaviridae, 
Arteriviridae, and Picornaviridae families [63,64]. 

Although the role of DMVs has not been fully clarified, 
they may act as autophagosomes in autophagy. The virus 
uses DMVs to protect against host antiviral responses 
or in viral replication [65]. DMV formation requires both 
viral and host factors. In coronaviruses, the nonstructural 
proteins nsp3, nsp4, and nsp6, which contain predicted 
transmembrane domains, play an important role in DMV 
biogenesis [66]. 

The replication process of coronaviruses that occurs in 
the cytoplasm of the infected host cells is similar to that 
of other positive-strand RNA viruses and is associated 
with intracellular lipid membranes derived from various 
organelles. Moreover, coronaviruses can also utilize cellular 
lipids for their replication, and thus the replication of 
viruses induces cellular membrane remodeling [67]. HCoV-
229E infection can rearrange the cellular lipid profile, and 
lysophosphatidylcholine, lysophosphatidylethanolamine, 
and fatty acids are upregulated after infection with HCoV-
229E. However, HCoV-229E replication is suppressed 
by exogenous supplementation of linoleic acid (LA) or 
arachidonic acid (AA) in infected cells. LA and AA have potent 
modulatory effects on MERS-CoV infection and replication 
of HCoV-229E [53]. 

The nonstructural proteins nsp3, nsp4, and nsp6 facilitate 
the formation of replication/transcription complexes 
by inducing the formation of DMVs [68]. Some cellular 
enzymes such as cytosolic phospholipase A2α are involved 
in the formation of DMVs, which take part in the replication 
of coronaviruses [69]. As described above, the development 
of new inhibitors could play a strategic role in preventing 
virus transmission from infected individuals to the healthy 
population. 

Lipid Pathways as Potential Therapeutic 
Targets in HCoV Infections 

Since lipids play vital roles in the viral life cycle, using drugs 
that can target lipid metabolism may therefore interfere 
with infections of SARS-CoV-2 and other coronaviruses [70]. 
Phytosterols can affect viral infection by decreasing the 
levels of cholesterol in cell membrane [71]. In this regard, 
umifenovir and chloroquine are antiviral drugs that inhibit 
the process of endocytosis [72]. The mechanism of actions 
of these antiviral drugs suggests the significance of the viral 
membrane for developing potent drugs. Statins can reduce 
cholesterol levels and disrupt lipid rafts, thereby inhibiting 
coronavirus infection [73]. 

Conclusion 

Overall, the replication process of coronaviruses relies 
on cellular lipids, and these viruses alter the cellular 
lipid profile. Coronaviruses can stimulate membrane 
lipid remodeling in host cells and utilize cellular lipids to 
form viral particles or viral replication complexes, which 
are involved in the replication and infection process of 
coronaviruses. In conclusion, the study of cellular lipids and 
remodeling of lipid metabolism in coronavirus infections 
provides a good background for the development of antiviral 
drugs and vaccines.  
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