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Background. Type 2 diabetes mellitus (T2DM) is characterized by chronic low-grade inflammation, showing an increasing trend.
The infiltration of immune cells into adipose tissue has been shown to be an important pathogenic cause of T2DM. The purpose of
this study is to use the relevant database to identify some abnormally expressed or dysfunctional genes related to diabetes from the
perspective of immune infiltration. Methods. Weighted gene coexpression network analysis (WGCNA) was employed to
systematically identify the coexpressed gene modules and hub genes associated with T2DM development based on a
microarray dataset (GSE23561) from the Gene Expression Omnibus (GEO) database. The key genes in modules highly related
to clinical features were calculated and screened by using R software, and their participation in T2DM was determined by gene
enrichment analysis. The mRNA levels of CSF1R, H2AFV, LCK, and TLR9 in pre-T2DM mice and normal wild-type mice
were detected by WGCNA screening and real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR).
Results. We constructed 14 coexpressed gene modules, and the brown module was shown to be significantly related to T2DM.
Through verification of the protein-protein interaction (PPI) network, four upregulated hub genes, CSF1R, H2AFV, LCK, and
TLR9, were screened from the brown module and successfully distinguishedT2DM patients from healthy people. These hub
genes may be used as biomarkers and important indicators for patient diagnosis. Enrichment analysis showed that these hub
genes were highly associated with IL-6-related inflammatory metabolism, immune regulation, and immune cell infiltration.
Finally, we verified the hub genes CSF1R, LCK, and TLR9 in a T2DM animal model and found that their mRNA levels were
significantly higher in animals with T2DM than in control group mice (NC). Conclusions. In summary, our results suggest that
these hub genes (CSF1R, LCK, and TLR9) can serve as biomarkers and immunotherapeutic targets for T2DM.

1. Introduction

Type 2 diabetes mellitus (T2DM) is an endocrine disease
characterized by disorders of glucose, lipid, and protein
metabolism [1]. According to the latest report from the Dia-
betes Atlas of the International Diabetes Federation (IDF),
approximately 463 million diabetic patients (20-79 years
old) existed worldwide in 2019, of which 116.4 million were
in China, ranking first in the world [2]. It is estimated that
by 2045, the number of people with diabetes will reach 702
million [3, 4]. T2DM has high morbidity and mortality rates
as well as a high economic burden, and exploring the levels
of genes associated with the occurrence and development

of T2DM will provide important clues and strategies for
early diagnosis and targeted therapies.

T2DM animals and patients have extremely active
immune responses, especially the accumulation of many
types of immune and inflammatory cells in visceral adipose
tissue, which further reduces the body’s sensitivity to insulin
[5]. As classic immune cells, macrophages participate in
inflammation in the body and in the progression of diabetes
[6]. Studies have shown that pathogenic CD4+ and CD8+ T
cells and CD11c+ M1 macrophages lead to the inflammatory
infiltration and immune responses of macrophages, which in
turn aggravate adipocyte apoptosis and peripheral insulin
resistance [7, 8].
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B and T cell infiltration is also essential for the inflam-
mation of obesity-related adipose tissue [9, 10]. The infiltra-
tion of CD4+ immune cells eventually leads to the
transformation of anti-inflammatory Tregs into proinflam-
matory Th1/Th17 cells, thus enhancing the proinflamma-
tory function of macrophages and B cells in obesity-related
T2DM [11–13]. At the same time, dendritic cells (DCs)
stimulate the inflammatory circulation by regulating proin-
flammatory CD4+ T cells to initiate and regulate the recruit-
ment of macrophages in adipose tissue [14]. In the adipose
tissues of obese subjects, CD8+ T cells are activated to secrete
the proinflammatory cytokine interferon-γ, and CD8+ T
cells in turn promote the recruitment and activation of mac-
rophages in this tissue [15]. Visceral adipose tissue is the key

site of immune cell attack in subjects with T2DM, and a
variety of immune cells cooperate with each other to activate
the immune system and secrete a large number of proin-
flammatory cytokines, resulting in the body becoming insen-
sitive to insulin [16]. Therefore, we propose that some key
genes that affect the progression of T2DM are also abnor-
mally expressed in immune cells.

With the rapid development of bioinformatics technolo-
gies, many tools have been developed to identify biomarkers
[17–19]. Weighted correlation network analysis (WGCNA)
is a systems biology method to describe the correlation pat-
terns between genes across microarray samples, which is
used to find highly related gene modules and calculate mod-
ule membership to identify candidate biomarkers or

Table 1: PCR primers for quantitative real-time PCR.

Gene Primer sequence (5′→ 3′)
CSF1R CCTGAAGGTGGCTGTGAAGATG GCTCCCAGAAGGTTGACGATG

H2AFV GGAGTCAGATTAAAGGA TCAAGGCATCAGGTAAGG

LCK CACGGATGACAGCTCTGAAA ATGGAGAACGGGAGCCTAGT

TLR9 ATGGACGGGAACTGCTACTAC CATTGGTGTGGGTGATGCTTT

GAPDH GATACTGCACAGACCCCTCCA GCAGTTCCGGTCATTGAGGTA
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Figure 1: Clustering tree and heatmap of the intercepted samples.
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therapeutic targets [20]. This algorithm has been widely used
to identify biomarkers at the transcriptional level [21–23]. In
this study, microarray data from public databases were sub-
jected to WGCNA, and a coexpression network was con-
structed to screen differential genes between patients with
T2DM and healthy people. Finally, the expression levels of
the hub genes were verified in an animal model of T2DM.
The results showed that the mRNA levels of CSF1R, LCK,
and TLR9 in the pre-T2DM group were higher than those
in the control group (NC).

2. Materials and Methods

2.1. Gene Data and Processing. One T2DM expression pro-
file dataset was acquired from the Gene Expression Omnibus

(GEO) database. Dataset GSE23561 was chosen for the
selection of T2DM-related modules and genes and indepen-
dently verified by animal experiments.

This dataset contained 17 groups of transcriptome data,
which were used to construct a WGCNA coexpression net-
work and to explore the differences in T2DM-related molec-
ular mechanisms.

2.2. Construction of Weighted Gene Coexpression Networks.
Using the above database to construct a gene coexpression
network with R software, we identified key gene modules,
explored the correlations between the gene modules and
the disease phenotype, and then determined the hub genes
in key modules. A coexpression network of 5000 genes was
constructed with the WGCNA-R software package, and 7
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Figure 2: Construction of the gene coexpression network: (a) analysis of the soft threshold power (β) from 1 to 20; (b) all genes are divided
into 14 modules with different colors.

Table 2: Modules and number of genes in each module.

Brown 2316 Cyan 156 Dark green 62 Dark red 82 Dark turquoise 55

Green 438 Greenish yellow 230 Gray 2 Light cyan 153 Light green 114

Midnight blue 154 Purple 242 Tan 563 Turquoise 433
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Figure 3: Continued.
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was used as the soft threshold for the network. The weighted
adjacency matrix was transformed into a topological overlap
matrix (TOM) to estimate the network connectivity, and the
hierarchical clustering method was used to construct the
clustering tree from the TOM matrix. Then, all genes were
classified according to the weighted coefficients, similar
genes were divided into one module, and 5000 genes were
successfully divided into 14 modules. The different colors
represent the different modules, which are displayed on dif-
ferent branches of the cluster tree.

2.3. Identification of Key Modules and Hub Genes. First, the
module-trait relationship diagram was constructed to repre-
sent the Pearson correlations between the gene modules and
the disease phenotype. Then, the module most correlated
with the T2DM phenotype was determined by the coeffi-
cient. Finally, the regions with a modulemembership ðMM
Þ > 0:8 and a gene significance ðGSÞ score > 0:5 were
screened to determine the hub genes in the key modules.

We used an interactive gene search tool (STRING; https://
string-db.org/) to construct the protein-protein interaction
network [24] and Cytoscape (https://cytoscape.org/) to pres-
ent the central node of the network node connectivity > 15
[25].

2.4. Functional Enrichment Analysis of Gene Modules. To
determine the biological functions and signaling pathways
associated with the occurrence and development of T2DM,
annotation, visualization, and GO analyses were carried
out using the Metascape database (https://www.metascape
.org) [26]. A minimumoverlap ≥ 3 and p ≤ 0:01 were con-
sidered to indicate statistical significance.

2.5. Relationships among Hub Genes, Immune Cell
Infiltration, and Metabolism. The effects of genes on
immune infiltration were evaluated. Single-sample gene set
enrichment analysis (ssGSEA) was used to quantify the
immune cell infiltration in each sample, and the Spearman
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Figure 3: Key modules and feature notes. (a) Heatmap showing that the brown module was associated with clinical features. (b) The top 20
enriched functions in the brown module are shown in the bar chart. The network diagram was constructed with each enrichment item as the
node and the node similarity as the edge.
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correlation coefficient analysis revealed the correlations
between genes and immune cells. At the same time, the
effects of the genes on metabolism were evaluated. The cor-
relations between gene expression and metabolic pathways
were assessed by Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis.

2.6. Gene Set Variation Analysis. GSVA is a nonparametric
and unsupervised method for evaluating transcriptome gene
enrichment. By comprehensively scoring the genes of inter-
est, the changes in the gene level are transformed into
changes in the pathway level, and the biological functions
of the gene is then determined. In this study, the gene set
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Figure 4: Identification of hub genes. (a) Scatter plot of brown module genes. Each brown dot represents a gene, and the dots in the red box
represent the genes with a modulemembership > 0:8 and a gene significance score > 0:5. The genes in the red region group are shown in the
upper right corner. (b) GeneMANIA network construction. As shown in the figure, the different functions of each gene are represented by
different colors in each node.
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Figure 5: Correlations between hub genes and the profiles of immune infiltration and metabolic pathways. (a) Correlation map of the hub
genes with 20 types of immune cells. Positive correlations are shown in red, and negative correlations are shown in blue. Shadow colors and
asterisks represent the values of the corresponding correlation coefficients. ∗p < 0:05, ∗∗p < 0:01. (b) The correlation map between hub genes
and multiple metabolic pathways. Positive correlations are shown in red, and negative correlations are shown in blue. The rectangular color
and asterisk represent the value of the corresponding correlation coefficient. ∗p < 0:05, ∗∗p < 0:01.
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was downloaded from the molecular signature database
(http://www.gsea-msigdb.org). The GSVA algorithm was
used to score each gene set and thereby evaluate potential
changes in the biological functions of different genes.

2.7. Establishment of the Pre-T2DM Model, Extraction of
Total RNA, and qRT-PCR. Male wild-type C57BL/6J (6-
weeks, 20-23 g) mice were purchased from Vital River Labo-
ratory Animal Technology (Beijing, China) and housed at a
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Figure 6: GSVA of the hub genes: (a) GSVA bar chart of CSF1R; (b) GSVA bar chart of H2AFV; (c) GSVA bar chart of LCK; (d) GSVA bar
chart of TLR9.
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constant temperature and humidity on a 12 h/12 h light/dark
cycle. After one week of adaptation, the mice were randomly
divided into two groups: the normal group (n = 10) and the
pre-T2DM group (n = 10). The mice in the normal group
were fed a routine diet, while the mice in the pre-T2DM
group were fed a 60% high-fat diet for 12 weeks to induce
visceral adipose tissue obesity, insulin resistance, and high
blood glucose levels.

After anesthesia, the epididymal adipose tissues of the
mice were removed and quickly preserved in liquid nitrogen.
Then, total RNA was extracted from the epididymal adipose
tissues with the TRIzol reagent (CWBIO, Beijing, China)
and reverse transcribed into cDNA with a reverse transcrip-
tion kit (Tiangen, Beijing, China). The TB Green Premix Ex
Taq II kit (TaKaRa, Dalian, China) was used for qPCR. The
selected primers were designed by TSINGKE (Qingdao,
China), and their sequences are shown in Table 1.

2.8. Statistical Analysis. Statistical analysis was carried out
with R software (version 3.6). The bilateral statistical test
was used, and p < 0:05 indicated statistical significance
[27]. All results are expressed as the mean ± standard
deviation. Animal experiment statistical analyses were per-
formed using Student’s t-test with Prism 8 software.

3. Results

3.1. Dendrogram and Trait Heatmap. The GSE23561 matrix
data were downloaded from the public Gene Expression
Omnibus (GEO) database. The transcriptional data of the
17 groups included the healthy control group (n = 9) and
the T2DM group (n = 8). These data were used to construct

a WGCNA coexpression network and to explore the differ-
ences in T2DM-related molecular mechanisms. The outlier
samples were deleted according to the results of the cluster-
ing tree (Figure 1).

3.2. Gene Coexpression Networks of T2DM. The top 5000
genes with the largest variance were selected by the
WGCNA-R software package and used to construct a coex-
pression network for analysis. To build a scale-free network,
one of the key factors in creating a WGCNA is the soft
threshold power. We selected β = 7 as the soft threshold
power (Figure 2(a)). We completed the network topology
analysis with a threshold power ranging from 1 to 20. When
the power value was equal to 7 (scale-free R2 = 0:9) [21], our
record showed a scale-free gene coexpression network with
complete module characteristics. The cluster tree structure
of the topology overlap matrix was constructed. The differ-
ent branches and colors of the cluster tree represent the dif-
ferent gene modules. The coexpression network of 5000
genes established by WGCNA was divided into 14 modules
for follow-up analysis (Figure 2(b)). Genes in the 14 coex-
pression modules ranging from 2 to 2316 are shown in
Table 2.

3.3. Identification of Key Modules and Enrichment Analysis.
Among the 14 modules, we calculated the correlation coeffi-
cient between each module and the phenotype to determine
the module most relevant to clinical characteristics. Among
them, both the brown module (R2 = 0:75, p = 9e − 04) and
the light blue module were highly correlated with T2DM
(R2 = 0:51, p = 0:04) (Figure 3(a)). The correlation coeffi-
cients between the other modules and T2DM were less than

2.5

2.0

1.5

1.0

0.5

0.0
Normal T2DM

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n
(fo

ld
 ch

an
ge

)

CSF1R

⁎

(a)

2.5

2.0

1.5

1.0

0.5

0.0
Normal T2DM

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n
(fo

ld
 ch

an
ge

)

LCK

⁎⁎

(b)

1.5

1.0

0.5

0.0
Normal T2DM

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n
(fo

ld
 ch

an
ge

)

H2AFV

(c)

2.5
3.0
3.5
4.0

2.0
1.5
1.0
0.5
0.0

Normal T2DM
Re

lat
iv

e m
RN

A
 ex

pr
es

sio
n

(fo
ld

 ch
an

ge
)

TLR9
⁎⁎

(d)

Figure 7: Verification of the hub genes. Total RNA was extracted from the epididymal adipose tissues of obese mice and wild-type control
mice for qRT-PCR analysis. The expression of CSF1R, H2AFV, LCK, and TLR9 in the mice (n = 3 per group). ∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001 versus the control. The data are presented as the mean ± SEM.
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0.5. Finally, we chose the brown module, which was most
correlated with T2DM, as the key module. Then, the genes
contained in the module were analyzed by using Metascape
to elucidate the associated biochemical pathways involved.
The 20 most abundant terms were related to immune activa-
tion and carbohydrate metabolism (Figure 3(b)).

3.4. Identification and Validation of Hub Genes and Network
Analysis. Because the brown module was the most correlated
with the diabetes phenotype and the most likely to partici-
pate in the occurrence and development of diabetes, it was
selected for further study. In addition, 890 key genes in the
brown module were screened according to their module
membership and gene significance values (Figure 4(a)). Fur-
thermore, in the PPI network, a connectivity > 15 was uti-
lized to identify multiple genes as central nodes, and
Cytoscape was used to visualize these results (Figure S1).
Finally, four genes (LCK, H2AFV, TLR9, and CSF1R) were
selected as hub genes. Furthermore, the relationships
between these hub genes and T2DM were assessed to
reveal their potential roles in T2DM. Then, to determine
the importance of the hub genes and analyze the network
in the corresponding module, we used GeneMANIA
(http://genemania.org/) to further verify and analyze the
identified hub genes. The network formed by the brown
module contained 24 key genes, including 4 central
dynamic genes and 20 peripheral predicted genes. A
frequent and extensive interaction network was
constructed according to the Pearson correlation scores
(Figure 4(b)). The relationships between these hub genes
and T2DM were further revealed to show the potential
roles of these key genes in T2DM.

3.5. Relationships of the Hub Gene Levels with Those of
Immune Cell Infiltration and Metabolism. The correlation
between key genes and the level of immune infiltration in
each patient was analyzed to explore the relationship
between key genes and the level of immune infiltration.
The results showed that all four hub genes were significantly
correlated with the degree of immune cell infiltration
(Figures 5(a)). For example, the expression of LCK was pos-
itively correlated with the levels of M1-like macrophage and
memory B cell infiltration. The expression of TLR9 was neg-
atively correlated with the infiltration of activated mono-
cytes and dendritic cells. Similar results were found for the
other hub genes. Thus, LCK, TLR9, CSF1R, and H2AFV
are suggested to play important roles in immune infiltration
in subjects with diabetes.

Because abnormal metabolism also plays an important
role in the progression of diabetes, we studied the expression
levels of key genes associated with metabolism in diabetes
and identified four hub genes closely related to the metabolic
process (Figure 5(b)). For example, the expression of CSF1R
was positively correlated with the levels of butanoate metab-
olism and folate biosynthesis, which can affect the metabo-
lism of intestinal microorganisms and induce immune
stress [28–31]. Similar results were found for the other three
hub genes. Thus, LCK, TLR9, CSF1R, and H2AFV are sug-

gested to play an important role in the metabolism of
patients with diabetes.

3.6. Molecular Characterization of Hub Genes. To further
explore the potential functions of the hub genes in diabetes,
we used their comprehensive scores for GSVA analysis, and
the samples were divided into CSF1R/H2AFV/LCK/
TLR9LOWand CSF1R/H2AFV/LCK/TLR9high groups. In
CSF1R samples with relatively high expression, multiple
pathways were enriched, such as myogenesis, IL6-JAK-
STAT3 signaling, PI3K-AKT signaling, and inflammatory
response, which were significantly associated with diabetic
inflammation (Figure 6(a)). Similarly, H2AFV was associ-
ated with adipogenesis and TNF-A signaling (Figure 6(b)),
but negative correlations were observed between mitotic
spindles and other pathways in the samples with relatively
low LCK expression (Figure 6(c)). Similarly, inflammation-
related pathways and glycolysis were enriched in the samples
with relatively high TLR9 expression (Figure 6(d)). GSVA
showed that CSF1R/H2AFV/LCK/TLR9 is associated with
various pathways related to diabetes.

3.7. Validation of the Hub Genes in Mice. We further proved
the reliability of the results by detecting the expression levels
of the hub genes in the epididymal adipose tissues of obese
mice by qRT-PCR. The results showed that the expression
levels of CSF1R, LCK, and TLR9 of the mice fed HFD for
12 weeks were increased compared with those of normal
mice. Generally, the qRT-PCR results obtained for the obese
mice were consistent with those of the analysis (Figure 7).

4. Discussion

Changes in immune cells induce a stress response, and
T2DM is a disease involving both immune and metabolic
pathways. Chronic low-grade inflammation of various
organs in the body can mediate the development of type 2
diabetes and further cause related complications and endan-
ger life [32, 33]. The factors affecting the pathogenesis of
T2DM have been widely discussed, revealing that the genes
associated with immune cell infiltration and carbohydrate
metabolism affect the degree of inflammation and the
dynamic balance of islet function, thereby playing an impor-
tant role in the onset and development of T2DM [5]. How-
ever, we herein used WGCNA to verify the effects of key
genes on immune cell infiltration in T2DM, and the func-
tions of immune cells were shown to be altered in patients
with T2DM [34]. Therefore, these hub genes may have
important clinical significance and serve as biomarkers or
therapeutic targets for research and prediction. Here, the
GSE23561 dataset, including a normal group (n = 9) and a
T2DM group (n = 8), was selected for bioinformatics analy-
sis. This study provides an effective and reliable coexpression
network that can potentially be used for T2DM research.

In this study, we analyzed the relationships between the
normal group and T2MD group via a module constructed
by a coexpression network. Then, four hub genes related to
the occurrence and development of diabetes were selected
from the brown module: CSF1R, H2AFV, LCK, and TLR9.
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At the same time, the patients were divided into an upregu-
lated T2DM group and a downregulated normal group, and
the functions of key genes were predicted by GSVA. Thus,
this study determined the effects of immune cell infiltration
and potential genes related to disease progression on
patients and provided a new perspective for studying dys-
function in patients with diabetes from the perspective of
immunity.

Among the four hub genes we screened, CSF1R is a
receptor for the colony-stimulating factor CSF1 and has
been shown to play an important role in many chronic met-
abolic diseases [35–39]. In our study, CSF1R was overex-
pressed in T2DM, and GSVA showed that CSF1R was
involved in myogenesis, inflammatory signaling pathways,
and adipogenesis. Studies have confirmed that the selective
ablation of NK cells expressing CSF1R can prevent obesity
and insulin resistance [35]. CSF1R signaling can also regu-
late the proliferation, differentiation, and function of macro-
phages such as microglia and participate in the regulation of
microglial homeostasis and inflammation [36]. The pharma-
cological inhibition of CSF1R is beneficial for subjects with
Alzheimer’s disease [37]. CSF1R also plays an important role
in the innate immune response, and CSFIR/CSF1 plays an
important nutritional role in kidney and muscle growth
and repair [39]. At the same time, our study results suggest
that the expression of CSF1R is related to different degrees
of immune cell infiltration. The results revealed a significant
relationship between the expression of CSF1R with both M1
macrophages and memory B cells.

LCK is a member of the Src family of protein tyrosine
kinases (PTKs) [40]. It is the first kinase activated down-
stream of the TCR signaling pathway and a key factor in ini-
tiating the TCR signaling pathway. It plays a key role in the
activation, development, and proliferation of T cells [41–43].
LCK is mainly expressed in T cells and NK cells, and it has a
special sequence that regulates the activity of kinases [44]. In
this study, we observed the enrichment effect of LCK on key
pathways related to diabetes, such as the PI3K signaling
pathway and the inflammatory response pathway. Singh
et al. found that LCK can bind to the C-terminus of CD4
or CD8 through N-terminal cystine to form an LCK-CD4/
CD8 complex, which induces the antigen-presenting cell-
mediated activation of CD4+ and CD8+ T cells [45]. In
human T lymphocytes, the activation of LCK components
can promote the secretion of IL-2 and activate the PI3K sig-
naling pathway, causing a series of inflammatory responses,
which is consistent with our results. In 2015, Gurzov et al.
reviewed the interactions between protein tyrosine phospha-
tase and Src kinases, such as LCK, and determined their
roles in autoimmune-mediated diabetes [46]. In the same
year, Patry et al. reported that the inhibition of LCK inhib-
ited T cell activation in patients with type 1 diabetes, sup-
porting the use of LCK inhibition in the treatment of type
1 diabetes [47]. We observed that the abovementioned
experimental results were consistent with our genetic analy-
sis, which provides a good strategy for exploring the rela-
tionship between the role of LCK in immunity and
diabetes. Finally, we speculate that the high expression of
LCK may lead to changes in the immune system, lead to

proinflammatory M1 macrophage infiltration, promote the
development of inflammation, and eventually lead to
chronic metabolic diseases.

Toll-like receptor 9 (TLR9), a member of the TLR fam-
ily, which recognizes single-stranded DNA containing
unmethylated CpG motifs, is mainly distributed on the
endoplasmic reticulum (ER) membranes of different
immune cells, such as macrophages, dendritic cells, B cells,
and T cells [48, 49]. TLR9 is also highly expressed in plasma
cell-like dendritic cells (pDCs), which is consistent with our
results. TLR9 is closely related to the expression of B cells
and DCs, and the expression of TLR9 is related to the degree
of immune infiltration. Nishimoto et al. reported that the
release of DNA (CfDNA) from free cells is caused by
obesity-related adipocyte degeneration, which leads to the
accumulation of macrophages in adipose tissue through
TLR9 [50]. Ghosh et al. demonstrated that, compared with
WT mice, TLR9-/- mice fed a HFD easily gained weight
and exhibited decreased glucose tolerance and insulin resis-
tance [51]. At the same time, GSVA of TLR9 revealed that
the high expression group was mainly associated with the
regulation of peroxisomes, inflammatory stress, glycolysis,
and islet β cells. TLR9 may lead to impaired glucose toler-
ance and islet dysfunction by affecting the glucose uptake
in diabetic adipose tissue and the malignant induction of
adipose tissue. It was also shown to promote the infiltration
of immune cell groups of memory B cells and dendritic cells.

By assessing immune cell infiltration in diabetes, we
identified four positively related immune cell types: memory
B cells, M1 macrophages, T cell follicle helper cells, and rest-
ing dendritic cells. In most T2DM patients, macrophages are
reportedly activated by LPS and differentiate into proinflam-
matory M1-like cell phenotypes, which stimulate the inflam-
matory response, leading to the development of chronic
inflammation [52]. Dendritic cells are reported to play a crit-
ical role in initiating and maintaining the immune response
in subjects with T1DM [53]. The other three negatively cor-
related immune cells were natural B cells, activated dendritic
cells, and monocytes. This result paves the way for further
exploring diabetes in the context of immunity, which is wor-
thy of in-depth exploration.

Finally, we analyzed the possible biological processes by
GSVA and found some activated pathways that were highly
correlated with immune activation, inflammation, glucose
and lipid metabolism, islet β cell disorder, interleukin-6 pro-
duction, fatty acid metabolism, and glycolysis. Therefore,
our results confirm that the infiltration of immune cells
and the development of inflammation may play key roles
in the progression of T2DM. We also found that some path-
ways related to the cell cycle and mitosis were inhibited,
which may indicate that patients with high expression are
at a higher risk for growth inhibition.

5. Conclusions

In summary, we used a publicly available GEO dataset to
perform WGCNA of immune cell infiltration in the context
of diabetes and systematically identified a module related to
clinical features and four hub genes (CSF1R, H2AFV, LCK,
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and TLR9) that may be associated with T2DM. Immune
infiltration and qPCR verification analyses showed that three
of these genes (CSF1R, LCK, and TLR9) may affect immune
cell infiltration and nutritional metabolism through a variety
of biological functions and pathways, thus affecting the pro-
gression of T2DM. Our findings will contribute to further
understanding the pathogenesis of T2DM and may provide
new insights into its immune pathogenesis.
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