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ABSTRACT Macrophage activation involves metabolic reprogramming to support
antimicrobial cellular functions. How these metabolic shifts influence the outcome of
infection by intracellular pathogens remains incompletely understood. Mycobacte-
rium tuberculosis (Mtb) modulates host metabolic pathways and utilizes host nutri-
ents, including cholesterol and fatty acids, to survive within macrophages. We found
that intracellular growth of Mtb depends on host fatty acid catabolism: when host
fatty acid �-oxidation (FAO) was blocked chemically with trimetazidine, a compound
in clinical use, or genetically by deletion of the mitochondrial fatty acid transporter
carnitine palmitoyltransferase 2 (CPT2), Mtb failed to grow in macrophages, and its
growth was attenuated in mice. Mechanistic studies support a model in which inhi-
bition of FAO generates mitochondrial reactive oxygen species, which enhance mac-
rophage NADPH oxidase and xenophagy activity to better control Mtb infection.
Thus, FAO inhibition promotes key antimicrobial functions of macrophages and
overcomes immune evasion mechanisms of Mtb.

IMPORTANCE Mycobacterium tuberculosis (Mtb) is the leading infectious disease
killer worldwide. We discovered that intracellular Mtb fails to grow in macrophages
in which fatty acid �-oxidation (FAO) is blocked. Macrophages treated with FAO in-
hibitors rapidly generate a burst of mitochondria-derived reactive oxygen species,
which promotes NADPH oxidase recruitment and autophagy to limit the growth of
Mtb. Furthermore, we demonstrate the ability of trimetazidine to reduce pathogen
burden in mice infected with Mtb. These studies will add to the knowledge of how
host metabolism modulates Mtb infection outcomes.
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Macrophages are at the forefront of innate immune defense and are required for
microbial killing, tissue homeostasis and repair, inflammation, and development.

A wealth of scientific studies describes how these cells recognize pathogen-associated
molecular patterns (PAMPs), which activate downstream signaling cascades to drive
proinflammatory responses and resolve infection. Macrophage activation involves pro-
found metabolic reprogramming to support specific phenotypic functions. Exposure of
macrophages to stimuli such as gamma interferon (IFN-�) and lipopolysaccharide (LPS)
induces an inflammatory phenotype characterized by enhanced glycolytic metabolism
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and impaired oxidative phosphorylation (OXPHOS), similar to the Warburg effect
described for cancer cells. Glucose catabolism provides a rapid means to generate ATP
and boosts the pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle for
the generation of important immunometabolites such as NADPH, itaconate, and pros-
taglandins (1–3). On the other hand, cytokines such as interleukin 4 (IL-4) induce an
anti-inflammatory phenotype in macrophages important for tissue homeostasis and
antiparasitic responses. These alternatively activated macrophages have increased fatty
acid �-oxidation (FAO) and OXPHOS (1). The majority of studies on macrophage
metabolism focus on IFN-�/LPS- and IL-4-induced states, although accumulating evi-
dence suggests that macrophage polarization states are multidimensional (4). The
metabolic characterization of more-diverse macrophage phenotypes and their impact
on antimicrobial capacity in the context of specific infections are largely unexplored.

Recent studies also highlight a link between Mycobacterium tuberculosis (Mtb)
pathogenesis and host metabolism. Mtb is the causative agent of tuberculosis (TB),
which kills more people yearly than any other infection. Macrophages are a main
cellular niche of Mtb (5, 6). Within the lung, alveolar macrophages (AMs) and interstitial
macrophages (IMs) are the major populations of infected macrophages, and they have
distinct metabolic profiles. AMs, which preferentially utilize FAO, represent a permissive
niche for Mtb replication, whereas glycolytically active IMs restrict infection (7). Mtb
alters macrophage metabolism along with shifting macrophage phenotype to a more
proinflammatory state (8–12). Mtb enhances the dependency of mitochondrial oxida-
tive metabolism on fatty acids, in particular exogenous fatty acids, and induces the
formation of lipid-droplet-filled or “foamy” macrophages (11, 13–15). Foamy macro-
phages are found within the inner layers of granulomas, a common histopathologic
feature of TB, and the bacilli themselves can be found in close approximation to
intracellular lipid droplets. It is thought that lipid bodies serve as a source of nutrients
in the form of cholesterol esters and fatty acids for the bacilli, thus providing a
hospitable niche for the bacterium (14–20). Lipid accumulation by Mtb in this environ-
ment may also promote a nonreplicating phenotype (16). Moreover, a growing body of
literature suggests a link between lipid metabolism and cellular control of Mtb. A
number of host-directed therapies (HDTs) under investigation for TB, such as statins
and metformin, modulate host lipid metabolism (21, 22). However, how these meta-
bolic shifts influence the outcome of Mtb infection remains incompletely understood.

Cellular regulators of lipid metabolism such as microRNA-33 (miR-33) and the
transcription factors peroxisome proliferator-activated receptor � (PPAR�) and PPAR-�
play a role in the formation of Mtb-induced lipid droplets. Studies in which miR-33,
PPAR-�, and PPAR-� were modulated revealed a correlation between cellular lipids and
intracellular survival of mycobacteria, such that increased intracellular lipids were
associated with enhanced bacterial replication (12, 23, 24). These studies led to the idea
that impaired host fatty acid catabolism and the formation of foamy macrophages
serves to enhance intracellular survival of Mtb (12, 23, 24), but direct evidence is lacking,
and other studies support the idea that host lipid droplets promote host defense (25).
Because miR-33, PPAR-�, and PPAR-� impact diverse aspects of host biology that
influence the antimicrobial capacity of macrophages, including mitochondrial function
and autophagy, a causal link between the lipid changes they induce and the survival
benefit to the bacilli has not been clearly established. Previously, we showed that
induction of miR-33/33* in response to Mtb enhances intracellular survival of Mtb (12).
We showed that this probacterial function of miR-33/33* was related in part to its ability
to block autophagy, and we speculated that its ability to block fatty acid catabolism and
promote the formation of lipid droplets also enhanced bacterial replication. Here, we
tested whether blocking fatty acid catabolism indeed promotes Mtb replication. In-
stead, we found that inhibiting macrophage FAO chemically or genetically restricted
intracellular growth of Mtb. FAO inhibition promoted a pathway of bacterial killing in
which induction of mitochondrial reactive oxygen species (mROS) led to NADPH
oxidase and autophagy-dependent control of Mtb.
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RESULTS
Inhibiting FAO restricts growth of intracellular Mtb. miR-33 inhibits FAO by

targeting genes such as carnitine palmitoyltransferase 1 (CPT1) and the hydroxyacyl-
coenzyme A (CoA) dehydrogenase trifunctional multienzyme complex subunit beta
(HADHB). CPT1 is required for the entry of long-chain fatty acids into the mitochondrial
matrix, while HADHB catalyzes the final step of �-oxidation. Small-molecule inhibitors,
etomoxir (ETM), oxfenicine (OXF), and trimetazidine (TMZ) also target these steps in
FAO. ETM and OXF inhibit CPT1, whereas TMZ blocks the 3-ketoacyl-CoA thiolase
activity of HADHB (Fig. 1A) (26). Thus, to determine whether the inhibition of FAO
conferred by miR-33 contributed to its ability to enhance the intracellular survival of
Mtb, we tested the effect of chemical inhibition of FAO on intracellular bacterial
replication. We infected murine bone marrow-derived macrophages (BMDMs) with the
H37Rv strain of Mtb, and 4 h later, we washed the cells to remove extracellular bacilli
and supplemented the media with ETM, OXF, or TMZ. After treatment, we estimated
intracellular Mtb growth by plating for CFU at 72 h postinfection (hpi). Unexpectedly,
treatment with all three FAO inhibitors restricted the intracellular growth of Mtb
compared to untreated controls. We observed a dose-dependent reduction in Mtb CFU
in macrophages treated with micromolar concentrations of ETM (Fig. 1B), while TMZ
and OXF were effective at nanomolar concentrations (Fig. 1C and D; see also Fig. S1A
in the supplemental material). By comparison, metformin (MET), which has previously
been shown to restrict intracellular Mtb, worked at millimolar concentrations (22)
(Fig. 1B to D). The antitubercular activity of TMZ was corroborated using a “live-dead”
reporter strain of Mtb (Fig. S1B). This strain constitutively expresses mCherry and
expresses green fluorescent protein (GFP) under the control of a tetracycline-inducible
promoter (27). TMZ reduced the number of GFP-positive bacteria, consistent with fewer
metabolically active or live bacilli compared to controls. Using calcein fluorescent dye,
we found that macrophage viability was unaffected by FAO inhibitors ETM and TMZ
(Fig. S1C). In addition, the inhibitors did not have direct toxicity on Mtb in broth culture
(Fig. S1D and S1E), and they enhanced macrophage control against a distantly related
mycobacterium, Mycobacterium abscessus (Fig. S1F). These assays will underestimate
the effect of host-directed therapies on intracellular bacteria, since HDTs do not directly
kill extracellular bacteria, which are not completely removed by washing. Consistent
with the ability to impair FAO, TMZ enhanced cellular lipid accumulation based upon
BODIPY (4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene) staining
(Fig. S1G). In addition, in keeping with impaired FAO, TMZ-treated macrophages had
reduced oxygen consumption (Fig. S1H), similar to macrophages from mice that were
genetically deficient in FAO due to deletion of Cpt2 (Cpt2fl/fl LysM-Cre�; Cpt2 cKO [Cpt2
knocked out]) (28).

To confirm that the antimycobacterial activity was indeed a result of FAO inhibition,
we compared the intracellular growth of Mtb in Cpt2 cKO macrophages to littermate
controls. As shown in Fig. 1E, Mtb was significantly impaired in Cpt2 cKO macrophages
compared to control. Moreover, FAO inhibitors lacked activity in Cpt2 cKO macro-
phages, confirming their target specificity (Fig. 1F). To determine whether FAO inhib-
itors were also active against Mtb in human macrophages, we treated phorbol 12-
myristate 13-acetate (PMA)-differentiated THP-1 cells. As we found in murine
macrophages, FAO inhibitors impaired Mtb growth in THP-1 cells (Fig. 1G). Taken
together, our findings suggest that FAO inhibition enhances the ability of macrophages
to control Mtb infection. This enhanced host-mediated control could reflect a shift to
a metabolically inactive, nonreplicating bacterial state or enhanced bacterial killing.
Since ETM is documented to have off-target effects (29) and TMZ was effective at
nanomolar concentrations, we selected TMZ and Cpt2 cKO mice for further study.

Given our in vitro findings, we investigated whether TMZ impacts mycobacterial
control in mice. We compared Mtb infection in mice with myeloid-specific knockout of
Cpt2 (Cpt2 cKO) and littermate controls. We exposed mice to Mtb by aerosol and
estimated lung bacterial burden after 7 days, when the pathogen exclusively infects
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FIG 1 Inhibition of macrophage FAO restricts intracellular Mtb growth. (A) In the carnitine shuttle, long-chain fatty acids
that have been activated to acyl-CoA derivatives are converted to acylcarnitines by CPT1 at the outer mitochondrial

(Continued on next page)
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alveolar macrophages, which are permissive to Mtb growth and rely more on fatty acid
oxidation than glycolysis (6, 7). We observed that growth of Mtb was significantly
reduced in Cpt2 cKO mice compared to controls (Fig. 1H). To determine whether
chemical inhibition of FAO had antimicrobial activity in mice, we used Alzet osmotic
pumps to deliver a continuous dose over 2 weeks (Fig. S2A to D). In an acute infection
model, we treated mice with TMZ during the first 2 weeks of infection, which represents
the early innate immune phase in which there is rapid Mtb replication (30). We also
initiated TMZ treatment after 5 weeks of infection, after the onset of adaptive immunity.
In both cases, TMZ treatment modestly reduced bacterial burdens in the lungs (Fig. 1I
and J). TMZ is approved by the European Medicines Agency to treat angina, and
pharmacokinetic (PK) analysis demonstrated that serum TMZ concentrations in the
infected mice were similar to those achieved clinically (Fig. S2E and F). In addition,
consistent with the extremely wide therapeutic index of TMZ in preclinical toxicology
studies (31), no treatment-related morbidity or mortality was observed. Overall, we
conclude that inhibiting host fatty acid metabolism modestly reduces mycobacterial
burden in vivo.

FAO inhibition triggers mitochondrial ROS. We turned to in vitro studies to assess
how host fatty acid metabolism was influencing control of Mtb. Since TMZ targets an
enzyme in the mitochondria (32), a major site of reactive oxygen species (ROS)
production, we examined whether FAO inhibition promotes ROS production. We
treated uninfected immortalized BMDMs (iBMDMs) with TMZ and observed an increase
in ROS as early as 3 h after treatment (Fig. 2A). Addition of mitoTEMPO, a mitochondrial
ROS (mROS) scavenger, abolished this ROS burst, whereas diphenyleneiodonium chlo-
ride (DPI), which inhibits NADPH oxidase, had no effect, suggesting that the ROS was
induced in the mitochondria (Fig. 2A). Toll-like receptor activation and infection with
Gram-negative bacteria have previously been shown to result in mROS production (33,
34), and Mtb infection induced a small amount of mROS (Fig. 2B). However, significantly
more ROS was generated in Mtb-infected BMDMs after TMZ treatment and was dose
dependent (Fig. 2C and Fig. S3A). The TMZ-induced ROS still occurred in macrophages
that lacked the NADPH oxidase (Nox2 KO), consistent with a mitochondrial source
(Fig. 2C). ROS levels in Mtb-infected Cpt2 cKO BMDMs were also significantly higher
than in control macrophages (Fig. 2D). We confirmed that TMZ induced mROS by using
MitoSox fluorescent dye (Fig. 2E). Combined, these results demonstrate that TMZ
induces ROS from a mitochondrial source after 3 h of treatment in both infected and
uninfected macrophages.

We hypothesized that FAO inhibition resulted in mROS generation because of
perturbed electron flow within the electron transport chain (ETC). ROS can be gener-
ated in multiple sites along the ETC during forward electron transport, as well as when

FIG 1 Legend (Continued)
membrane. Etomoxir and oxfenicine inhibit CPT1. Acylcarnitines are transported across the mitochondrial membrane by
a dedicated translocase. In the mitochondria, CPT2 converts acylcarnitines back to acyl-CoA and carnitine. Acyl-CoA chains
then undergo �-oxidation, successively generating acetyl-CoA that enters the TCA cycle. Trimetazidine inhibits 3-ketoacyl-
CoA thiolase, which catalyzes the release of acetyl-CoA from the acyl-CoA chain. (B to D) Survival of Mtb (H37Rv) in BMDMs
that were untreated or treated for 72 h with 2 mM metformin (MET) or indicated concentrations of etomoxir (ETM), (B),
trimetazidine (TMZ) (C), or oxfenicine (OXF) (D). (E) Survival of Mtb in BMDMs from Cpt2 KO (Cpt2fl/fl LysM-Cre�) and
littermate controls (Cpt2fl/f Cre-, wild type [Wt]) 4, 72, and 120 hpi. (F) Survival of Mtb in BMDMs from Cpt2 cKO and Wt
controls treated with ETM, TMZ, or vehicle control for 72 h. CFU are expressed as a percentage of the WT untreated control.
(G) PMA-differentiated THP-1 cells were infected with Mtb and treated with ETM or TMZ for 72 hpi prior to enumerating
CFU. In panels B to G, data show means � standard error of means (SEM) (error bars) from at least two independent
experiments. Statistical significance by one-way ANOVA (B to D, F, and G) or unpaired Student’s t test with Welch’s
correction (E) is indicated as follows: **, P � 0.009; ***, P � 0.0003; ****, P � 0.0001; NS, not significant. (H) Cpt2 cKO mice
and littermate controls were infected by aerosol with 100 to 200 Mtb CFU per animal, and lung CFU were enumerated
7 days postinfection. Data are expressed as a percentage of the control value from two independent experiments. Data
are means � SEM. *, P � 0.01 calculated using Mann-Whitney test. (I) TMZ was tested in mice that were infected with Mtb
(day 1 CFU � 3,552) and treated for the first 2 weeks of infection at the indicated doses. Plots show mean lung CFU after
2 weeks of TMZ treatment (16.8 or 50 mg/kg/day). **, P � 0.02 calculated with Mann-Whitney test. (J) Mice were infected
by aerosol with 155 Mtb for 5 weeks and then were treated with TMZ or saline control for 2 weeks, and total lung CFU
were enumerated. **, P � 0.005 calculated using Mann-Whitney test. See also Fig. S1 and S2 in the supplemental material.
wpi, week postinfection.
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electrons flow in reverse through complex I (NADH:coenzyme Q reductase) (35). To
determine the site within the ETC where TMZ induced ROS, we measured mROS
production in macrophages treated with TMZ in combination with rotenone, an
inhibitor of complex I. When electrons are flowing in the forward direction, rotenone
prevents electron transport to coenzyme Q (CoQ), resulting in ROS generation. In
contrast, during reverse electron transport (RET), rotenone reduces ROS by preventing
CoQ from transferring electrons back to complex I, where the RET-ROS is generated. We
treated uninfected BMDMs with TMZ for 3 h, and 30 min prior to measuring mROS, we
added rotenone. As expected, rotenone and TMZ on their own increased mROS
production. In contrast, rotenone decreased the amount of ROS generated in response
to TMZ treatment (Fig. 2E). These findings are consistent with the idea that under
conditions of TMZ treatment there is enhanced ROS generated due to RET at complex
I. Overall, we conclude that FAO inhibition promotes mROS production from the ETC.

Since recent studies have shown that mROS contributes to microbial control in
macrophages (33, 36), we asked whether TMZ-induced mROS was important for

FIG 2 FAO inhibition induces mitochondrial ROS. The CellRox mean fluorescence intensity (MFI) of
BMDMs with various treatments is shown. (A) Uninfected iBMDMs that were untreated (-) or treated (�)
with 500 nM TMZ for 3 h, alone or in the presence of mitoTEMPO (10 �M) or DPI (10 mM). (B) Uninfected
and infected BMDMs with or without mitoTEMPO (10 �M) 4 hpi. (C) Mtb-infected Wt and Nox2 KO
BMDMs that were untreated or treated with 5 nM TMZ for 3 h. (A and C) tert-Butyl hydroperoxide (tBHP;
0.25 mM, 30 min) was used as a positive control. (D) Mtb-infected Cpt2 cKO and control BMDMs 24 hpi
that were untreated or treated with N-acetyl cysteine (NAC) (10 mM). (E) MitoSox MFI of uninfected
BMDMs that were untreated or treated with 500 nM TMZ for 3 h, alone or in the presence of rotenone
(10 �M, 30 min). Data show means � standard deviations (SD) of duplicates (A) and means � SEM (B to
E) from at least two independent experiments where MFI was derived from more than 100 individual
cells. *, P � 0.02; **, P � 0.001; ****, P � 0.0001; NS, not significant, calculated using unpaired Student’s
t test with Welch’s correction (A) and ordinary one-way ANOVA (B to E). For panels B and E, values are
expressed as percentage of the value for the uninfected, untreated cells. See also Fig. S3 and S4.
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infection control or simply a by-product of metabolic perturbations. To address this, we
estimated Mtb burden in macrophages treated with TMZ alone or in combination with
mitoTEMPO. As shown in Fig. S3B, mitoTEMPO on its own had little effect on the
infection, but it partially reversed the antimicrobial effect of TMZ treatment. This
suggested that mROS contributed to the host control established by TMZ treatment,
although there may be other contributing factors or mitoTEMPO may not neutralize
mROS for the prolonged conditions of the assay. We also considered that TMZ
treatment altered cytokine-driven antimicrobial responses, but we did not observe
differences in the production of tumor necrosis factor alpha (TNF-�), IL-6, CXC chemo-
kine ligand 2 ( CXCL2), IFN-�, CC chemokine ligand 2 (CCL2), and CXCL10 in response
to infection and TMZ treatment (Fig. S4A to F). In addition, we considered that
inhibition of FAO might lead to a corresponding increase in glycolysis, which has been
linked to antimicrobial responses, but Seahorse analysis suggested reduced, not in-
creased, extracellular acidification rates (ECARs) after TMZ treatment (Fig. S1I). Overall,
we conclude that FAO inhibition promotes mROS production from the ETC, which
contributes to macrophage control of Mtb infection.

FAO inhibition-induced mitochondrial ROS drives NADPH oxidase recruitment
to phagosomes. Previous studies suggest a link between mROS and NADPH oxidase
that contributes to macrophage defense (37). Indeed, while 3 h of TMZ treatment
significantly increased mROS in both wild-type (WT) and Nox2 KO BMDMs (Fig. 2C), we
observed that the anti-Mtb activity of FAO inhibitors required NADPH oxidase (Fig. 3A).
This suggested that the antimycobacterial activity in FAO-inhibited macrophages ac-
tually depended upon both a mitochondrial source and NADPH oxidase. Normally,
pathogen-associated molecular patterns (PAMPs) promote the recruitment of the
NADPH oxidase to microbial phagosomes immediately after phagocytosis (38). How-
ever, Mtb impairs the recruitment of the NADPH oxidase to the mycobacterial phago-
some (39, 40). Remarkably, at 24 hpi, we observed that TMZ increased the recruitment

FIG 3 FAO inhibition promotes NADPH oxidase recruitment on Mtb phagosomes. (A) Survival of Mtb in
BMDMs from Nox2 KO and control mice that were untreated or treated with the indicated concentrations
of ETM and TMZ, 120 hpi.*, P � 0.04; ****, P � 0.0001, ordinary one-way ANOVA. (B) Immunofluorescence
(IF) microscopy of gp91phox/NOX2 (green) and dsRed-expressing H37Rv (red) in BMDMs that were
infected and treated with 5 nM TMZ or untreated for 24 h. The colocalized region is shown in yellow.
Bars � 10 �m. (C and D) MFI of the NADPH oxidase subunits gp91phox/NOX2 (C) and p40phox (D)
colocalized with H37Rv in BMDMs that were untreated or treated with 5 nM TMZ (24 hpi). (E) MFI of
p40phox colocalized with Mtb in BMDMs treated with 5 nM TMZ alone or in the presence of mitoTEMPO
(48 hpi). (C to E) Automated image analysis was used to quantify gp91phox/NOX2 or p40phox MFI
colocalized with more than 100 bacilli in at least two independent experiments. Data show means � SEM
of MFI from around individual bacilli in the sample. *, P � 0.02, ****, P � 0.0001 calculated using unpaired
Student’’s t test with Welch’s correction (C and D) or ordinary one-way ANOVA (E).
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of NADPH oxidase subunits gp91phox/NOX2 and p40phox to the mycobacterial phago-
somes (Fig. 3B to D). Moreover, we found that NADPH oxidase recruitment was
dependent on TMZ-induced mROS, as it was reversed with the addition of mitoTEMPO
(Fig. 3E). Thus, FAO inhibition appears to enhance two antimicrobial responses that are
suboptimal during Mtb infection, mROS production and phagosomal recruitment of the
NADPH oxidase. Mitochondria alone contributed to ROS within 3 h of FAO inhibition,
while the role of NADPH oxidase was appreciable at later time points, and enhanced
macrophage control of Mtb depended upon both mROS and the NADPH oxidase.

FAO inhibition promotes xenophagy to restrict intracellular Mtb growth. ROS
might be directly cytotoxic to bacteria or might promote a nonreplicating state. For
example, macrophage-derived ROS induces a metabolically inactive, drug-tolerant state
in Staphylococcus aureus (41). To determine whether ROS was likely to have direct
antibacterial effect, we examined the impact of FAO inhibitor treatment on an Mtb
mutant that lacks the catalase-peroxidase KatG. If TMZ-induced ROS was directly
antibacterial, we anticipated that katG mutants would be more susceptible. However,
we found no difference in the antimicrobial activity of TMZ between WT and katG
mutants (Fig. S3C). ROS generated by the NADPH oxidase has also been shown to
promote a trafficking pathway called LC3-associated phagocytosis (LAP). Both LAP and
autophagy of microbes (xenophagy) are characterized by the association of lipidated
LC3 (LC3-II) with microbe-containing vacuoles (42). LAP and xenophagy depend upon
certain common ATG (autophagy-related) proteins, and they also have unique require-
ments. To determine whether either LC3-trafficking pathway was involved in the
antimicrobial activity of TMZ, we compared the efficacy of TMZ between control and
Atg5 cKO macrophages, which are deficient in both LAP and xenophagy. Indeed, the
antimycobacterial control established by FAO inhibition was reversed in Atg5-deficient
macrophages (Fig. 4A). Although the baseline ROS staining was lower in Atg5 cKO
macrophages compared to control, ROS was still induced by TMZ in Atg5 cKO macro-
phages, suggesting that ATG5 acts downstream of mitoROS production (Fig. 4B). To
distinguish xenophagy from LAP, we examined Atg14l cKO and Parkin2 KO macro-
phages, which are specifically involved in xenophagy. As we had seen in Atg5 cKO
macrophages, the antimycobacterial control established by FAO inhibition was re-
versed in Atg14l cKO and Parkin2 KO as well (Fig. 4C and D). In addition, in WT
macrophages, TMZ treatment resulted in enhanced colocalization between Mtb and
the autophagy adaptor, p62, and LC3 (Fig. 4E and Fig. S3D). The enhanced colocaliza-
tion between Mtb and p62 occurred after 24-h treatment, was dependent on mROS,
and was dose dependent (Fig. 4F and G and Fig. S3E). Combined, these data demon-
strate that inhibition of FAO promotes xenophagy to control intracellular Mtb growth.
Indeed, autophagosomal targeting of Mtb was also inherently higher in Cpt2 cKO
macrophages than in WT controls (Fig. 4H and I). Moreover, TMZ treatment facilitated
xenophagy of a mutant Mtb strain lacking esxA (ΔesxA), which is unable to perforate
phagosomes and usually does not activate xenophagy (Fig. 4J).

These studies established that FAO inhibition induced mROS, which promoted
NADPH oxidase recruitment to the Mtb phagosome and xenophagy. Next we examined
the relationship between the NADPH oxidase and xenophagy. We observed that the
enhanced NADPH oxidase recruitment in response to TMZ occurred independently of
autophagy, as it was also seen in Atg5 cKO macrophages (Fig. 4K). On the other hand,
TMZ failed to promote xenophagy in NADPH oxidase-deficient macrophages (Fig. 4L).
Taken together, our data show that mROS was the primary signal induced by FAO
inhibition that resulted in enhanced NADPH oxidase and xenophagy, which promoted
bacterial control. Figure 5 shows a model for the sequential events resulting in the
antimycobacterial activity of FAO inhibitors.

DISCUSSION

Recent work has highlighted the relationship between macrophage metabolism and
inflammatory phenotype (43). Mtb-induced glycolysis in macrophages reduces intra-
cellular bacterial survival through enhanced IL-1� production, but the impact of fatty
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acid metabolism is not well established. A prevailing idea is that increased cellular lipids
provide a nutrient source for bacterial replication (12, 23, 24), although lipid droplets
may also promote a nonreplicating phenotype of the bacilli and host immunity (16, 25).
We found that inhibition of host FAO, which enhanced lipid body formation in
macrophages, impaired mycobacterial replication, which could reflect promoting a
nonreplicating phenotype or enhanced bacterial killing. We established the antimicro-
bial mechanism of FAO inhibition using specific inhibitors and genetically FAO-deficient

FIG 4 Antimicrobial activity of FAO inhibitors depends on autophagy. (A) Survival of Mtb was compared
in FAO inhibitor-treated control and Atg5 cKO macrophages, 72 hpi. Data show means � SEM with *,
P � 0.03 calculated using one-way ANOVA. (B) CellRox MFI in Mtb-infected control and Atg5 cKO BMDMs
after TMZ treatment (5 nM, 3 h), with or without mitoTEMPO. **, P � 0.002; ****, P � 0.0001 by unpaired
Student’s t test with Welch’s correction. (C and D) Survival of Mtb in BMDMs from control and Atg14l cKO
cells 72 hpi (C) and Parkin2 KO cells 120 hpi. (D) Data show means � SEM. ***, P � 0.0002; ****, P � 0.0001
using ordinary one-way ANOVA in panels C and D. (E) IF microscopy of p62 (green) and dsRed-expressing
H37Rv (red) in BMDMs treated with 5 nM TMZ 24 hpi. The colocalized region is shown in yellow.
Bars � 10 �m. (F and G) MFI of p62 colocalized with Mtb was measured in BMDMs treated with 5 nM TMZ
alone or with mitoTEMPO for 3 h (F) or 24 h (G). ****, P � 0.0001 by ordinary one-way ANOVA. (H and I)
IF images (H) and MFI (I) of p62 colocalized with Mtb in Cpt2 KO and control BMDMs 24 hpi. (J) MFI of
p62 colocalized with ΔesxA mutant in BMDMs treated with TMZ for 24h. (K) MFI of gp91phox/NOX2
colocalized with Mtb in control versus Atg5 cKO BMDMs after TMZ treatment (5 nM, 24 hpi). (L) MFI of
p62 colocalized with Mtb in control and Nox2KO macrophages treated with 5 nM TMZ with or without
mitoTEMPO, 24 hpi. Data show means � SEM.**, P � 0.001; ****, P � 0.0001 calculated using unpaired
Student’s t test with Welch’s correction in panel K and ordinary one-way ANOVA for panels J and L. All
panels show data from one representative experiment from at least two independent replicates. See also
Fig. S3.
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Cpt2 cKO macrophages. Unexpectedly, we found that blocking FAO enhanced macro-
phage control of Mtb by eliciting mROS, which promoted NADPH oxidase and xe-
nophagy to restrict Mtb replication. Thus, our results identify mROS as a link between
macrophage fatty acid metabolism and macrophage effector functions.

How might inhibition of FAO generate mROS? Typically, FAO produces NADH and
FADH2, which are oxidized by respiratory chain supercomplexes to generate forward
electron flow required for ATP production. The respiratory chain is organized into
interacting supercomplexes to minimize leakage of electrons and ROS formation. A
recent study reports that enzymes of FAO physically interact with the NADH-binding
domain of complex I of the electron transport chain (ETC), forming an integrated,
multifunctional complex (44). Thus, in the absence of NADH shuttling from FAO
through these supercomplexes, reverse electron transport (RET) might occur. Com-
bined treatment with TMZ and rotenone, a complex I inhibitor, decreased mROS levels,
which is consistent with the idea that RET at complex I is the source of mROS generated
by TMZ treatment. Toll-like receptor signaling also alters supercomplex assembly and
generates RET-ROS at complex I, both of which impact immunological signaling (33, 34,
37, 45). Thus, the mROS induced by TMZ may activate an antimicrobial pathway that is
normally induced by infection and protective, but suboptimal during Mtb infection.
mROS has also been shown to contribute to macrophage control of Streptococcus
pneumoniae, Staphylococcus aureus, and Salmonella enterica serotype Typhimurium (33,
36, 46, 47). Our results suggest that mROS does not exert its antimicrobial function by
directly impairing Mtb growth, since mROS was generated in macrophages lacking
Nox2 and Atg5, but the antimycobacterial activity was lost. In addition, ΔkatG mutants
were not hypersusceptible to TMZ treatment. Rather, ROS appears to serve as a signal
that enhances LC3 trafficking. A stimulatory effect of mROS on the NADPH oxidase has
been documented in nonlymphoid cells, and recent work shows that in neutrophils,
mROS activates the NADPH oxidase and other effector functions (48–50). How mROS
regulates phagosomal NADPH oxidase recruitment and assembly will be important to
establish, as our work indicates, unexpectedly, that phagosomal NADPH oxidase can be
augmented, even late after bacterial uptake, to promote microbial clearance of intra-
cellular bacilli. This might be a way to clear foci of persistent bacilli.

In addition to NADPH oxidase recruitment, mROS also promoted xenophagy. Xe-
nophagy and LAP are related LC3 trafficking pathways that can promote microbial
clearance (51). They also differ, as LAP involves LC3 recruitment to a single phagosomal
membrane, whereas xenophagy depends upon formation of a double-membrane
compartment. We found that the antimicrobial activity of TMZ depended on ATG14L
and PARKIN, which are required for canonical autophagy and Mtb xenophagy (52). In
addition, TMZ enhanced the association of phagosomes with p62, a selective au-
tophagy adaptor, and the response occurred well after bacterial uptake, all of which
suggest that the mechanism of clearance is xenophagy and not LAP, despite the

FIG 5 Schematic of the antimycobacterial mechanism of FAO inhibitors. FAO inhibition induces mROS
burst, which promotes the recruitment of the NADPH oxidase to the phagosomal membrane. Phago-
somal ROS promotes subsequent p62 and LC3 colocalization, perhaps as a result of phagosomal
membrane damage, leading to enhanced control of Mtb.
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involvement of NADPH oxidase which has been linked to LAP. One possibility is that
both LAP and xenophagy are enhanced by FAO inhibition. Alternatively, the NADPH
oxidase might generate phagosomal membrane damage, which is known to promote
pathogen ubiquitination, adaptor recruitment, and xenophagy (53, 54). We observed
NADPH oxidase recruitment in TMZ-treated Atg5 cKO macrophages, yet TMZ failed to
restrict growth of Mtb in the absence of xenophagy, arguing against direct antimyco-
bacterial activity of the NADPH oxidase, consistent with other recent studies (40, 55).
We conclude that the antimycobacterial activity of ROS is primarily based upon its
ability to activate lysosomal trafficking pathways or depends upon a combination of
lysosomal trafficking and ROS.

The immunometabolic relationship between FAO, mROS, and macrophage effector
functions was unanticipated and has important implications for studies outside innate
immunity, as FAO inhibitors are proposed for metabolic therapy in cancer (56, 57) and
heart failure (58), and mROS may contribute to their mechanism of action. While the
current view is that ROS generation contributes to inflammation and cellular damage,
a beneficial role of RET-ROS was appreciated recently for hypoxia sensing in the carotid
body (59), ischemia-reperfusion injury (60), and extending fly life span (61). TMZ is an
attractive compound for generating mROS, as it has been used to treat angina for
35 years, is orally bioavailable, lacks substantial drug-drug interactions, and has a
favorable safety profile (62). In the context of antimicrobial therapy, HDTs would need
to be used in combination with directly acting antimicrobials, where their addition
might contribute to treatment-shortening regimens. While the in vivo effects of FAO
inhibition were modest during Mtb infection, they occurred at drug concentrations that
are used clinically and were on par with other host-directed approaches, such as those
taking an autophagy-based strategy, which are currently being evaluated in clinical
trials (21, 22, 63–65). The effect in mice will reflect that impact of impairing FAO in a
variety of cell types, and addressing this complexity, as well as their activity in
combination with directly acting antimicrobials, is an area for future investigation. The
more important point of our work is that we report that the stimulatory effect of mROS
can restore NADPH oxidase activity and LC3 trafficking during Mtb infection. Whether
more substantial antimicrobial control could be established by a combination of HDTs
that target distinct cellular reservoirs or work synergistically to activate antimicrobial
pathways will also be critical to investigate.

MATERIALS AND METHODS
Reagents and antibodies. FAO inhibitors used in the study were etomoxir (catalog no. 4539; Tocris

Bioscience), trimetazidine (catalog no. 18165; Cayman Chemical Company), and oxfenicine (catalog no.
56160; Millipore Sigma). Metformin (catalog no. D150959), mitoTEMPO (catalog no. SML0737), diphe-
nyleneiodonium chloride (DPI) (catalog no. D2926), N-acetyl cysteine (NAC) (catalog no. A7250), tert-
butylhydroperoxide (tBHP) (catalog no. 416665), amikacin (catalog no. A1774), phorbol 12-myristate
13-acetate (PMA) (catalog no. P8139), rapamycin (catalog no. R0395), rotenone (catalog no. R8875),
antimycin (catalog no. A8674), and fluorocarbonyl cyanide phenylhydrazone (FCCP) (catalog no. C2920)
were obtained from Millipore Sigma. The fluorescent dyes CellRox green (catalog no. C10444), MitoSox
red (catalog no. M36008), calceinAM (catalog no. C1430), BODIPY 493/503 (4,4-difluoro-1,3,5,7,8-
pentamethyl-4-bora-3a,4a-diaza-s-indacene) (catalog no. D3922) were obtained from Thermo Fisher
Scientific. For immunostaining, we used rabbit polyclonal primary antibodies against gp91phox (ab80508;
Abcam), p40phox (sc-18252-R; Santa Cruz Biotechnology), and LC3B, mouse monoclonal antibody against
p62 (catalog no. IC8028G; R&D Systems), and secondary antibody Alexa Fluor 488 goat anti-rabbit IgG
(H�L) (catalog no. A11034; Thermo Fisher Scientific).

Bacterial strains. Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus were grown at
37°C to log phase in Middlebrook 7H9 broth (BD Biosciences) supplemented with 0.05% Tween 80, BD
BBL Middlebrook ADC Enrichment (BD Biosciences), and 0.2% (vol/vol) glycerol. Plasmids were selected
with 25 �g/ml kanamycin or 50 �g/ml hygromycin depending on the resistance marker. H37Rv, the
wild-type Mtb strain, ΔkatG, and ΔesxA mutant strains were provided by William Jacobs, Jr. (Albert
Einstein College of Medicine) (54). dsRed-expressing H37Rv was a gift from J. Ernst (New York University).
H37Rv expressing the Vibrio harveyi luciferase (Rv-lux) was a gift from Jeffery Cox (University of California,
Berkeley). The “live-dead” reporter strain constitutively expresses mCherry and inducibly express green
fluorescent protein (GFP) under the control of a tetracycline-inducible promoter (27).

Mice. We used 8- to 12-week-old C57BL/6 mice. Cpt2fl/fl LysM-Cre� mice were generated by crossing
Cpt2fl/fl and LysM-Cre� mice. The generation of Cpt2fl/fl and LysM-Cre� mice have been described
previously (66, 67). The Washington University School of Medicine Institutional Animal Care and Use
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Committee approved all the work with mice. Euthanasia was performed prior to bone marrow harvest
in accordance with the 2013 AVMA Guidelines for the Euthanasia of Animals (68).

Cell culture. To obtain murine bone marrow-derived macrophages (BMDMs), marrow was flushed
from the femurs and tibia of mice, and the hematopoietic stem cells were allowed to differentiate for
7 days in Dulbecco’s modified Eagle medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum
(FBS) (Gibco), 1% penicillin-streptomycin (Pen-Strep) solution (Gibco), and 20% L929 conditioned me-
dium. After 7 days, the BMDMs were harvested using Ca2�/Mg2�-free phosphate-buffered saline (PBS)
(Gibco) containing 5 mM EDTA (Invitrogen, Life Technologies), and maintained in DMEM containing 10%
FBS and 10% L929 conditioned medium after infection. Immortalized BMDMs (iBMDMs) were immortal-
ized by infection with the J2 retrovirus (BEI Resources). RAW 264.7 and THP-1 cells were obtained from
American Type Tissue Collection (ATCC) and were maintained in DMEM and RPMI 1640, respectively, with
10% FBS. THP-1 differentiation was induced using 20 ng/ml phorbol 12-myristate 13-acetate (PMA)
(Sigma) for 18 to 20 h.

Bacterial infections. For in vitro macrophage assays, a log-phase culture of Mtb H37Rv was pelleted
and resuspended in macrophage culture medium. Bacterial single-cell suspensions were prepared by
filtering through 5-�m filters (catalog no. 4650; PALL Life Sciences). The number of Mtb in the resultant
filtrate was estimated by measuring absorbance at 600 nm, followed by infection of macrophages at a
multiplicity of infection (MOI) of 5. After 4 h, macrophages were washed three times with warm DMEM
to remove extracellular bacteria, and then resuspended in medium containing FAO inhibitors or solvent
control. To estimate intracellular Mtb growth, infected macrophages were lysed in 0.06% sodium dodecyl
sulfate (SDS) solution at the indicated time points, and serial dilutions of the lysates were plated on 7H11
agar plates (catalog no. 283810; BD Biosciences) containing BD BBL Middlebrook OADC (oleic acid-
albumin-dextrose-catalase) enrichment (catalog no. 212351; BD Biosciences) and glycerol. The numbers
of CFU were calculated 14 to 21 days later. For in vivo infections, log-phase H37Rv culture was pelleted
and resuspended in sterile 0.5% Tween 80 solution. After a centrifugation step, the supernatant was used
for aerosol infection using a Glas-Col inhalation exposure system. The infectious dose administered was
calculated by plating CFU from an aliquot of the bacterial suspension.

Mouse surgeries and aerosol infections. Alzet mini-osmotic pumps (model 2002; Durect Corpo-
ration, CA) were loaded with saline or TMZ solution as per the manufacturer’s protocol. The osmotic
pumps were surgically implanted in anesthetized mice under aseptic conditions. The mice were
administered analgesic to minimize pain and were monitored regularly for signs of pain and other
postoperative complications. Two days later, the mice were infected with Mtb H37Rv via aerosol route
using an inhalation exposure system from Glas-Col. The dose of infection was confirmed 1 day
postinfection by plating whole-lung homogenates from two mice on Middlebrook 7H11 agar. Two weeks
postinfection, the mice were euthanized, and the lungs were harvested, homogenized, and plated for
CFU.

Serum microsampling of TMZ. Serum concentrations of TMZ in mice were determined at 5 and
14 days after initiating treatment. Lidocaine was applied to mouse tails to minimize pain, and the end of
the tail was wiped with alcohol, and a small incision was made. One hundred microliters of blood was
collected in K2-EDTA microvette tubes (Braintree Scientific, Inc.) and was centrifuged at 5,000 rpm for 5
min to recover plasma. Samples were stored at – 80°C until analyzed for TMZ content.

Fluorescence microscopy and image analyses. BMDMs were seeded in 8-well chamber slides
(Falcon culture slide 8-well, catalog no. 08-774-26), and infected with dsRed-expressing H37Rv at an MOI
of 5. At the indicated time points, samples were fixed overnight with 1% paraformaldehyde (PFA). For
immunofluorescence (IF), samples were permeabilized and blocked in PBS with 0.05% saponin and 3%
bovine serum albumin (BSA), and stained with the indicated primary antibodies for 2 h at room
temperature or overnight at 4°C. Primary antibodies used were p40phox, gp91phox/NOX2, LC3, and p62.
Staining with Alexa fluorophore-conjugated secondary antibody was done for 2 h at room temperature.
Following this, the samples were washed with 0.1% Tween 20/PBS and mounted using Prolong Gold
antifade (catalog no. P36930; Thermo Fisher Scientific).

Images were captured using a Nikon Eclipse Ti confocal microscope (Nikon Instruments Inc.)
equipped with a 60� apochromat oil-objective lens, and analyzed using NIS-Elements version 4.40
(Nikon). Briefly, a region of interest (ROI) was drawn around each bacterium, and the mean fluorescence
intensity (MFI) was measured using the ROI statistics tool.

ROS measurement assays. For ROS measurement assays, the macrophages were seeded in 96-well
plates (�-Plate 96 well [catalog no. 89626; IBIDI]). To estimate total cell ROS, the samples were treated
with CellRox green fluorescent dye (Thermo Fisher Scientific) at 5 �M for 30 min. The samples were
washed three times with PBS and fixed overnight with 1% PFA. Mitochondrial ROS was measured in live,
uninfected macrophages using MitoSox fluorescent dye (Thermo Fisher Scientific) at 5 �M for 30 min.
The samples were imaged using confocal microscopy, and the ROS signal of each cell was quantified
using NIS-Elements software. Briefly, each cell was converted to a ROI, and the MFI was measured using
the ROI statistics tool.

Oxygen consumption rate and extracellular acidification rate. BMDMs from Cpt2 cKO mice and
control littermates were plated in 96-well Seahorse plates at a density of 75,000 cells per well. The cells
were treated with 5 nM TMZ or solvent control for 3 h. After treatment, the cells were washed and placed
in XF medium (nonbuffered RPMI 1640 containing 25 mM glucose, 2 mM L-glutamine, and 1 mM sodium
pyruvate) with 10% fetal calf serum (FCS). Oxygen consumption rate (OCR) and extracellular acidification
rates (ECARs) were measured under basal conditions, and the following inhibitors were added: 1 �M
oligomycin (Sigma), 1.5 �M fluorocarbonyl cyanide phenylhydrazone (FCCP) (Sigma), and 100 nM rote-
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none (Sigma) plus 1 �M antimycin A (Sigma). Measurements were taken, using a 96-well extracellular flux
analyzer (Seahorse Bioscience, North Billerica, MA, USA).

Cytokine measurements. Culture supernatants were harvested from uninfected or Mtb-infected
BMDMs that were untreated or treated with 5 or 50 nM TMZ for 24 and 72 h. The conditioned medium
was filter sterilized, and cytokines and chemokines were measured using Milliplex MAP Mouse Cytokine/
Chemokine Magnetic Bead Panel (MCYTOMAG-70K;Millipore Sigma) and Procartaplex Mouse IFN�/IFN�

Panel (2plex) (Thermo Fisher Scientific).
Liquid MIC determinations. In 96-well plates, Mtb cultures with a starting optical density at 600 nm

(OD600) of 0.01, 0.05, and 0.10 were incubated with increasing concentrations of drugs in triplicate. The
growth of Mtb was measured at days 0, 1, 2, 3, and 4. The MIC was considered the minimal concentration
tested that inhibited Mtb growth at 4 days. To assess the direct toxicity of TMZ on Mtb, H37Rv expressing
the Vibrio harveyi luciferase (Rv-lux) was cultured in Middlebrook 7H9 broth with or without 1 mM TMZ
for 7 days. Relative luminescence units (RLU) were measured every 2 days at 490 nm.

PK studies. Pharmacokinetic (PK) and plasma binding studies were performed by Alliance Pharma
(PA, USA) following intravenous (IV) and oral administration of 3 and 15 mg of TMZ/kg of body weight,
respectively. PK study of TMZ using Alzet osmotic pumps was conducted by Paraza Pharma Inc., Canada.
Briefly, Alzet osmotic pumps (model 2002; Durect Corporation) were surgically implanted in C57BL/6
mice (n � 5) for a subcutaneous infusion at 10.66 mg/kg/day. Plasma TMZ concentrations were deter-
mined over the course of 48 h.

Statistics. GraphPad Prism software was used to prepare plots and assess statistical significance of
results using unpaired Student’s t test with Welch’s correction, ordinary one-way analysis of variance
(ANOVA) and Mann-Whitney test.

SUPPLEMENTAL MATERIAL
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FIG S1, PDF file, 0.1 MB.
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