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Abstract
Long non‐coding RNAs (lncRNAs), which competitively bind miRNAs to regulate tar‐
get mRNA expression in the competing endogenous RNAs (ceRNAs) network, have 
attracted increasing attention in breast cancer research. We aim to find more effective 
therapeutic targets and prognostic markers for breast cancer. LncRNA, mRNA and 
miRNA expression profiles of breast cancer were downloaded from TCGA database. 
We screened the top 5000 lncRNAs, top 5000 mRNAs and all miRNAs to perform 
weighted gene co‐expression network analysis. The correlation between modules 
and clinical information of breast cancer was identified by Pearson's correlation co‐
efficient. Based on the most relevant modules, we constructed a ceRNA network of 
breast cancer. Additionally, the standard Kaplan‐Meier univariate curve analysis was 
adopted to identify the prognosis of lncRNAs. Ultimately, a total of 23 and 5 mod‐
ules were generated in the lncRNAs/mRNAs and miRNAs co‐expression network, 
respectively. According to the Green module of lncRNAs/mRNAs and Blue module 
of miRNAs, our constructed ceRNA network consisted of 52 lncRNAs, 17miRNAs 
and 79 mRNAs. Through survival analysis, 5 lncRNAs (AL117190.1, COL4A2‐AS1, 
LINC00184, MEG3 and MIR22HG) were identified as crucial prognostic factors for 
patients with breast cancer. Taken together, we have identified five novel lncRNAs 
related to prognosis of breast cancer. Our study has contributed to the deeper under‐
standing of the molecular mechanism of breast cancer and provided novel insights 
into the use of breast cancer drugs and prognosis.
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1  | INTRODUC TION

Breast cancer, the most frequently diagnosed carcinoma, is the deadli‐
est form of cancer affecting women worldwide.1 According to the sta‐
tistics of the American Cancer Society, more than 268 600 new cases 
of invasive breast cancer will be diagnosed in 2019, and approximately 
41 760 death cases are expected.2 Currently, although multiple ther‐
apeutic measures are employed, such as chemotherapy, surgery, ra‐
diotherapy, endocrine therapy and targeted therapy,3 the majority of 
breast cancers remain incurable. This therefore highlights the urgent 
need for identifying the molecules that have an inhibitory role or facil‐
itating role in tumours, determining novel relevant treatment targets 
and further improving the treatment and prognosis of patients with 
breast cancer. Long non‐coding RNAs (lncRNAs) are a type of RNA 
that are over 200 nucleotides in length.4 Although they do not partic‐
ipate in protein coding, increasing evidence has demonstrated that ln‐
cRNAs are involved in the biological processes of cellular proliferation, 
apoptosis and differentiation.5,6 Furthermore, sufficient information 
has demonstrated that lncRNAs take part in the regulation of tumour 
progression as well as tumour biological behaviours through inter‐
actions with microRNAs (miRNAs) or messenger RNAs (mRNAs).7‐10 
The competing endogenous RNA (ceRNA) hypothesis proposed by 
Salmena et al have attracted increasing attention.11 This hypothesis 
has been supported by a large number of experiments. For example, 
a previous study found that lncRNA‐related ceRNAs play a key role in 
biological processes of glioblastomas.12 Additionally, Ning et.al found 
that through competing with miR‐331‐3p, the lncRNA HOTAIR, as 
a ceRNA, could induce and activate human epithelial growth factor 
receptor 2 (HER2) cell signalling networks.13 Nevertheless, little is 
known about the role of ceRNA in breast cancer.

Weighted gene co‐expression network analysis (WGCNA) is a 
system biology algorithm commonly used to explore the correlation 
between gene sets and clinical features via constructing free‐scale 
gene co‐expression networks.14‐16The advantage of WGCNA is that 
it can identify and cluster highly correlated genes into the same 
module. Furthermore, these modules also provide external clinical 
traits with related modules. However, the majority of studies fo‐
cused on differentially expressed genes and ignored the high rela‐
tionship between genes. At present, WGCNA plays a significant role 
in multiple fields, such as cancer, nervous system and genetic data 
analysis, which is extremely useful for identifying potential candi‐
date biomarkers or novel treatment targets.17‐20

Our study utilized the data related to breast cancer from The 
Cancer Genomes Atlas (TCGA) database to identify novel lncRNAs. 
Here, we extracted breast cancer expression profiles of lncRNAs, 
miRNAs and mRNAs from TCGA database and their corresponding 
clinical data. Subsequently, we selected lncRNAs, mRNAs and miR‐
NAs whose expression levels were in the top 5000 among the 112 
matched specimen pairs. Afterwards, these data were used to con‐
struct a co‐expression network to determine the module related to 
the clinical trait. Based on the data of the module, ceRNA network 
analysis was performed using the following databases: miRTarBase, 
miRcode and TargetScan. Additionally, we also performed survival 

analysis to screen lncRNAs most relevant to prognosis. Findings 
from our study contribute to further understanding of the molecular 
mechanisms, biological processes and treatment targets of lncRNAs 
in the field of breast cancer research.

2  | MATERIAL S AND METHODS

2.1 | Data acquisition and pre‐processing

As the largest cancer gene information database at present, TCGA 
database provides not only a variety of cancer types but also multi‐
omics data, including gene transcript, miRNA expression data and 
DNA methylation. Additionally, it also has the advantage of contain‐
ing abundant and standardized clinical data, as well as large sam‐
ple sizes for each cancer type. All data sets were downloaded from 
TCGA (https ://portal.gdc.cancer.gov/, accessed in 18 December, 
2018）database through the package TCGAbiolinks in R software 
(version 3.5.1), including lncRNA, mRNA and miRNA expression 
profiles of breast cancer specimens and the corresponding clinical 
follow‐up data. Notably, we performed data analysis on the basis of 
‘Level‐3’ read counts. The data used in this study met the following 
criteria: (a) there were pairs of cancerous and the corresponding nor‐
mal tissue in the datasets; and (b) they had specific follow‐up times. 
Based on the TCGA ethics committee, we obtained these relevant 
data that are open access and public; thus, ulterior approval was not 
required.

2.2 | Construction of weighted gene  
co‐expression network

The expression profile of these genes, lncRNAs and miRNAs were 
applied to construct a gene co‐expression network by using the 
package WGCNA implemented in R software.14 We performed the 
same analysis as described previously.14 The construction process of 
genes and lncRNAs co‐expression network is similar to that of miR‐
NAs co‐expression network with the exception of some parameters. 
For example, we constructed a genes and lncRNAs co‐expression 
network.

This procedure included the following key steps: firstly, in order 
to eliminate the interference caused by the length of gene and the 
depth of sequencing, the method of Fragments Per Kilobase Million 
(FPKM) was applied to standardize the data of ‘Level‐3’ read counts. 
The formula of FPKM is as follows:

In this study, FPKM values were >1 in more than 50% of speci‐
men pairs. Then, through drawing cluster trees, outlier samples were 
removed in order to make the results more credible. Secondly, we 
calculated Pearson's correlation coefficient (PCC) cor (i,j) for each 
pair of mRNAs and lncRNAs. The construction of similar expression 
matrix is as follows:

FPKM=
total gene Fragements

mappedReads(Millions)×gene Length(KB)

https://portal.gdc.cancer.gov/
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In which, aij refers to the contributions between genes i and j. 
Subsequently, one needs to introduce a power of β value so that it 
could transform the similarity matrix into an adjacency matrix. For 
mRNAs and lncRNAs, the power of β value is 10; however, for miR‐
NAs, the power of β value is 6. On this basis, we constructed a scale‐
free network and topological overlap matrix (TOM). After that, we 
also carried out the corresponding dissimilarity of TOM (dissTOM), 
from which hierarchical clustering tree of genes (dendrogram) by 
function hclust was produced by hierarchical clustering for module 
detection. The Dynamic Tree Cut method was applied to generate 
modules with the following major parameters to avoid generation 
of too many modules: deepSplit of 2 and minModuleSize of 40 (For 
miRNAs, the minModuleSize was set as 20). The height cut‐off was 
set as 0.25, modules were merged together if their similarity was 
>0.75. The cut‐off was set as 0.20 for miRNAs. Ultimately, these 
mRNAs and lncRNAs containing co‐expression modules are consid‐
ered to be highly interconnected.

2.3 | Relationship between clinical 
information and modules

The correlation between modules and clinical information (ie nor‐
mal or tumour) of breast cancer was identified by PCC. Above all, 
module eigengenes (MEs) referred to the first principal component 
of all gene expression levels in the module, and therefore, it was rea‐
sonable to consider that MEs represented all genes within a specific 
module. According to Pearson's correlation tests, we further identi‐
fied the association between MEs and external clinical information 
including sample status. If P‐value was < .05, it was considered to be 
a significant correlation.

2.4 | CeRNA network construction and analysis

According to the results of WGCNA, we selected all mRNAs, 
lncRNAs and miRNAs in the most relevant module to construct a 
ceRNA network. Briefly, the associated ceRNA network in breast 
cancer was constructed following three stages. (a) Prediction of 
lncRNA‐miRNA: in order to make lncRNAs and miRNAs map into 
the interactions successfully, we used the online miRcode (http://
www.mirco de.org/) database.21 MiRcode contains ‘whole tran‐
scriptome’ human miRNA target predictions on the basis of the 
comprehensive GENCODE gene annotation, consisting of more 
than 10 000 lncRNAs. (b) Prediction of miRNA‐mRNA: firstly, 
the names of DEmiRNAs were transformed into human mature 
miRNA names using starBase v2.0 (http://starb ase.sysu.edu.cn) 
online tool. Secondly, three online databases, TargetScan (http://
www.targe tscan.org/),22 miRDB (http://www.mirdb.org/miRDB/ 
)23 and miRTarBase (http://mirta rbase.mbc.nctu.edu.tw),24 were 
used simultaneously for target mRNA prediction. Additionally, we 
also used the package Venny in Rstudio software to obtain the 
overlaps for ensuring more credible results. (c) Construction of 

lncRNA‐miRNA‐mRNA ceRNA network: Cytoscape 3.7.0 software 
was used to construct and visualize the ceRNA network based 
upon lncRNA‐miRNA and miRNA‐mRNA pairs.25 Furthermore, for 
all lncRNAs in the ceRNA network, we used the edgeR package in 
R software for differential expression. The cut‐off threshold was 
|log2FC > 1| and adjusted P‐value < .05.

2.5 | Gene ontology and pathway 
enrichment analysis

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID [version 6.8]; https ://david.ncifc rc.gov/)26 has 
a comprehensive set of functional annotation tools for investiga‐
tors to more deeply understand the biological meaning behind a 
large list of genes. DAVID online tool was used to perform Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses for overlapping targeted genes. GO 
consists of the following three parts: biological process (BP), mo‐
lecular function (MF) and cellular component (CC). Additionally, 
all significant GO or KEGG terms or genes, with significance of 
P < .05, should be comprised of at least two mRNAs. The results 
of enrichment analysis were visualized using the package GOplot 
in R software.

2.6 | Survival analysis

The standard Kaplan‐Meier univariate curve analysis was adopted to 
identify the prognosis of lncRNAs. In addition, we combined analy‐
sis with the clinical information of those samples in TCGA database 
and drew survival curves of all lncRNAs in the ceRNA network. 
Meanwhile, for overall survival, the high‐expression and low‐expres‐
sion cohorts were split for the log‐rank test through the package 
survival in R software. When the P‐value of lncRNAs was <.05, it 
was considered to be statistically significant, which meant that the 
lncRNA had potential prognosis.

3  | RESULTS

3.1 | Pre‐processing of the data sets

Expression data of lncRNAs and mRNAs were collected from 1222 
specimens, which were composed of 1109 tumorous and 113 nor‐
mal samples, and included 112 pairs of matched tumorous and nor‐
mal samples. Eventually, we obtained a total of 19 983 mRNAs and 
14 384 lncRNAs. After obtaining the expression data, we standard‐
ized these data sets by using the method of quantile normaliza‐
tion. According to the sum of expression quantity of each gene or 
lncRNA, we ranked them from largest to smallest and only selected 
the top 5000 genes and lncRNAs for further analyses. For miR‐
NAs, if their expression levels were higher than 1 in more than 50% 
of the 102 matched pairs, then they were selected for WGCNA. 
Next, 665 miRNAs in total were chosen to perform for subsequent 
analyses.

aij= (0.5× (1+cor( i,j))�

http://www.mircode.org/
http://www.mircode.org/
http://starbase.sysu.edu.cn
http://www.targetscan.org/
http://www.targetscan.org/
bib23://www.mirdb.org/miRDB/
http://mirtarbase.mbc.nctu.edu.tw
https://david.ncifcrc.gov/
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F I G U R E  1   A, Determination of soft‐
thresholding power in the lncRNAs/
mRNAs WGCNA. B, Determination of 
soft‐thresholding power in the miRNAs 
WGCNA. Left: Analysis of the scale‐free 
fit index for various soft‐thresholding 
powers (β). Right: Analysis of the mean 
connectivity for various soft‐thresholding 
powers

F I G U R E  2   A, Clustering dendrogram 
of lncRNAs and mRNAs. B, Clustering 
dendrogram of miRNAs. Note: The 
hierarchical clustering tree was produced 
by hierarchical clustering based on 
dissTOM of genes. In the coloured rows 
below the dendrogram, the two coloured 
rows represent the original modules and 
merged modules
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3.2 | Construction of weighted co‐expression 
network and identification of key modules

The expression profiles of 5000 lncRNAs, 5000 mRNAs and 665 
miRNAs were obtained for constructing the co‐expression network 
via the package WGCNA in R software. In our study, the most im‐
portant step is how to select the soft‐threshold power. To determine 
the relative equilibrium between scale independence and mean con‐
nectivity, we analysed the network topology with soft‐threshold 
power from 1 to 20. To this end, we eventually confirmed β values 
of 10 and 6 in lncRNAs/mRNAs and miRNAs co‐expression network 
analysis, respectively (Figure 1A,B). Next, the method of dynamic 
tree cutting was employed to produce co‐expression modules. 
Afterwards, the minimum number of mRNAs and lncRNAs in each 
module was set as 30. Additionally, the parameter of MEDissThres 
was set as 0.25 to merge closely associated modules into larger 
ones. In the miRNA co‐expression network, the minimum number 

of each module was set as 20 and the parameter of MEDissThres 
was set as 0.20. Ultimately, a total of 23 and 5 modules were gener‐
ated in the lncRNAs/mRNAs and miRNAs co‐expression network, 
respectively (Figure 2A,B). It is worth noting that we calculated and 
plotted the relation of each module with their corresponding clinical 
traits. From Figure 3A, we could conclude that the Green module 
revealed the strongest positive correlation (module‐trait weighted 
correlation = .63) with tumour samples related to the lncRNAs and 
mRNAs co‐expression network. Meanwhile, as shown in Figure 3B, 
the Blue module has positively correlated (module‐trait weighted 
correlation = .29) with tumour samples related to the miRNAs co‐
expression network.

3.3 | ceRNA network in breast cancer

Firstly, based on the miRcode online database that matches po‐
tential miRNAs with lncRNAs, a total of 257 lncRNA‐miRNA pairs 

F I G U R E  3   A, Module‐trait associations 
of lncRNAs and mRNAs were evaluated 
by correlations between MEs and clinical 
traits. B, Module‐trait associations of 
miRNAs were evaluated by correlations 
between MEs and clinical traits. Note: 
Each row corresponds to a module 
eigengene, and each column corresponds 
to a trait. Each cell contains the 
corresponding correlation (first line) and 
P‐value (second line). The table is colour‐
coded by correlation according to the 
colour legend. P‐values < .05 represent 
statistical significance
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contained 52 lncRNAs (4 up‐regulated and 44 down‐regulated) and 
17 miRNAs. Next, with regard to the target gene predictions of the 
17 miRNAs, we used the following online tools: TargetScan, miRDB 
and miRTarBase, which consisted of 1162 miRNA‐mRNA pairs, in‐
cluding 966 target genes. Subsequently, we matched the predicted 
target gene with the mRNAs in the Green module. Finally, we ob‐
tained 79 target mRNAs overall. On the basis of the results above 
and with the inclusion of 52 lncRNAs, 17miRNAs and 79 mRNAs, we 
performed and visualized the lncRNA‐miRNA‐mRNA network using 
Cytoscape version 3.7.0 software (Figure 4).

3.4 | Enrichment analysis of Gene Ontology and 
KEGG pathways

To further clarify the potential biological functions of mRNAs in 
breast cancer, DAVID online tool was used to perform functional 
enrichment analysis. From the 79 target mRNAs, a total of 30 GO 
terms were enriched. In particular, these mRNAs are primarily as‐
sociated with intracellular signal transduction, positive regulation 
of programmed cell death, transforming growth factor beta recep‐
tor signalling pathway and autophagosome. In addition, from the 

F I G U R E  4   Green module of lncRNA and mRNA and Blue module of miRNA ceRNA network. Notes: Blue diamond denotes lncRNA, 
green square represents miRNA, and red round rectangle represents mRNA
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79 target mRNAs, a total of 21 KEGG pathways were enriched. 
Among these enriched pathways, many are tumour‐related, such 
as MAPK signalling pathway, PI3K‐Akt signalling pathway, path‐
ways in cancer, microRNAs in cancer, mTOR signalling pathway 
and Ras signalling pathway. The visualization results are shown in 
Figure 5.

3.5 | Survival analysis

Kaplan‐Meier and log‐rank test based on the package survival in 
R software were used to identify the correlation between all lncR‐
NAs in the ceRNA network and overall survival using P < .05 as a 
cut‐off threshold. Of the 52 lncRNAs, Kaplan‐Meier revealed that 

F I G U R E  5   Enrichment analyses of overlapped genes. A, Biological process; B, cellular component; C, molecular function; D, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways. Note: Chord plot displays the relationship between genes and terms
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5 lncRNAs (AL117190.1, COL4A2‐AS1, LINC00184, MEG3 and 
MIR22HG) were identified as crucial prognostic factors. Notably, 
low expression of 5 lncRNAs has a better prognosis in patients with 
breast cancer (Figure 6). When the expression of 5 lncRNAs is high, 
the survival time is relatively short in patients with breast cancer; 
thus, these lncRNAs could be related to poor prognosis.

4  | DISCUSSION

Women with breast cancer have a higher rate of distant metastasis 
and a poorer prognosis than those with other malignant tumours. 
The current poor overall survival among patients with breast cancer 
could be due to the lack of more efficient therapeutic targets and 
prognostic biomarkers. In the present study, we adopted WGCNA 
to identify modules, including one lncRNAs/mRNAs module (Green) 
and one miRNA module (Blue) that were most significantly associ‐
ated with breast cancer tumour status. Then, we constructed a 
ceRNA network of patients with breast cancer based on lncRNA‐
miRNA‐mRNA interactions to identify potential prognostic lncRNA 
biomarkers and understand the regulatory mechanisms at a deep 
level. From this analysis, we conclude that AL117190.1, COL4A2‐
AS1, LINC00184, MEG3 and MIR22HG act as prognostic biomark‐
ers, whose low expression revealed that patients with breast cancer 
have better overall survival.

In cancers, lncRNAs appear as a prominent layer of previously 
unrecognized transcriptional regulation, acting simultaneously as 
an oncogene and tumour suppressor.27 The increasing experimen‐
tal evidence supports that lncRNAs have crucial roles in numerous 
biological processes, such as epigenetic regulation, DNA damage, 
cell cycle regulation and participation in signal transduction.28 For 
example, overexpressed lncRNA HOTAIR was found to participate 
in the progression of malignant breast cancer,29 colon cancer,30 liver 
cancer31 and gastrointestinal stromal tumour.32 In addition, dozens 
of lncRNAs show potential as prognostic markers and therapeutic 
targets across multiple classes of tumours.33 Also, the activity of 
ceRNA is closely associated with the development of cancers,34,35 
and in the ceRNA network, lncRNAs could competitively bind miR‐
NAs to regulate target mRNA expression.36

Maternally expressed gene 3 (MEG3), also known as GTL2, 
FP504 or LINC00023, is an imprinted gene with maternal expres‐
sion, located in human chromosome 14q32.37,38 It was reported that 
MEG3 plays a key role in regulating many functions in cell growth 
and development via different mechanisms.39 Increasing evidence 
showed that, in addition to inhibition of cancer cell growth, MEG3 
could also play a vital role in stimulation of p53‐mediated transcrip‐
tional activation and selective activation of p53 target genes.40,41 
In relevant research of gastric cancer, Sun et al drew an important 
conclusion that the low‐expression level of MEG3 was more com‐
mon in tumour tissues rather than in adjacent healthy tissues; also, 

F I G U R E  6   Kaplan‐Meier survival curves of five lncRNAs in the ceRNA network
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the reduction of MEG3 expression level in gastric cancer is related 
with not only poor survival but also promotion of cell proliferation.42 
Additionally, low MEG3 expression is not only found in gastric can‐
cers, but other cancers as well, because MEG3 acts as a tumour 
suppressor gene. In breast cancer, reduced expression of MEG3 was 
correlated with disease‐specific survival of breast cancer.43 Our re‐
sults indicated that expression of MEG3 was low in breast cancer 
when compared with normal tissues, and low MEG3 expression rep‐
resented a better overall survival.

Human miR‐22 host gene (MIR22HG) was identified and anno‐
tated by The Encyclopedia of DNA Elements (ENCODE) project. 
MIR22HG was first reported by Torimura et al44 and is commonly 
down‐regulated in tumour tissues and participates in the inhibition 
of cell proliferation. Abnormal expression of MIR22HG is associated 
with a variety of tumours. In patients with lung cancer, MIR22HG 
functions as a cancer suppressor gene and was associated with poor 
patient survival.45 In addition, low expression of MIR22HG was 
correlated with hepatocellular carcinoma progression and showed 
potential as a novel prognostic biomarker and treatment target.46 A 
relevant study has shown that as a novel biomarker of thyroid cancer, 
the expression level of MIR22HG is associated with overall survival 
and prognosis. From these previous studies, we can consider that 
MIR22HG is closely related to the prognosis of the tumour. Drawn 
from our study, we found that low‐expression level of MIR22HR 
was related to better overall survival of patients with breast can‐
cer. Thus, MIR22HR could be identified as a prognostic independent 
predictor. However, in terms of its expression and specific function 
in breast cancer, little is known at present.

According to the consequences of KEGG enrichment pathways, 
we could reveal the activation role of lncRNAs from the ceRNA 
network on key pathways that regulate breast cancer development 
and progression. They were enriched in biological processes closely 
correlated with breast cancer, such as MAPK signalling pathway, 
PI3K‐AKT signalling pathway and mTOR signalling pathway. Previous 
studies have demonstrated that mutations in PI3K‐AKT and mTOR 
pathway are related with cell transformation, tumour occurrence and 
progression.47‐49 Based on KEGG pathways, we could dive into more 
details of these lncRNAs from the ceRNA network in the future.

In our work, we applied an integrated bioinformatics approach, 
WGCNA, to establish the lncRNA‐miRNA‐mRNA ceRNA network 
for breast cancer. Notably, beginning with TCGA RNA transcript 
profiles collected from breast cancer specimens, via WGCNA and 
ceRNA bioinformatics analysis, we identified six lncRNAs, of which 
three (AL117190.1, COL4A2‐AS1 and LINC00184) are unknown. 
Most importantly, low expression of AL117190.1, COL4A2‐AS1 
and LINC00184 were correlated with better overall survival and 
the diagnostic and prognostic values need to be further clarified by 
independent validation. Nevertheless, the verification steps of the 
experiments use to generate the data utilized in this study lacked the 
involvement of these lncRNAs, which was a limitation in our study.

In summary, we have identified five novel lncRNAs (AL117190.1, 
COL4A2‐AS1, LINC00184, MEG3 and MIR22HG) related to prog‐
nosis of breast cancer, which could act as underlying prognosis 

biomarkers for breast cancer. Our study has contributed to further 
understanding the molecular mechanism of breast cancer and pro‐
vided novel insights into the use of breast cancer drugs and prognosis.
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