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At present, research on hesitant fuzzy operations andmeasures is based on equal length processing, and an equal length processing
method will inevitably destroy the original data structure and change the data information. -is is an urgent problem to be solved
in the development of hesitant fuzzy sets. Aiming at solving this problem, this paper firstly defines a hesitant fuzzy entropy
function as the measure of the degree of uncertainty of hesitant fuzzy information and then proposes the concept of hesitant fuzzy
information feature vector. -e hesitant fuzzy distance measure and similarity measure are studied based on the information
feature vector. Finally, the hesitant fuzzy network clustering method based on similarity measure is given, and the effectiveness of
our algorithm through a numerical example is illustrated.

1. Introduction

Torra and Narukawa [1, 2] extended fuzzy sets [3] to hesitant
fuzzy sets (HFSs) because they found that, under a group
setting, it is difficult to determine the membership of an
element to a set due to doubts between a few different values.
For example, two DMs discuss the membership degree of x

into A. One wants to assign 0.4 and the other 0.6, and they
cannot persuade with each other; thus the membership
degrees of x into A can be represented by {0.4, 0.6}. -is is
obviously different from fuzzy number 0.4 (or 0.6) and the
intuitionistic fuzzy number (0.4, 0.6). -erefore, hesitant
fuzzy sets can better simulate the hesitant preferences of
decision-makers. Since it was put forward, the hesitant fuzzy
set has received extensive attention from scholars at home
and abroad. -e main research work is concentrated in the
following aspects: (1) research on various measures in the
hesitant fuzzy environment [4–10]; (2) research on the in-
tegration operator of hesitant fuzzy information [11–16];
and (3) the expansion of hesitant fuzzy set theory [17–22].

It should be pointed out that the present researches on
the operation, sorting, and various measures of hesitant
fuzzy sets require that the hesitant fuzzy elements have the

same length. In practical application, the length of hesitant
fuzzy element is different. -e method proposed in [2] is
adding some elements to a shorter hesitant fuzzy element,
making it equal to another hesitant fuzzy element, or re-
peating their elements in order to obtain two series with the
same length [23]. Obviously, these methods will destroy the
original data structure and change the data information.
How to overcome the shortcomings has become an urgent
problem to be solved in the development process of hesitant
fuzzy sets.

Clustering is a basic technique, which is often utilized in
a primary step of analyzing unlabeled data with the goal of
summarizing structural information [24]. In practical ap-
plications, the clustering data are mostly uncertain or fuzzy.
To solve the problem of data clustering in different fuzzy
environments, fuzzy clustering algorithms [25], intuition-
istic fuzzy clustering algorithms [26], and 2-type fuzzy
clustering algorithms [27] have been proposed. However, in
the group of decision-making environment, the decision
information is more suitable to express hesitant fuzzy sets,
and the algorithm mentioned above is not suitable for
handling the clustering problem of this type of information.
If the fuzzy logic is used to handle it, generally take the
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average value of preference information that are provided by
experts or can take the minimum range containing all of the
preference information, that is, convert the hesitant fuzzy
information into interval value information for processing.
-is method of data processing is bound to change the
original preference information that provided by experts; as
a result, the research of clustering problem under the hes-
itant fuzzy information has a certain scientific significance.
One of the advantages of applying the hesitant fuzzy set is
that clustering hesitant and vague information permits us to
find patterns among hesitant fuzzy data. At present, the
clustering researches under the hesitant fuzzy environment
are still at the its initial stage, and Chen et al. [28] used the
correlation coefficient of hesitant fuzzy set to construct
hesitant fuzzy relationship matrix and then conducted
hesitant fuzzy clustering analysis based on the relation of
equivalence. In order to obtain an equivalence relation
matrix, a fuzzy relation matrix needs to be iterated con-
tinuously, which not only loses information but also has
a large amount of calculation [29]. Due to the existence of
uncertainty for the similarity measure of samples, leading to
the clustering, results were not precise enough and the di-
vided categories were inconsistent with the fact. In [4], the
hesitant fuzzy similarity measure formula based on distance
was proposed. -e measurement is inconsistent with the
facts sometimes, and the resolution is not high enough; in
the literature [29], a hesitant fuzzy clustering method based
on agglomerative hierarchical clustering [30] was proposed.
-is method needs to use a hesitant fuzzy average operator
to calculate the clustering center repeatedly, and the cal-
culation amount is large; in the literature [31], a hesitant
fuzzy clustering algorithm based on minimal spanning tree
was proposed. -e distance of hesitant fuzzy set used in this
method is put forward based on the literature [4], which also
has the shortcoming of low resolution and sometimes in-
consistent with the fact; in the literature [32], from the point
of view of information theory, hesitant fuzzy relative entropy
and symmetric interactive entropy are proposed, a new kind
of hesitant fuzzy similarity degree is proposed, which is
combined with the idea of TOPSIS, and a hesitant fuzzy
clustering method is proposed based on the traditional
netting clustering method. -e premise of all the above
methods in the measurement and operation is that the data
are equal in length, which is not satisfied by the hesitant
fuzzy set. -erefore, it is necessary to add artificial elements
for equal length processing, and the processed data will
inevitably change the original data information and affect
the clustering results.

Based on the above analysis, this paper firstly proposes
the concept of hesitant fuzzy entropy function and hesitant
fuzzy information feature vector, aiming at solving the
problem of processing data of hesitant fuzzy set, sorting, and
various measures in the study of different lengths. Fur-
thermore, the hesitant fuzzy uncertainty measure, distance
measure, and similarity measure are studied. Finally, based
on the similarity measure and the traditional network
clustering method, the network clustering method for
hesitant fuzzy information is given. And then we illustrate its
effectiveness via numerical examples.

2. Preliminary

Definition 2.1 [1, 2]. Let X � {x1,x2, . . . , xm} be a fixed set;
a hesitant fuzzy set (HFS) on X is represented by a function
that when applied to X, it returns a subset of [0, 1], which
can be expressed by a mathematical symbol:

H � <x, hH(x)> ∣ x ∈ X􏼈 􏼉, (1)

where hH(x) is a set of some values in [0, 1], denoting the
possible membership degrees of the element x ∈ X to the set
H. hH(x) is called the hesitant fuzzy number or hesitant
fuzzy element. If it does not cause confusion, it can be
abbreviated as h � hH(x). -e hesitant fuzzy number can be
expressed in more detail as h � H c1, c2, . . . , cl􏼈 􏼉. Among
which, l denotes the number of elements in a hesitant fuzzy
number h. Obviously, when l � 1, the hesitant fuzzy set H

degenerates into the traditional fuzzy set.

Definition 2.2 [1, 2]. Set X � {x1,x2, . . . , xm} as a given
nonempty set, then Hc � <x, hc

H(x)> ∣ x ∈ X􏼈 􏼉 is the
complement of the hesitant fuzzy set H, among which

h
c
H(x) � ⋃

c∈hH(x)

1− c􏼈 􏼉. (2)

Distance measure and similarity measure are important
research contents in fuzzy set theory and have a wide ap-
plication background. In the literature [4], the axiomatic
definitions of distance and similarity measure of hesitant
fuzzy sets are given.

Definition 2.3 [4]. Sets A, B be the two hesitant fuzzy sets
defined on X � {x1, x2, . . . , xm}, and then the distance
measure between A and B satisfies the following conditions:

(1) 0≤d(A, B)≤ 1
(2) d(A, B) � 0, if and only if hA(x) � hB(x), ∀x ∈ X

(3) d(A, B) � d(B, A)

Definition 2.4 [4]. Sets A, B be the two hesitant fuzzy sets
defined on X � {x1, x2, . . . , xm}, and then the similarity
measure between A and B satisfies the following conditions:

(1) 0≤ S(A, B)≤ 1
(2) S(A, B) � 1, if and only if hA(x) � hB(x), ∀x ∈ X

(3) S(A, B) � S(B, A)

Definition 2.3 is proposed to facilitate the use of distance
measures to define similarity measures. In practice, the
distance can only be satisfied with d(A, B)≥ 0.

3. A New Kind of Hesitant Fuzzy Entropy

Entropy is the measurement of the degree of uncertainty of
information, and it has always been an important research
object in uncertainty decision analysis. A new hesitant fuzzy
entropy measure function is proposed by analyzing the
shortcomings in the current research results on hesitant
fuzzy entropy.
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Definition 3.1. Assign the hesitant fuzzy element h �

∪c∈h{c} � {cj}
l

j�1, where l is the number of element in the
hesitant fuzzy element, and record

x �
1
l

􏽘

l

j�1
1− 2 cj − 0.5

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

y �

2
l(l− 1)

􏽘

l

i,j�1,i<j
ci − cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, l> 1,

0, l � 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where x represents the fuzzy degree of the hesitant fuzzy
element h and y represents the hesitant degree of the
hesitant fuzzy element h. -en the real valued function E:

H⟶ [0, 1] on the hesitant fuzzy element h can be
expressed by a binary function E(x, y), if the E(x, y) meets
the following conditions:

(1) E(x, y) � 0 if and only if x � 0 and y � 0
(2) E(x, y) � 1 if and only if (x, y) � (1, 0) or

(x, y) � (0, 1)

(3) zE/zx> 0 and zE/zy> 0, z2E/zx2 > 0 and z2E/
zy2 > 0

(4) E(x, y) � E(y, x)

-en, E(x, y) can be called as a hesitant fuzzy entropy
function.

3.1. Interpretation and Analysis

(1) y � 0⟷ l � 1, x � 0⟷ h � 0{ }∨ h � 1{ }∨ h �

0, 1{ }. -en x � 0 ∧ y � 0⟷ h � 0{ }∨ h � 1{ } in-
dicates that h is a clear set, then the entropy is 0.

(2) When l>1, since x � (1/l)􏽐l
j�1(1−2|cj−0.5|) � (1/l

(l−1))􏽐
l
i,j�1,i<j[(1−2|ci−0.5|)+(1−2|cj−0.5|)], y�

(2/l(l−1))􏽐
l
i,j�1,i<j|ci − cj|�(2/l(l−1))􏽐

l
i,j�1,i<j|(ci−

0.5)+(0.5−cj)|≤(2/l(l−1))􏽐
l
i,j�1,i<j|ci− 0.5)|+|0.5−

cj|, then it can get x + y≤1, and it is concluded that
the domain of the entropy function E(x,y) is
(x,y) ∣ x≥0,y≥0,x + y≤1􏼈 􏼉 because the entropy
function E(x,y) is concave increase with respect
to x and y, and the maximum value of E(x,y) is 1
when (x,y) � (1,0) or (x,y) � (0,1) is obtained; that
is, when h � 0.5{ } or h � 0,1{ }, the uncertainty reaches
the maximum. h � 0,1{ } is completely contradictory
information, and h � 0.5{ } is completely fuzzy in-
formation; in both cases, the uncertainty is maximized
and in line with intuitive judgment.

(3) It ensures that the entropy function is concavely
increased with respect to fuzziness and hesitation
degree, conforms to human cognitive characteristics,
and improves discrimination.

(4) Fuzziness and hesitancy have the same effect on
entropy.

Based on the above analysis, function E(x, y) � x2 + y2

obviously satisfies the above conditions in Definition 3.1,
so it can be regarded as an entropy function. For example, if
h � 0.5{ }⟶ x � 1, y � 0, then E(h) � E(x, y) � E(1, 0) �

1; if h � 0, 1{ }⟶ x � 0, y � 1, then E(h) � E(x, y) �

E(0, 1) � 1; and if h1 � 0.2{ }⟶ x � 0.4, y � 0, h1 � 0.1,{

0.2, 0.3}⟶ x � 0.4, y � 0.13, then E(h1) � E(0.4, 0) �

0.16, E(h2) � E(0.4, 0.13) � 0.16 + 0.017 � 0.177, where
E(h1)<E(h2). -e above judgment results are consistent
with the intuition.

Property 3.1. Set hesitant fuzzy element h � ∪c∈h c􏼈 􏼉 �

{cj}
l

j�1, when l � 1; the hesitant fuzzy element h degenerates
into a fuzzy number, and the entropy of fuzzy value h is
E(h) � E(x, y).

Proof.

(1) E(h) � E(x, y) � 0⟺x � 0, y � 0, that is, h � 0{ }

or h � 1{ }, where h is a clear set.
(2) According to condition (2) E(h) � E(x, y) � 1⟺

(x, y) � (0, 1) or (x, y) � (1, 0) because when l � 1,
y � 0, so E(h) � E(x, y) � 1⟺ (x, y) � (1, 0), that
is, h � 1/2{ }.

(3) According to condition (3), it is known that E(x, y)

increases monotonously with respect to x, so
when cj is closer to 0.5, the larger the x � (1/l)
􏽐

l
j�1(1− 2|cj − 0.5|) is, the larger the entropy E(h) �

E(x, y) of the fuzzy value h is.

-e property 3.1 indicates that the fuzzy entropy is
a special case of the hesitant fuzzy entropy function, and the
hesitant fuzzy entropy function can also be applied to the
fuzzy set.

In order to illustrate the advantage of the entropy
function proposed in this paper in measuring uncertainty,
the following is compared with the existing entropy formula:
at present, the common formulas of hesitating fuzzy entropy
include the entropy formula proposed by Xu and Xia and the
entropy formula proposed by Farhadinia, in which

EXu(h) � −
1

l ln 2
􏽘

l

i�1
􏼠

ci + cl−i+1

2
ln

ci + cl−i+1

2

+
2− ci − cl−i+1

2
ln
2− ci − λl−i+1

2
􏼡,

(4)

where l indicates the number of elements in a hesitant fuzzy
number h and ci indicates the element of the largest ith in the
hesitant fuzzy number h.

EPa(h) �
Z(2 d(h, 0.5{ }))−Z(1)

Z(0)−Z(1)
, (5)

where Z : [0, 1]⟶ [0, 1] is strictly monotonically de-
creasing function, which may get Z(t) � 1− t, Z(t) � (1−
t)/(1 + t), Z(t) � 1− t2, Z(t) � 1− tet−1; d(h, 0.5{ }) �

(1/l)􏽐l
i�1|c

i − 0.5| (ci ∈ h, where l indicates the number of
elements contained in the fuzzy number h).
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Set hesitant fuzzy number h1 � H 0.2, 0.4{ }, h2 � H 0.3,{

0.5}, h3 � H 0.1, 0.2, 0.3{ }, h4 � H 0.4, 0.5, 0.6{ }, h5 � H 0.3,{

0.6}, h6 � H 0.4, 0.5{ }, h7 � H 0.3, 0.5, 0.6{ }, and h8 � H 0.2,{

0.5, 0.7}. -e entropy formula proposed by Xu and Xia and
the entropy formula proposed by Farhadinia are compared
with the entropy function proposed in this paper.-e results
are shown in Table 1.

Because the entropy formula proposed by Farhadinia
only considers fuzziness and neglects the influence of hes-
itancy, the result is quite different from that of the method
proposed in this paper and the method proposed by Xu. It is
not difficult to find from the above table that the method
proposed in this paper is obviously higher in the discrim-
ination than that proposed by Xu, and the comparison
result is close to it, and the individual results are incon-
sistent. For example, EXu(h4)>EXu(h6); however, according
to the method presented in this paper, the result is
ELv(h4)<ELv(h6); this is because the starting point is in-
consistent and the hesitant fuzzy entropy proposed by Xu
requires that the number of elements contained in the two
pairs be equal and that the elements should be artificially
added when the number of elements is different. -erefore,
the proposed method is bound to deviate from intuitive
judgment for the comparison of entropy of two hesitant
fuzzy numbers with a different number of elements con-
tained.-e entropy measure function proposed in this paper
not only considers the influence of fuzziness on the entropy
value but also considers the effect of hesitation degree on the
entropy value, which can more reasonably depict the un-
certainty degree of the hesitation fuzzy number, so the result
is more consistent with our intuition.

4. Hesitant Fuzzy Distance Measure and
Similarity Measure

For a hesitant fuzzy element h � ∪c∈h c􏼈 􏼉 � cj􏽮 􏽯
l

j�1, the most
important information it contains is the size of c value and
the degree of uncertainty, which is also a common concern
in practical applications. Based on this, we introduce the
definition of feature vector of hesitant fuzzy information.

Definition 4.1. Set hesitant fuzzy element h � ∪c∈h c􏼈 􏼉 �

cj􏽮 􏽯
l

j�1; two-dimensional vector (s(h), E(h)) is called the
information feature vector of hesitant fuzzy element h,
which is marked as

h � (s(h), E(h)), (6)

where s(h) � (1/l)􏽐l
j�1cj represents the size of a hesitant

fuzzy element and E(h) is the entropy of hesitant fuzzy
element h, representing its degree of uncertainty, calculated
by Definition 3.1.

-e number of elements contained in different hesitant
fuzzy elements may be different. In order to facilitate sorting
and measurement, it is usually necessary to add elements
artificially, which will inevitably destroy the original
structure of the data and change the data information. -e
hesitant fuzzy element is proposed by the information

feature vector to solve this kind of problem. -e following
formulas of the measure and similarity measure of hesitation
fuzzy distance based on the feature vector of hesitant fuzzy
information are given.

-e feature vector of hesitant fuzzy information is to
describe the information feature of the hesitant fuzzy ele-
ment from two different factors, so the dimensions of dif-
ferent components are different; at the same time, there is
obviously a correlation between the two components.
-erefore, it is not appropriate to choose the traditional
distance formula to measure the difference between the two
hesitant fuzzy elements. -is paper defines a new measure of
distance and similarity from the angle of information theory.

Definition 4.2. Set X � x1, x2, . . . , xm􏼈 􏼉 as a nonempty
domain; Aj � {<xi, hAj

(xi)> ∣ xi ∈ X}, j � 1, 2, is the two
hesitant fuzzy sets defined on X, and its information feature
vectors are separately Aj � {(sAj

(xi), EAj
(xi)) ∣ xi ∈ X}, j �

1, 2. For the convenience of writing, note (sAj
(xi),

EAj
(xi)) � (sij, Eij) � Aj(xi), then call

d A1, A2( 􏼁 � R A1, A2( 􏼁 + R A2, A1( 􏼁, (7)

as the distance measure of A1, A2. Among which,

R A1, A2( 􏼁 �
1
m

􏽘

m

i�1

⎛⎝ 􏽘
Δ�s,E

⎡⎣Δi1 · log
Δi1

Δi2
+ 1−Δi1( 􏼁

· log
1−Δi1

1−Δi2

⎤⎦⎞⎠,

R A2, A1( 􏼁 �
1
m

􏽘

m

i�1

⎛⎝ 􏽘
Δ�s,E

⎡⎣Δi2 · log
Δi2

Δi1
+ 1−Δi2( 􏼁

· log
1−Δi2

1−Δi1

⎤⎦⎞⎠,

(8)

where Δ is the symbolic variable, Δ ∈ s, E{ }.
-e distance measure based on the information feature

vector is based on the relative entropy idea, and it is easy to
verify that it satisfies the following properties.

Property 4.1. Set X � x1, x2, . . . , xm􏼈 􏼉 as a nonempty do-
main; Aj � {<xi, hAj

(xi)> ∣ xi ∈ X}, j � 1, 2, is the two
hesitant fuzzy sets defined on X, and its distance measure is
d(A1, A2), then

(1) d(A1, A2)≥ 0
(2) d(A1, A2) � 0, if and only if A1(xi) � A2(xi),

i � 1, 2, . . . , m

(3) d(A1, A2) � d(A2, A1)

Proof. Makef(t) � −log t; according tof″(t) � (1/t2)> 0,
f(t) is the concave function in a defined domain, that is,
f(λ1t1 + λ2t2)≤ λ1f(t1) + λ2f(t2), among which, λ1, λ2 ∈
(0, 1) and λ1 + λ2 � 1. If and only if t1 � t2, the equal sign is
established. Suppose t1 � (Δi2/Δi1), t2 � (1−Δi2/1−Δi1),
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λ1 � Δi1, λ2 � 1−Δi1, bring in f(λ1t1 + λ2t2)≤ λ1f(t1) +

λ2f(t2) and get

0≤Δi1 · log
Δi1

Δi2
+ 1−Δi1( 􏼁 · log

1−Δi1

1−Δi2
. (9)

If and only if when t1 � (Δi2/Δi1) � (1−Δi2/1−Δi1) �

t2, Δi1 · log(Δi1/Δi2) + (1−Δi1) · log(1−Δi1/1−Δi2) � 0; at
this moment, Δi1 � Δi2. -en, R(A1, A2) � (1/m)􏽐

m
i�1

(􏽐Δ�s,E[Δi1 · log(Δi1/Δi2) + (1−Δi1) · log(1−Δi1/1− Δi2)])≥
0; if and only if when Δi1 � Δi2(Δ � s, E, i � 1, 2, . . . , m),
R(A1, A2) � 0.

In the same way, we can get R(A2, A1)≥ 0; if and only if
when Δi1 � Δi2(Δ � s, E, i � 1, 2, . . . , m), R(A2, A1) � 0. In
summary, (1) and (2) can be established.

According to the expression itself, it can be judged that
(3) is clearly established.

Note. Property (2), A1(xi) � A2(xi), i � 1, 2, . . . , m, is not
equivalent to A1 � A2; for example, take A1 � <x, 0.5{ }>{ }

and A2 � <x, 0, 1{ }>{ }, it is obvious that A1 ≠A2. -e
information feature vector is represented as A1 � <x,{

(0.5, 1)>} and A2 � <x, 0.5, 1{ }>{ }, respectively, according to
property (2), and then d(A1, A2) � 0. At this moment, the
result is consistent with human intuition because completely
ambiguous information and completely contradictory in-
formation can convey the same amount of information.-is
is also the main difference between the distance measure
proposed in this paper and other hesitant fuzzy distance
measures.

Inspired by TOPSIS, the hesitant fuzzy similarity mea-
sure formula based on hesitant fuzzy distance measure is
given below.

Definition 4.3. Let X � x1, x2, . . . , xm􏼈 􏼉 as a given non-
empty domain; j � 1, 2 is the two hesitant fuzzy sets defined
on X, and j � 1, 2 modified to A1 andA2.

S A1, A2( 􏼁 �
d A1, Ac

2( 􏼁

d A1, A2( 􏼁 + d A1, Ac
2( 􏼁

, (10)

as the similarity measures of A1, A2.

Property 4.2. Set X � x1, x2, . . . , xm􏼈 􏼉 as a nonempty do-
main; Aj � {<xi, hAj

(xi)> ∣ xi ∈ X}, j � 1, 2, is the two
hesitant fuzzy sets defined on X, and the similarity measure
A1, A2 of is S(A1, A2):

(1) 0≤ S(A1, A2)≤ 1
(2) S(A1, A2) � S(A2, A1)

(3) S(A1, A2) � 0, if and only if when A1(xi) � Ac
2(xi),

i � 1, 2, . . . , m

(4) S(A1, A2) � 1, if and only if when A1(xi) � A2(xi),
i � 1, 2, . . . , m

(5) If and only if when d(A1, A2) � d(A1, Ac
2),

S(A1, A2) � (1/2)

Property 4.2 can be determined by the formula itself.-e
proof process is omitted.

In practical application, different elements in set X have
different status and should be given different weights. A
similarity measure formula considering weights is given
below:

Sw A1, A2( 􏼁 �
dw A1, Ac

2( 􏼁

dw A1, A2( 􏼁 + dw A1, Ac
2( 􏼁

, (11)

among which dw(A1, A2) � Rw(A1, A2) + Rw(A2, A1) � 􏽐
m
i�1

(wi􏽐Δ�s,E[Δi1 · log(Δi1/Δi2) + (1 − Δi1) · log((1 − Δi1)/(1 −
Δi2))]) + 􏽐

m
i�1(wi􏽐Δ�s,E[Δi2 · log(Δi2/Δi1) + (1 − Δi2) · log

((1 − Δi2)/(1 − Δi1))]). wi is the weight of element xi(i �

1, 2, . . . , m) and satisfies 􏽐
m
i�1wi � 1, wi ∈ [0, 1]. Obvi-

ously, when wi � (1/m)(i � 1, 2, . . . , m), dw(A1, A2) �

d(A1, A2) and Sw(A1, A2) � S(A1, A2).

5. Network Clustering Method Based on
Hesitant Fuzzy Similarity Measure

-e network clustering [33] method is a common method in
data clustering analysis, and it is also the best choice to
extend the clustering method to the fuzzy environment. -e
specific process is as follows: the similarity coefficient matrix
P is constructed by the data similarity measure, and then the
cutting level λ ∈ [0, 1] is selected as λ− truncated matrix Pλ
of P, and replace the principal diagonal element with the
scheme symbol. In the lower left of the principal diagonal,
the symbol “∗” is used instead of “1” to remove the “0”
element. -e position of the symbol “∗” is called the node.
-e so called network is to cross the nodes as the latitude and
longitude lines and tie the scheme corresponding to the
latitude and longitude lines at the nodes to achieve classi-
fication.-emain advantage is that the clustering results can
be obtained quickly and effectively by using the similarity
coefficient matrix directly on the table. -e method of
clustering analysis in the hesitant fuzzy environment is given
below. -e calculation process is as follows:

(1) Let A � A1, A2, . . . , Am􏼈 􏼉 be the set of object to be
classified, F � F1, F2, . . . , Fn􏼈 􏼉 be the decision factor
set, and W � (w1, w2, . . . , wn)T be the decision
factor weight vector. -e decision expert group
measures the classified objects according to the
decision factors and obtains the hesitant fuzzy de-
cision matrix D � (hij)m×n.

Table 1: Comparison table of hesitant fuzzy entropy values.

E(h) h1 h2 h3 h4 h5 h6 h7 h8

EXu(h) 0.881 0.971 0.640 1 0.993 0.993 0.995 0.995
EPa(h) 0.6 0.8 0.4 0.867 0.7 0.9 0.8 0.6
ELv(h) 0.4 0.68 0.177 0.774 0.58 0.82 0.68 0.556
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(2) According to formula (6), the hesitant fuzzy value hij

is expressed by the information feature vector, and
then the decision matrix D is transformed into the
information feature vector matrix.

(3) Calculate the hesitant fuzzy similarity coefficient
matrix P � (Sw(Ai, Ak))m×m by using formula (11).

(4) Remove elements above the principal diagonal and
replace the principal diagonal element with the
scheme symbol.

(5) Select cutting level λ ∈ [0, 1] as the λ− truncated
matrix Pλ of P, in the lower left of the principal
diagonal, the symbol “∗” is replaced by “1,” and the
“0” element is removed. -e position of the symbol
“∗” is called a node, the node is the latitude and
longitude lines, and the node is over the node. -e
schemes corresponding to the latitude and longitude
lines are bundled into one category.

6. Illustrative Example

In order to facilitate comparative analysis, this paper uses an
example from the literature [32].-rough four factors (price
F1, function F2, after-sales service F3, and quality F4), 7 cell
phones Ai(i � 1, 2, . . . , 7) are classified. Assume the factor
weight vector is w � (0.3, 0.25, 0.2, 0.25)T. -e decision
group gives the evaluation value of mobile phone Ai under
the decision factor Fj, which is represented by the hesitant
fuzzy set Ai � hij ∣ j � 1, 2, 3, 4􏽮 􏽯, (i � 1, 2, . . . , 7), among
which hij indicates the degree to which the mobile Ai sat-
isfies the decision factor Fj. -en the decision information
can be represented by the decision matrix D � (hij)7×4
(Table 2). According to the network clustering method,

cluster analysis is performed on 7mobile phones as shown in
Table 2.

Step 1. See Table 2.

Step 2. According to the formula (6), the hesitation fuzzy
value in the hesitating fuzzy decision matrix is transformed
into the information feature vector matrix (Table 3).

For example, the data (0.5, 0.68) in the first column of the
first row in Table 3 are the information feature vector
corresponding to the data {0.4, 0.6} in the first column of the
first row in Table 2.-ey are calculated according to formula
(6), where 0.5 � (1/2)(0.4 + 0.6), 0.68 � (1/2) · [(1− 2 ·{

|0.4− 0.5|) + (1− 2 · |0.6− 0.5|)]}2 + (|0.4− 0.6|)2.

Step 3. Calculate hesitant fuzzy similarity coefficient matrix
by using formula (4):

P �

1 0.6183 0.6168 0.4298 0.5121 0.4077 0.3696

0.6183 1 0.9292 0.5020 0.3064 0.4434 0.1985

0.6168 0.9292 1 0.4927 0.2484 0.4549 0.0793

0.4298 0.5020 0.4927 1 0.4934 0.5653 0.5139

0.5121 0.3064 0.2484 0.4934 1 0.5169 0.7172

0.4077 0.4434 0.4549 0.5653 0.5169 1 0.5401

0.3696 0.1985 0.0793 0.5139 0.7172 0.5401 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

-e first row and second column data 0.6183 are the
similarity measurement between the date in the first row and
the date in the second row in Table 3 and is calculated
according to formula (11):

Table 3: Information feature vector matrix.

F1 F2 F3 F4

A1 (0.5, 0.68) (0.47, 0.68) (0.25, 0.26) (0.4, 0.64)
A2 (0.33, 0.48) (0.3, 0.4) (0.37, 0.57) (0.35, 0.5)
A3 (0.3, 0.38) (0.3, 0.4) (0.33, 0.48) (0.3, 0.36)
A4 (0.5, 0.53) (0.45, 0.58) (0.55, 0.49) (0.53, 0.75)
A5 (0.8, 0.16) (0.57, 0.57) (0.35, 0.5) (0.7, 0.4)
A6 (0.53, 0.68) (0.5, 0.68) (0.57, 0.58) (0.55, 0.82)
A7 (0.73, 0.32) (0.7, 0.4) (0.77, 0.26) (0.75, 0.26)

Table 2: Hesitation fuzzy decision matrix.

F1 F2 F3 F4

A1 {0.4, 0.6} {0.3, 0.5, 0.6} {0.2, 0.3} {0.4}
A2 {0.2, 0.3, 0.5} {0.2, 0.4} {0.2, 0.4, 0.5} {0.3, 0.4}
A3 {0.2, 0.3, 0.4} {0.2, 0.4} {0.2, 0.3, 0.5} {0.3}
A4 {0.3, 0.45, 0.75} {0.3, 0.6} {0.3, 0.6, 0.75} {0.45, 0.6}
A5 {0.8} {0.4, 0.6, 0.7} {0.3, 0.4} {0.6, 0.8}
A6 {0.4, 0.5, 0.7} {0.4, 0.6} {0.4, 0.6, 0.7} {0.5, 0.6}
A7 {0.6, 0.7, 0.9} {0.6, 0.8} {0.6, 0.8, 0.9} {0.7, 0.8}
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dw A1, A2( 􏼁 � 0.3 · 􏼔0.5 · log
0.5
0.33

+(1− 0.5) · log
1− 0.5
1− 0.33

+ 0.68 · log
0.68
0.48

+(1− 0.68) · log
1− 0.68
1− 0.48

+ 0.33 · log
0.33
0.5

+(1− 0.33) · log
1− 0.33
1− 0.5

+ 0.48 · log
0.48
0.68

+(1− 0.48) · log
1− 0.48
1− 0.68

􏼕

+ 0.25 · 􏼔0.47 · log
0.47
0.3

+(1− 0.47) · log
1− 0.47
1− 0.3

+ 0.68 · log
0.68
0.4

+(1− 0.68) · log
1− 0.68
1− 0.4

+ 0.3 · log
0.3
0.47

+(1− 0.3) · log
1− 0.3
1− 0.47

+ 0.68 · log
0.68
0.4

+(1− 0.68) · log
1− 0.68
1− 0.4

􏼕

+ 0.2 · 􏼔0.25 · log
0.25
0.37

+(1− 0.25) · log
1− 0.25
1− 0.37

+ 0.26 · log
0.26
0.57

+(1− 0.26) · log
1− 0.26
1− 0.57

+ 0.37 · log
0.37
0.25

+(1− 0.37) · log
1− 0.37
1− 0.25

+ 0.57 · log
0.57
0.26

+(1− 0.57) · log
1− 0.57
1− 0.26

􏼕

+ 0.25 · 􏼔0.4 · log
0.4
0.35

+(1− 0.4) · log
1− 0.4
1− 0.35

+ 0.64 · log
0.64
0.5

+(1− 0.64) · log
1− 0.64
1− 0.5

+ 0.35 · log
0.35
0.4

+(1− 0.35) · log
1− 0.35
1− 0.4

+ 0.5 · log
0.5
0.64

+(1− 0.5) · log
1− 0.5
1− 0.64

􏼕

� 0.3169,

dw A1, A
c
2( 􏼁 � 0.3 · 􏼔0.5 · log

0.5
0.67

+(1− 0.5) · log
1− 0.5
1− 0.67

+ 0.68 · log
0.68
0.48

+(1− 0.68) · log
1− 0.68
1− 0.48

+ 0.67 · log
0.67
0.5

+(1− 0.67) · log
1− 0.67
1− 0.5

+ 0.48 · log
0.48
0.68

+(1− 0.48) · log
1− 0.48
1− 0.68

􏼕

+ 0.25 · 􏼔0.47 · log
0.47
0.7

+(1− 0.47) · log
1− 0.47
1− 0.7

+ 0.68 · log
0.68
0.4

+(1− 0.68) · log
1− 0.68
1− 0.4

+ 0.7 · log
0.7
0.47

+(1− 0.7) · log
1− 0.7
1− 0.47

+ 0.68 · log
0.68
0.4

+(1− 0.68) · log
1− 0.68
1− 0.4

􏼕

+ 0.2 · 􏼔0.25 · log
0.25
0.63

+(1− 0.25) · log
1− 0.25
1− 0.63

+ 0.26 · log
0.26
0.57

+(1− 0.26) · log
1− 0.26
1− 0.57

+ 0.63 · log
0.63
0.25

+(1− 0.63) · log
1− 0.63
1− 0.25

+ 0.57 · log
0.57
0.26

+(1− 0.57) · log
1− 0.57
1− 0.26

􏼕

+ 0.25 · 􏼔0.4 · log
0.4
0.65

+(1− 0.4) · log
1− 0.4
1− 0.65

+ 0.64 · log
0.64
0.5

+(1− 0.64) · log
1− 0.64
1− 0.5

+ 0.65 · log
0.65
0.4

+(1− 0.65) · log
1− 0.65
1− 0.4

+ 0.5 · log
0.5
0.64

+(1− 0.5) · log
1− 0.5
1− 0.64

􏼕

� 0.5134.

(13)

Step 4. Remove elements above the principal diagonal, and
replace the principal diagonal element with the scheme
symbol, that is:

P �

A1

0.6183 A2

0.6168 0.9292 A3

0.4298 0.5020 0.4927 A4

0.5121 0.3064 0.2484 0.4934 A5

0.4077 0.4434 0.4549 0.5653 0.5169 A6

0.3696 0.1985 0.0793 0.5139 0.7172 0.5401 A7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

Step 5. Select the cutting level λ ∈ [0, 1] as theλ−
truncation matrix Pλ of P and then classify through the
network:

(1) When 0.9292< λ≤ 1, they are divided into 7 cate-
gories: A1􏼈 􏼉, A2􏼈 􏼉, A3􏼈 􏼉, A4􏼈 􏼉, A5􏼈 􏼉, A6􏼈 􏼉, A7􏼈 􏼉

(2) When 0.7172< λ≤ 0.9291, they are divided into 6
categories: A1􏼈 􏼉, A2, A3􏼈 􏼉, A4􏼈 􏼉, A5􏼈 􏼉, A6􏼈 􏼉, A7􏼈 􏼉

(3) When 0.6183< λ≤ 0.7172, they are divided into 5
categories: A1􏼈 􏼉, A2, A3􏼈 􏼉, A4􏼈 􏼉, A5, A7􏼈 􏼉, A6􏼈 􏼉

(4) When 0.5653< λ≤ 0.6183, they are divided into 4
categories: A1, A2, A3􏼈 􏼉, A4􏼈 􏼉, A5, A7􏼈 􏼉, A6􏼈 􏼉

(5) When 0.5401< λ≤ 0.5653, they are divided into 3
categories: A1, A2, A3􏼈 􏼉, A4, A6􏼈 􏼉, A5, A7􏼈 􏼉
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(6) When 0.4927< λ≤ 0.5401, they are divided into 2
categories: A1, A2, A3􏼈 􏼉, A4, A5, A6, A7􏼈 􏼉

(7) When 0≤ λ≤ 0.4927, they are divided into 1 cate-
gory: A1, A2, A3, A4, A5, A6, A7􏼈 􏼉

Next, the clustering results of this paper are compared
with those of the literature [28], literature [29], literature
[31], and literature [32], and the results are analyzed. -e
clustering results obtained by other methods are shown in
Table 4.

Different literatures choose different measures to mea-
sure the degree of closeness between samples; among them,
the literature [28] is based on the correlation coefficient; the
literature [29] and literature [31] are based on the distance
measure; and the literature [32] and this paper are based on
the similarity measure. In order to compare the sensitivity of
various measures, it is necessary to analyze the variance of
the measurement data. -e larger the variance, the higher
the sensitivity of the corresponding measure. -e results are
shown in Table 5. Furthermore, in order to compare the
effectiveness of various methods, the D-B index [34] of the
clustering results is calculated separately. -e distance
measure selected for calculating the D-B index of the lit-
erature [28] is d(A, B) � 1− ρ(A, B). -e results are shown
in Table 5.

It can be found from Table 5 that (1) the similarity
measure proposed in this paper has higher sensitivity than
other measures and the clustering result has better ro-
bustness and (2) t-e D-B index of this paper is smaller,
indicating that the clustering results are better.

-rough comparison, it can be found that (1) the results
obtained by using the method proposed in this paper are
consistent with those obtained in the literature [32], which
to some extent reflects the effectiveness of the method
proposed in this paper; (2) the results of the classification in
the literature [28] are not precise and accurate, as it is
intuitively possible to judge from the data in Table 2
S(A2, A3)> S(A2, A4), so it is more appropriate to clas-
sify them A2, A3 as a group; (3) the methods of the literature
[29] and literature [31] are put forward based on the
distance formula in the literature [4], but the resolution of
the distance formula is not high, and the results are
sometimes inconsistent with the facts [32], which will
inevitably affect the classification results; (4) the data must
be processed by equal length in the literature [28], literature
[29], literature [31], and literature [32], which will in-
evitably affect the clustering results. -e reason why the
results in this paper are consistent with the literature [32] is
that the difference in the number of hesitant fuzzy numbers
in Table 2 is small, and the size of each element in the same
hesitant fuzzy number is not much different, and if not so,

the results must be different from those obtained by the
present method.

7. Conclusion

In this paper, the hesitant fuzzy information feature vector
is used as the entry point, which provides a new idea for
solving various hesitant fuzzy measures. -en the hesitant
fuzzy uncertainty measure, distance measure, and simi-
larity measure are studied. Finally, a clustering method for
fuzzy information is proposed. -rough analyzing the
results of the example, it has been proved that this method
is faster and more effective in practical applications. -e
main contributions of this paper are (1) it effectively avoids
the problem of processing data with equal length in the
research of the measure of hesitant fuzzy set and (2)
combined with the similarity measure proposed by TOPSIS
idea, the resolution between schemes can be improved.
Subsequent research on hesitant fuzzy set theory and ap-
plication based on hesitant fuzzy information feature
vectors will be a meaningful topic.
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