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ABSTRACT

Next-generation sequencing–based metagenomics
has enabled to identify microorganisms in charac-
teristic habitats without the need for lengthy cul-
tivation. Importantly, clinically relevant phenomena
such as resistance to medication, virulence or inter-
actions with the environment can vary already within
species. Therefore, a major current challenge is to
reconstruct individual genomes from the sequenc-
ing reads at the level of strains, and not just the
level of species. However, strains of one species
can differ only by minor amounts of variants, which
makes it difficult to distinguish them. Despite consid-
erable recent progress, related approaches have re-
mained fragmentary so far. Here, we present StrainX-
press, as a comprehensive solution to the prob-
lem of strain aware metagenome assembly from
next-generation sequencing reads. In experiments,
StrainXpress reconstructs strain-specific genomes
from metagenomes that involve up to >1000 strains
and proves to successfully deal with poorly covered
strains. The amount of reconstructed strain-specific
sequence exceeds that of the current state-of-the-art
approaches by on average 26.75% across all data
sets (first quartile: 18.51%, median: 26.60%, third
quartile: 35.05%).

INTRODUCTION

Metagenomics reveal the composition of complex micro-
bial communities. Therefore, metagenomics facilitate to
study the interactions and the environmental impact of mi-
croorganisms within their communities. In particular, next-
generation sequencing (NGS) has meant a major boost for
metagenomics. The decisive advantages of NGS are to ana-
lyze the DNA isolated from environments of interest at lit-
tle expense and without the need to culture samples (1). In
the past decade, NGS has been successfully applied to ex-
plore microbial communities from soil (2), ocean (3), hu-

man (4) and environments exposed to extreme conditions
(5), among others.

A current major challenge is to assemble the individual
genomes that make part of the metagenome. Unlike refer-
ence assisted assemblies, de novo assemblies are free of bi-
ases and can highlight individual genomes for which ap-
plicable reference genomes are still missing. Spurred by the
great general interest, various de novo metagenome assem-
bly methods have been developed. A non-exhaustive selec-
tion of state-of-the-art approaches encompasses IDBA-UD
(6), SPAdes (7), Minia3 (8) and MEGAHIT (9).

The currently leading approaches successfully identify
and reconstruct individual genomes at the level of species.
However, their abilities in terms of distinguishing genomes
at the level of strains leave substantial room for improve-
ments. Importantly, although belonging to the same species,
strains can exhibit significant differences in terms of their
interactions and the impact within the environment they
belong to (10). Moreover, strains can differ in terms of
clinically relevant phenomena: for example, while various
strains of Escherichia coli are harmless, produce vitamin
K (11) or suppress pathogenic bacteria (12), other E. coli
strains can cause serious inflammatory processes or just poi-
son food, such as E. coli EC958 (13) or E. coli O157:H7 (14).
Since the primary purpose of metagenomics is to analyze
the interactions of the genomes with each other, and their
impact on the environment they are drawn from, identifying
genomes at the level of strains can be imperative.

Here and in the following, a ‘strain’ is defined to be a viral
or bacterial haplotype, as a contiguous genomic sequence
that is supported by sufficiently abundant amounts of se-
quencing reads. We do this in agreement with related work
on the topic (15), while we are aware of the possibly different
meaning of a ‘strain’ in terms of classic taxonomy or other
concepts relevant in the evolution of microorganisms.

When investigating the shortcomings of prior ap-
proaches, one realizes that all of them follow the de Bruijn
graph (DBG) assembly paradigm. Among other things, this
implies to chop sequencing reads into smaller pieces of
equal length k (‘k-mers’). One then tries to identify paths
in the DBG, defined by nodes reflecting k-mers, and edges
reflecting overlaps of length k − 1. So, in DBG-based as-
sembly, one trades off sequence length for benefits that usu-
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ally relate to computational efficiency, which is supported
by the efficient data structures that DBGs give rise to (16).
The trade-off is generally justified by the huge volume of the
majority of contemporary NGS data sets (17).

Chopping reads into smaller pieces induces an obvious
loss of information; however, the genetic linkage of sequen-
tial variants at distance >k can no longer be tracked (18).
Without additional precautions, which usually involve to
consider reads at their full length in a post-hoc analysis, the
cutting of reads into pieces of length k can severely hamper
to distinguish between genomes of high identity1: as soon as
the variants that are characteristic of the genomes are sepa-
rated by >k positions within their genomes, genetic linkage
of variants can no longer be observed.

Instead, considering reads at their full length optimally
preserves information about co-occurring (i.e. linked) mu-
tations that are characteristic for the strains. This explains
why approaches that do not require to chop reads into
smaller pieces have recently gained considerable attention.
The predominant data structure that supports such ap-
proaches are overlap graphs (OGs). Unlike DBGs, OGs do
not require to work with k-mers, and have been the tra-
ditional counterpart of DBGs. First of all, however, OG-
based approaches traditionally require considerably more
computational resources, which highlights the popularity of
DBG-based approaches yet another time.

Nonetheless, if one can get OG based approaches to run
in an affordable amount of runtime and memory, OG-based
approaches do have clear advantages over DBG-based ap-
proaches because OG-based approaches optimally preserve
the identity of the haplotypes within the mix of genomes.
This situation sets the framework for the currently driving
methodical challenges in metagenome assembly: overcom-
ing the computational bottlenecks of OG-based approaches
is key to success when aiming at considerably improved
haplotype/strain aware assemblies of metagenomes.

The computational bottlenecks of OG based approaches
are manifold. Recent works have demonstrated how to over-
come single such bottlenecks, one at a time: first, an OG-
based solution for strain aware metagenome gene assem-
bly (which addresses to reconstruct only the sequences of
the genes within the genomes) was presented (19). Subse-
quently, an OG-based solution for the viral quasispecies
assembly problem was suggested (20). The approach spe-
cializes in virus genomes, which means that genomes are
only of short length, whereas the coverage of the individ-
ual genomes is large. Subsequently, it was shown how to
construct OGs for genomes spanning several millions of
nucleotides, which enabled to assemble genomes of higher,
but fixed ploidy in a ploidy-aware manner (21). Further,
an OG-based approach was suggested that clusters raw
metagenome sequencing reads into species specific groups
without the need for a reference genome (22). The motiva-
tion for this study was the fact that strain aware assembly
tools could conveniently pick up clusters, while they failed
to produce good assemblies when dealing with the full data
set (22). Beyond these OG-based approaches that address
to work with short NGS reads, it may be important to real-
ize that OGs are the predominant data structure when as-
sembling the genomes of vertebrates in a ploidy aware man-
ner using third-generation sequencing reads (23,24), which

provides general motivation for pursuing OG based ap-
proaches also in metagenomics.

Overall, recent progress on OG-based haplotype / strain
aware assembly of genomes from mixed samples has been
very promising on the one hand, but has remained frag-
mentary on the other hand. A comprehensive tool that syn-
thesizes the recent progress by seamlessly combining the
fragmentary work presented so far, and by modifying and
adding whatever needs to be modified and added has not
been presented so far.

The goal of this paper is to establish such a compre-
hensive solution and provide easy-to-use software that im-
plements it. In this, this study suggests a considerable im-
provement over the earlier fragmentary, proof-of-concept
approaches presented so far. Beyond comprehensiveness
and easy usage an additional goal is provide an approach
that is sufficiently lightweight; we recall that, if implemented
in a naive manner, OG-based approaches tend to be com-
putationally (overly) demanding. Of course, however, the
central purpose of our approach is to deliver strain-aware
metagenome assemblies of utmost quality, and, so, to es-
tablish a considerable step up in NGS based metagenome
analysis.

MATERIALS AND METHODS

Overview

We present StrainXpress, as a tool that realizes all goals for-
mulated towards the end of the Introduction: to the best
of our knowledge, StrainXpress is the first comprehensive
OG-based approach by which to compute strain aware as-
semblies of metagenomes from NGS (Illumina type) reads.
In the following, we will outline the methodical basis of the
approach. In Results, we will demonstrate the superiority of
StrainXpress with respect to the most relevant aspects. As
a brief summary of its achievements, StrainXpress appears
to be the only approach so far to deliver strain-resolved as-
semblies of metagenomes from NGS reads.

We recall that StrainXpress is based on overlap graphs
(OGs) in the majority of its algorithmic routines. In the fol-
lowing, we first discuss the workflow of StrainXpress, as a
high-level description of its algorithmic approach. Subse-
quently, we will provide the full range of methodical details
for each of the steps. We will also provide descriptions of
the simulated and real data sets used in our experiments,
and define the criteria by which we evaluate the assemblies.

Workflow

From a general perspective, StrainXpress pursues a divide
and conquer strategy that combines partial improvements
into a comprehensive solution: while dividing refers to clus-
tering reads into smaller portions and assembling strain-
specific contigs for each cluster, conquering refers to collect-
ing all contigs from each cluster, and assembling them fur-
ther into longer strain-specific genomes in a global manner.
Importantly, all of these steps––clustering, cluster based as-
sembly of (strain-specific) contigs and global assembly of
cluster derived contigs––are OG based.

See Figure 1 for an illustration. As just pointed out, the
workflow consists of three steps. We recall that the first two



PAGE 3 OF 14 Nucleic Acids Research, 2022, Vol. 50, No. 17 e101

Figure 1. Workflow of StrainXpress. StrainXpress consists of three stages:
‘Clustering Reads’ (1), ‘Local Assembly’ (2) and ‘Global Assembly’ (3). All
stages are based on overlap graphs as underlying data structure. The work-
flow follows a ‘Divide-And-Conquer’ strategy. While (1) and (2) reflect the
‘Divide’ part, (3) reflects the ‘Conquer’ part.

steps reflect the divide stage, while the third step reflects the
conquer stage:

• Clustering reads determines relatively small groups of
reads that are likely to stem from identical species.

• Local assembly assembles reads within (species) clusters
into strain-aware contigs using cluster-specific overlap
graphs. Strain-aware assembly is computationally feasi-
ble because clusters are both sufficiently small and bio-
logically coherent.

• Global assembly takes in cluster-specific, strain-aware
contigs from ‘local assembly’ and extends them by con-
necting them across clusters. This stage is based on
a ‘master’ overlap graph as underlying data structure,
where nodes refer to cluster-specific contigs, and edges in-
dicate sufficient and coherent overlap. The resulting ‘mas-
ter contigs’ are the output of StrainXpress.

As above-mentioned, StrainXpress draws inspiration
from the (so far fragmentary) OG-based work that was
presented earlier. In particular, it was described how to
cluster the reads of metagenomes into species-specific clus-
ters (OGRE) based on a hierarchical single-linkage cluster-
ing strategy. Here similar in spirit, we cluster NGS reads
also following a single-linkage protocol. However, here
we avoid the computationally expensive machine learning

(ML) based routine by which to evaluate read overlaps
(22,22) and replace it with an algorithmic protocol that is
computationally inexpensive. We find that the substantial
improvements in terms of speed offset the negligible losses
in terms of overlap quality. Importantly, note that overlap
quality and species consistency of clusters is not a primary
goal here, which differs from the objectives formulated in
the earlier study (22).

For ‘local assembly’, we adopt an OG-based ploidy
aware assembly strategy suggested earlier (POLYTE). Here,
it serves as a generic template for the conquer stage of
StrainXpress. The decisive adaptation is to replace the FM
index based computation of approximate overlaps as orig-
inally proposed (21,21) with minimizer bases schemes as
implemented by Minimap2 (25). For that the key insight
has been to realize that Minimap2 although not primarily
meant to deal with short reads, achieves improvements over
the FM index based overlaps implemented in (21). This may
appear counterintuitive at first glance because the FM index
based overlaps particularly cater to short reads, while Min-
imap2 does not. However, despite holding little promise at
first glance, the Minimap2 driven strategy yields drastic im-
provements in terms of computational expenses, without in-
curring losses in terms of the quality of the OGs on which
strain aware metagenome assembly is based.

Seen from a larger perspective, combining the ideas raised
in prior work (21,22) makes perfect sense; apparently, this
insight had passed unnoticed so far. Certainly, a major
reason is that (21) had been explicitly designed for fixed
ploidy settings which is rather the opposite of what is needed
in metagenome assembly, where numbers and abundances
of species and strains are unknown at the beginning. The
crucial insight is to realize that the strategy suggested in
(21) also works for metagenomes if presented with well ar-
ranged, pre-processed portions of the raw read data.

The last step of StrainXpress (‘Global Assembly’ in Fig-
ure 1) collects all haplotigs into a ‘master’ overlap graph.
Construction of such a master overlap graph corresponds to
a straightforward operation, since the nodes of the master
overlap graph, thanks to the design of the workflow, reflect
both strain aware and error corrected sequence.

Algorithmic steps: details

Single linkage clustering. For efficiently clustering reads,
StrainXpress employs a single linkage clustering algorithm
that adopts the successful prior ideas (22). The overlap file
as generated by Mimimap2 reflects the overlap graph and
stores the distance information between each pair of reads.
In single linkage clustering, the distance between two clus-
ters is the shortest distance between any member of the first
cluster and any member of the second cluster. To quickly
determine the corresponding pair of reads in our scenario,
StrainXpress sorts the overlap file by the distance scores,
such that the ‘closest’ pair of reads (i.e. the pair of reads with
the most compatible overlap) is listed at the top, whereas the
‘most distant’ pair of reads (i.e. the pair of reads with the
least compatible overlap), is listed at the bottom.

After sorting the overlap file this way, merging clusters
in an order that reflects overlap compatibility corresponds
to processing the overlap file in one pass, from top to the



e101 Nucleic Acids Research, 2022, Vol. 50, No. 17 PAGE 4 OF 14

bottom. The complexity of the corresponding clustering al-
gorithm, including the sorting, amounts to

O(n(log n + n)) = O(n2)

Local assembly. The result of single linkage clustering are
small groups. It is reasonable to assume that the reads in
each of them refer to the one, or at most very little (because
likely related) species. StrainXpress assembles the reads in
each such group by adopting a strategy suggested by ear-
lier overlap graph based work (21). This is possible because
numbers of reads per group are sufficiently small.

For substantially increasing speed StrainXpress makes
use of Minimap2 for re-computing overlaps, instead of the
FM-index based procedure suggested earlier (21) as already
pointed out above.

Global assembly. During local assembly, contigs have been
generated for each cluster. To further extend these con-
tigs, and identify potential connections across the bound-
aries of clusters, cluster-specific contigs were collected into a
global overlap graph, where vertices correspond to (cluster-
specific) contigs and edges correspond to overlap of suffi-
cient quality: an edge corresponds to an overlap of >100 bp
and identity of at least 0.99, where choices are inspired by
analyses presented in earlier work (20,21).

Corresponding to standard procedures, we further re-
moved all transitive edges, and immediately joined ‘branch-
less’ contigs. Here, for identifying branches, we evaluated
reads that matched the corresponding contigs. After re-
moval of branches, StrainXpress updates the graph and ex-
tends contigs further. This process is repeated iteratively,
until no further branches are observed. The final result of
this iterative procedure are the ‘master contigs’, which es-
tablish the final output of StrainXpress, ready for usage in
downstream analyses.

As pointed out above the ‘global assembly’ step is es-
sentially overlap graph based. However, to further ensure
that generation of chimeras is avoided, we only merge con-
tigs into longer, ‘global’ contigs, if the path in the overlap
graph leading through these contigs is unique. If the path
has branches, hence is not unique, we stop expanding con-
tigs. Note finally that contigs can already be assumed to be
strain specific thanks to the procedures that give rise to the
earlier steps. Therefore, disturbing effects such as the gener-
ation of chimeras remaina minor issue in the ‘global assem-
bly’ step.

Sequencing reads: quality control. Before usage, sequenc-
ing reads were quality-controlled by fastp (version 0.20.1)
(26) as a multifunctional FASTQ data preprocessing
toolkit. Major functions of fastp include quality control, de-
tection of adapters, base correction and read filtering.

Bases in the 5’ or 3’ ends of the raw reads exhibiting a
Phred score of <20, as well as adapters were trimmed. Af-
ter clipping, only reads >70 bp were kept. Additionally, in
the self-overlapping parts of paired-end reads, fastp corrects
mismatched bases when a high-quality base is paired with a
low-quality base.

Computation of suffix-prefix read overlaps. StrainXpress
utilizes Minimap2 (25) (version 2.18-r1015) for identifying

the suffix-prefix overlaps between two reads as required.
In identifying such overlaps Minimap2 is 3–4 times faster
than alternative approaches. While in the earlier approach
(22) quality of overlaps was based on a regression scheme
that takes error profiles length and identity of overlap re-
gions into account, StrainXpress calculates an overlap score
based on the CIGAR string that is output by Minimap2, see
(1) and further explanations below. This eliminates the need
for assessing the quality of the overlap across its full length,
so comes with considerable gains in terms of runtime.

Overlap score: Let i be the sequence identity of the over-
lap region, o be the length of the overlap, and r1, r2 be the
length of the two overlapping reads. We compute the overlap
scoreD for the corresponding overlap as

D = 0.9 × i + 0.1 × o
(r1 + r2)/2

(1)

For the sake of illustration, consider that although two
reads belong to the same haplotype, the length of their over-
lap may be short. This requires to strike a balance between
length and quality of the overlap. Based on empirical tests,
we determined 0.9 (and 0.1 = 1 − 0.9, correspondingly)
to work well. While we did not invest in a systematic op-
timization procedure to determine these parameters, exper-
iments of ours demonstrate that changing these parameters
in reasonable ways hardly induces any changes, see Supple-
mentary Table S1 (‘Different cluster parameters’). Further,
StrainXpress neglects overlaps of length <30 bp and iden-
tify <0.9. These choices are inspired by choices made in ear-
lier work (20,21).

Data sets

Simulated data. To evaluate the performance of StrainX-
press, we generated nine synthetic Illumina sequencing data
sets using CAMISIM (27) (version 0.0.6) as a popular
metagenome simulator. These data sets can be classified into
three categories: low complexity data, comprising genomes
of 20 strains belonging to 10 species, medium complex-
ity data (100 strains/30 species) and high complexity data
(1057 strains/376 species). To assess the impact of read
length, we generated three data sets for each of the different
levels of complexity: 2× 250 bp, 2× 150 bp and 2× 100 bp,
which yielded 9 data sets overall. While the genomes for
the ‘low complexity’ and the ‘medium complexity’ data sets
were obtained from earlier work (DESMAN), the genomes
of the high complexity data were downloaded from the
2nd CAMI Human Microbiome Project. See Supplemen-
tary Table S1, ‘Genomes of simulation datasets’, for full in-
formation in terms of species and strain content of the data
sets referring to the three different levels of complexity. The
average coverage per strain in the low complexity, medium
complexity and high complexity data sets was 20×, 20× and
10×. As per the principles of CAMISIM, the abundance of
different strains is uneven, as sampled from a log-normal
distribution.

Further, to evaluate the influence of coverage, we gener-
ated 8 data sets that mix simulated and real data. The re-
sulting type of sequencing data set is commonly referred
to as ‘spike-in’ data. The idea is to evaluate how meth-
ods assemble the simulated, ‘spiked-in’ data––for which one
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knows the ground truth––as part of a real data scenario.
In more detail, we spiked 8 different, real gut metagenome
sequencing data sets, resulting from experiments referring
to the evaluation of bacteria in stool microbiota relating
to the development of eczema (28,29) (project number:
PRJNA272371) with simulated reads from 10 well-known
Salmonella strains as downloaded from (30). For simulat-
ing reads from the Salmonella strains, we again made use of
the CAMISIM simulator. To account for the influence of
read coverage, the coverage of the spiked-in strains ranged
from 5× to 40×, at steps of 5×, across the 8 real data sets.
That is, each of the 8 spiked-in real data sets refers to one
particular level of coverage. For details in terms of Genome
ID’s and SRA identifiers referring to these data sets, please
see Supplementary Table S1, ‘spike-in salmonella’.

Selection of real data sets. We considered three real data
scenarios in our benchmark experiments:

Bmock12, the first sample, reflects a mock community,
which includes 12 bacterial strains from 10 species (31).
The read length of Bmock12 is 2× 150 bp (average insert
size: 302.7 bp) which can be downloaded from the SRA
(SRX4901583). The corresponding paired-end reads of 2×
150 bp were sequenced using Illumina. Note that the aver-
age coverage of Micromonospora coxensis is only 0.1× (Sup-
plementary Table S1), which hampers any reasonable at-
tempt to assemble that strain. So, one virtually deals with
only 11 bacterial strains. The average coverage of the corre-
sponding 11 strains ranges from 74.56× to 3093.79× (me-
dian is 1376.35×). For the sake of a less runtime-intense
evaluation in the light of the large amount of duplicates
among the reads, we randomly extracted 20% of the reads,
and further processed only these. Finally, note that chal-
lenges of this data set are to assemble the genomes of the two
Marinobacter and the two Halomonas strains, which come
at 85% and 99% ANI, respectively.

NWCs, the second real data set is a metagenome sequenc-
ing data set drawn from natural whey starter cultures (32).
The metagenome samples of NWCs were sequenced using
Illumina MiSeq at a read length of 2× 300 bp and, in addi-
tion, using PacBio and ONT. As this study focuses on short
reads, we did not consider the latter two kinds of reads. In an
earlier study, complete genomes for 6 bacterial strains from
3 species were obtained, by means of running a hybrid as-
sembly method (32). Genbank numbers of the correspond-
ing 6 genomes are CP029252.1 CP031021.1, CP031024.1,
CP031025.1, CP029252.1 and CP031021.1; we used these
assembled genomes as ground truth when evaluating as-
sembly results. Note that the data set presented itself as
unusual, because the reads were pre-trimmed before they
were deposited at the SRA. This implies that many reads
are of length <150 bases, see Supplementary Figure S1 for
corresponding information, that is much shorter than com-
mon Illumina reads. Note further that reads that are too
short do not support the identification of patterns of co-
occurring variants, which characterize the strains. So, these
pre-trimmed reads do not serve the purpose of generating
strain aware assemblies––note that including them during
assembly led to no improvements neither for StrainXpress
nor for the alternative methods, see Supplementary Tables
S6 and S7; we therefore removed all reads of length <150

bases, thereby re-establishing a spectrum of read length that
is common for Illumina sequencing experiments. Based on
these findings, we generally recommend to remove too short
reads before running StrainXpress.

Gut Metagenome refers to data stemming from 22 real gut
metagenome sequencing data sets, where fragments were se-
quenced using Illumina HiSeq X Ten, at a read length of
2× 150 bp. The foundation of the data sets were 22 sam-
ples, each of which refers to one patient either before or
after surgery involving thoracic aortic dissection. Each of
the 22 patients had gastrointestinal complications (33). As
there was no ground truth readily available we made use of
StrainEst (34) (version 1.2.4) as a tool that depends on the
availability of reference genomes to determine genomes at
strain level identity from metagenomes (so cannot compete
with the tools here, but can be used to generate ground truth
for strains that refer to reference genomes of sufficiently
high quality). Applying StrainEst to each of the 22 patient
samples individually yielded 1899 E. coli strains overall. We
then kept only the samples of patients where the raw reads
covered more than one of these 1899 strains at at least 95%
of their length, which applied for 5 out of the 22 samples. We
then further filtered the 1899 E. coli strains for those that
were sufficiently covered (>95% genome length) in any of
the five patient samples we kept. This yielded 11 strains for
which an applicable ground truth was available. For the five
applicable patient samples, one referred to three and four re-
ferred to two strains. Across the five data sets, strains vary in
terms of average nucleotide identity (ranging from 96.59 as
the least challenging to 98.98 as the most challenging), and
depth of coverage per strain ranges from 341× to 17×, see
Figure 4 and Supplementary Table S1 (‘Gut metagenome’).
The SRA identifier of the data set is PRJNA379884; Gen-
Bank numbers of the 1899 E. coli genomes and SRA num-
ber of the five assembled samples are listed in Supplemen-
tary Table S1. In summary, the five data sets just described
are meant to reflect a real data based scenario that supports
to clearly evaluate how methods behave when varying cov-
erage of strains and divergence between strains.

Alternative approaches

We repeat that StrainXpress is novel insofar as methods
that decidedly invested in distinguishing strains when as-
sembling metagenomes from short reads had not been avail-
able earlier. To nevertheless provide a comparison that ap-
propriately highlights the current status, we considered the
following four leading state of the art metagenome assem-
blers: IDBA-UD (6) (version 1.1.3-1), SPAdes (7) (version
3.14.1), MetaSpades GATB-Minia (8) (version 1.4.1) and
MEGAHIT (9) (version 1.2.9). We included SPAdes in ad-
dition to MetaSPAdes because it was recently shown to have
advantages over MetaSPAdes with respect to assembling
genomes in a haplotype aware manner (20,22). These as-
semblers used the standard commands with either default
values or recommended parameters in their manual (Sup-
plementary Table S10).

Importantly, we recall that all alternative de novo as-
sembly approaches are based on DBGs as an underly-
ing data structure that supports assembly. While IDBA-
UD addresses to assemble genomes of uneven coverage



e101 Nucleic Acids Research, 2022, Vol. 50, No. 17 PAGE 6 OF 14

(which includes metagenome and single cell sequencing
data), SPAdes is a versatile assembler that has shown to
prevail also in settings for which it had not been origi-
nally designed (20) see also the comment above. Minia is a
memory-efficient genome assembler, making use of Bloom
filter techniques to represent DBGs efficiently, and serving
as the foundation for GATB-Minia, reflecting a pipeline
that addresses to assemble metagenomes. MEGAHIT uses
concise DBGs to efficiently assemble complex metagenome
data sets.

Beyond only considering de novo assembly methods, we
also included reference-guided methods in our benchmark
experiments, in particular because these reference-guided
methods have been designed to assemble genomes in a
haplotype-aware manner. As suggested by (35), we consid-
ered ConStrains (36), StrainFinder (37), Gretel (38) and
DESMAN (28) as currently leading tools. Gretel (38) em-
ploys a Bayesian model for local haplotype reconstruc-
tion which uses pairs of single-nucleotide polymorphisms
(SNPs) showing across several sequencing reads as evidence
for haplotypes. DESMAN (28) first assembles reads us-
ing MEGAHIT and then proceeds with detecting SNPs in
36 single-copy core genes (‘SCGs’) to predict the number
and relative abundance of strains. StrainFinder is based on
evaluating SNP’s in marker genes (single-copy phylogenetic
markers in particular see (39)) to predict the number of
strains and their relative abundance. Similarly, ConStrains
is designed to evaluate SNPs in marker genes to predict the
number and relative abundance of strains.

Evaluation criteria

For comparing methods we consider genome fraction
NGA50, N50, Error Rate, misassembled contig rate and N
rate, as computed by Quast (40) (version 5.0.2). Based on
general recommendations we added the flags –ambiguity-
usage all and –ambiguity-score 0.9999 when evaluating
metagenomic assemblies. All other parameters reflect de-
fault values.

Here, to accurately monitor the performance of the indi-
vidual methods with respect to strain identity, the reference
genome consists of the concatenation of all strain-specific
genomes involved in the respective data set one analyzes. In
particular, this means that ‘Genome Fraction’, as the per-
centage of bases in the reference genome against which con-
tigs become aligned, reflects how much of each of the strain-
specific genomes can be reconstructed from the reads. In
other words, here ‘Genome Fraction’ is the central quantity
when assessing strain awareness.

As usual, N50 refers to the length of the shortest contig
such that at least 50% of the assembly consists of contigs of
that length or greater. NGA50 is the length of the shortest
contig such that at least 50% of the true genome (here: the
concatenation of all strain specific genomes) are covered by
contigs of that length or greater. While the Error Rate is de-
fined as the sum of the mismatch and the indel rate, the N
rate is the percentage of ambiguous bases. A misassembled
contig is defined to give rise to one of the following scenar-
ios: left and right flanking sequences of the contig (i) both
align to the true genome, but leave a gap or overlap them-
selves by >1 kbp; (ii) align to different strands or (iii) even

align to different strains. Identity is calculated by comput-
ing the percentage of completely matching bases in the op-
timal alignment of a contig with the ground truth; note that
in general contigs may have several alignments that make
sense, while here only the optimal one of them is consid-
ered.

RESULTS

We analyzed the performance of StrainXpress, by compar-
ing it with the available state of the art tools on all of the data
sets, all of which we described in the Materials and Methods
section.

Experiments

According to the origin of the data, the comparison exper-
iments can be divided into two parts:

The first part refers to simulated Illumina data, which in-
cludes the spiked-in data sets. Note that the choice of se-
quencing technology reflects the standards of contempo-
rary short read sequencing based metagenomics. As de-
scribed above, depending on numbers of species and strains
included, we distinguish between data sets of ‘low com-
plexity’, ‘medium complexity’ and ‘high complexity’. We
also consider the above described ‘strain-mixing spike-in’
data sets, which result from spiking real data with simulated
reads generated from known Salmonella strains.

The second part refers to the real data sets. As for reference
genomes required for evaluating the experiments, we make
use of reference genomes when available; as outlined above,
reference genomes for ‘Gut Metagenome’ were missing; we
recall that we used StrainEst (34) for computing strain spe-
cific genomes for five real gut microbiome sequencing data
sets that one could use as a ground truth. We also recall that
StrainEst depends on the availability of reference genomes
at the species level. That implies that StrainEst cannot rea-
sonably compete with the selected methods; however, it is
suitable to determine sufficiently reliable ground truth for
strains of sufficiently well-studied species.

Experiments: simulated data sets

We first evaluated all methods, including StrainXpress as
well as the five alternative state of the art de novo assem-
bly approaches on the synthetic data sets. Please see Table
1 for corresponding results of read length 2× 250 bp; see
further Supplementary Table S1, ‘Different length of reads’
for results to read lengths of 2× 150 and 2× 100 bp. See also
Supplementary Table S1, ‘spike-in salmonella’ for results on
the spike-in Salmonella data sets. Quantities referring to the
criteria listed in the corresponding Tables were determined
using Quast (40) see Materials and Methods section. We re-
call that ‘Genome Fraction’, as the percentage of bases of
all strain specific genomes covered by the assemblies is the
immediate, is the central quantity to assess the strain aware-
ness of tools. This explains why we put particular focus on
‘Genome Fraction’ in the description of all experiments that
follow.

Because the reference-guided alternative approaches that
we considered (Gretel, DESMAN, StrainFinder and Con-
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Table 1. Evaluation of the simulated data (read length: 2× 250 bp). Low complexity data are 20 strains from 10 species, at average coverage 20× per
strain. Medium complexity data are 100 strains from 30 species, at average coverage of 20× per strain. High complexity data are 1057 strains from 376
species, at average coverage of 10× per strain. XC is short for the species aware clustering that StrainXpress implements. Identity is the percentage of the
completely matching bases of the contig in the optimal alignment with the ground truth. Error Rate = mismatch rate + indel rate

Assembly Genome Identity (%) Total assembly N50 NGA50 Misassembled Error
Fraction (%) Length Contig rate (%) Rate (%)

Low complexity data (20×)
StrainXpress 93.45 99.93 99839190 2584 2955 0.11 0.06
SPAdes 74.74 99.91 58772582 5251 1749 0.09 0.04
GATB-Minia 73.33 99.78 67108819 6319 3240 0.25 0.09
IDBA-UD 62.73 99.91 54982071 9159 2381 0.04 0.09
MEGAHIT 62.69 99.71 55186304 20395 4356 1.05 0.15
metaSPAdes 66.56 99.76 62069880 18991 6723 0.10 0.11
Medium complexity data (20X)
StrainXpress 95.16 99.94 465118278 1685 2174 0.08 0.07
SPAdes 72.18 99.55 246604702 10966 2254 0.44 0.08
XC+SPAdes 59.05 99.63 206345396 4104 761 0.72 0.14
GATB-Minia 70.40 99.76 259945654 8324 3107 0.53 0.09
XC+GATB-Minia 70.55 99.77 267643882 8005 3305 0.61 0.11
IDBA-UD 62.01 99.81 216415403 5323 1059 0.22 0.08
XC+IDBA-UD 66.02 99.87 243646195 6107 1948 0.27 0.12
MEGAHIT 62.77 99.47 225937990 3400 1011 14.16 0.38
XC+MEGAHIT 68.77 99.63 267230659 13454 5483 1.06 0.24
metaSPAdes 63.38 99.81 228257504 19701 4394 0.37 0.14
XC+metaSPAdes 53.99 99.71 195286660 6394 729 0.78 0.24
High complexity data (10×)
StrainXpress 84.36 99.88 2278280614 1337 894 0.14 0.22
XC+MEGAHIT 75.63 99.56 2354992154 3358 1686 2.14 0.87
XC+IDBA-UD 70.18 99.68 2006623170 3540 1219 2.25 0.36
XC+GATB-Minia 68.20 99.78 1747199484 3382 794 1.07 0.25
XC+SPAdes 19.23 99.41 367171437 2542 - 3.16 0.64
XC+metaSPAdes 47.21 99.55 708596842 2613 - 1.46 0.45

Strains) required particular treatment in terms of addi-
tional, special data sets, they could not compete with the de
novo assembly tools in the frame of an overall comparison.
We therefore discuss the results referring to the reference-
guided tools in an additional, separate paragraph ‘Compar-
ison with reference-guided methods’, see further below.

Low Complexity Data: Speed and Strain Awareness at Cov-
erage of 20×. We recall that the ‘low complexity’ synthetic
data set contains 20 strains belonging to 10 species, at an av-
erage coverage of 20× per strain.

Part I: Computational efficiency of overlap graph based
strategy. StrainXpress is based on overlap graphs (OGs),
which are known for being computationally intense from
a theoretical point of view. Getting OG-based approaches
to work sufficiently fast in practice is meant to be a major
argument of this study. We therefore first demonstrate that
StrainXpress indeed is sufficiently fast when being used in
realistic scenarios. For that, note further that the complex-
ity of the data, the number of strains, as well as their iden-
tity and coverage do not have much of an influence on the
computational bottlenecks that OG-based approaches can
struggle with. Therefore, in order to run a resource friendly
analysis, we solely focus on the low complexity data set (2×
250 bp) when assessing the speed. In fact, we observed sim-
ilar requirements also for the other data sets (without that
we provide full details).

The first part of our analysis of runtime and memoryy
requirements refers to comparing StrainXpress with the
original OG-based strategies that provided inspiration for
StrainXpress. Because the original strategies were known

to be very slow, StrainXpress is meant to establish an im-
provement over these original strategies. Here, we show
that StrainXpress is faster by (a whopping) 1-2 orders of
magnitude. We further dissect consumption of runtime and
memory into the parts that refer to the different stages
of StrainXpress, ‘Clustering Reads’, ‘Local Assembly’ and
‘Global Assembly’, see Figure 1.

Please see Supplementary Tables S2 and S3 for the follow-
ing results. One observes that ‘StrainXpress - Clustering’ is
46 times faster than the earlier work (22) (Supplementary
Table S2) without any noticeable losses in terms of assembly
quality (compare ‘StrainXpress’ and ‘OGRE + Local As-
sembly’ in Supplementary Table S3). Importantly StrainX-
press yields 899 clusters, instead of only 568 clusters, which
further enhances speed because of enhanced parallelization.

Also, ‘Local Assembly’ is 8 times faster than the original
template (21) (see Supplementary Table S2) again without
remarkable losses in terms of assembly quality: note that al-
though Genome Fraction drops by one point (Supplemen-
tary Table S3), Genome Fraction still exceeds all alterna-
tive methods by nearly 20%, see the discussion below and
Table 1.

Finally, note that runtime advantages persist when re-
placing the components of StrainXpress with the precursor
strategies, both one by one, and in combination.

Part II: Recovery of 20% additional strain specific se-
quence. See Table 1 (read length: 2× 250 bp) for the follow-
ing. The most relevant observation, because immediately
referring to strain awareness, is that StrainXpress raises
Genome Fraction by at least 20% in comparison with the
other methods (StrainXpress: 93.45% versus 74.74% by
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SPAdes, as the second highest scoring). Arguably, this sup-
ports the claim that StrainXpress is the only metagenome
assembler that is sufficiently strain aware.

Further, StrainXpress ranks first in terms of identity
(StrainXpress: 99.93% versus IDBA-UD: 99.91%), second
for Error Rate (StrainXpress: 0.06% versus SPAdes: 0.04%)
and fourth for Misassembled Contigs Rate (StrainXpress:
0.11% versus IDBA-UD: 0.04%); all of these reflect very low
numbers in general. The N50 being smaller than for other
methods is put into perspective by the NGA50 which un-
like N50 refers to the reference sequences being roughly on
a par for all methods, including StrainXpress.

While the contigs of StrainXpress are shorter relative to
the length of the assembly (as measured by N50), they are
not when comparing the length of the contigs with respect
to the true genomes that needed to be reconstructed. On
that point, note that the length of the assembly of StrainX-
press is substantially longer than the ones delivered by the
alternative methods, which puts the small N50 into perspec-
tive. On a side remark, MEGAHIT outperforms all other
methods in terms of contig length (N50 in particular), obvi-
ously traded for a larger amount of misassemblies (exceed-
ing the rate of others by one order of magnitude).

Please see the Supplementary Table S1, Genome Frac-
tion is reduced for all methods except MEGAHIT as read
length decreases to 2× 150 or 2× 100 bp. However, StrainX-
press still outperforms other methods. At read length of 2×
150 bp, StrainXpress (Genome Fraction: 89.14%) recon-
structs 25.47% more of the strain-specific genomes than the
second ranked (Genome Fraction: 63.67%). Decreasing the
read length to 2× 100 StrainXpress comes out at 76.51%
Genome Fraction in comparison to 63.23% Genome Frac-
tion achieved by the second ranked MEGAHIT, so raises
Genome Fraction by at least 13.28% in comparison with
other methods. StrainXpress further outperforms other as-
semblers in terms of identity, Error Rate and Misassembled
Contigs Rate.

Medium complexity data: full strain awareness, no errors and
no misassemblies. See Table 1 (read length: 2× 250 bp) for
the following. We recall that the medium complexity data
set contains 100 strains from 30 species, at average coverage
20× per strain. We considered the application of StrainX-
press’s clustering procedure (referred to as ‘XC’ in Table 1)
as a pre-processing step for the other methods (including
SPAdes). We recall that prior, taxonomy aware clustering of
raw metagenome data was suggested as an interesting gen-
eral strategy earlier (22). Remarkably, this led to consider-
able improvements for IBDA-UD and MEGAHIT, while
affecting SPAdes to the worse (and hardly affecting GATB-
Minia). We refer to Table 1 and Supplementary Table S4 for
a detailed evaluation with respect to how using XC affects
the qualities of the assemblies of alternative methods.

StrainXpress achieves nearly full strain awareness also
on this data set of greater complexity, improving over
other methods by large margins (95.16% versus 72.18% by
SPAdes). Interestingly, StrainXpress assemblies now also
contain the least errors (0.07% versus 0.08% by SPAdes)
and StrainXpress seems to be the only method that can
preserve the low misassembly rate (0.08% versus 0.22% by

IBDA-UD) in the light of this more complex data, with all
other methods experiencing at least two times more misas-
semblies. Again, StrainXpress having small N50 is put into
perspective with the NGA50 not being inferior with respect
to others, and compensated by the much reduced amount of
misassemblies. In summary, also on data sets of such char-
acteristics, StrainXpress appears as the only tool that can
hold the promise of delivering strain aware assemblies.

At read length of 2× 150 or 2× 100 bp, StrainXpress
still outperforms the other methods in terms of all Genome
Fraction, identity and misassembled contig rate, see Supple-
mentary Table S1. At read length of 2× 150 bp, StrainX-
press (Genome Fraction: 81%) reconstruct 18.93% more
of the true genomes than the second ranked MEGAHIT
(Genome Fraction: 62.07%). When decreasing the read
length further to 2× 100 bp, the Genome Fraction achieved
by StrainXpress is reduced to 67.67%. Still, this outper-
forms the second ranked method by 7.59% (MEGAHIT:
60.08%).

High complexity data: reliable reconstruction of strains of
coverage as low as 5×. We recall that the data set reflects
1057 strains from 376 species, with strains sequenced at an
average coverage of 10×. For read length 2× 250 bp, for ex-
ample, this amounted to 62 131 250 paired-end reads overall
(and, naturally, even more for read lengths of 2× 150 bp and
2× 100 bp). Due to the huge amount of reads, StrainXpress
is the only tool that is able to process this data set without
prior treatment. This highlights the practical usefulness of
the divide-and-conquer strategy and provides further evi-
dence for the computational efficiency of StrainXpress in
practice.

To nevertheless make it possible to run the other tools
and provide a meaningful comparison, we ran the alterna-
tive approaches on the clusters that were generated during
the first stage (which we continue to refer to as ‘XC’). In
that, we profited from the insight having gained from the
experiments on the medium complexity data. Note, how-
ever, that for medium complexity prior treatment was an
option, while here, for high complexity, prior treatment is a
necessity. We remind that on the medium complexity data
prior treatment led to improvements for all alternative ap-
proaches apart from SPAdes.

See Table 1 for results on read length 2× 250 bp. StrainX-
press outperforms all other methods by large margins in
terms of genome fraction, error rate, misassembly rate
and identity; see also Supplementary Figure S2. As usual,
StrainXpress has smaller N50, compensated by NGA50
that is on par with those of other tools.

In comparison with earlier results, StrainXpress does no
longer achieve Genome Fraction of >90%. See Figure 2 for
the corresponding explanation: for strains of coverage <5×,
StrainXpress achieves Genome Fraction of a bit >60%. For
coverage of 5× to 10×, StrainXpress again successfully as-
sembles nearly 90% of the strains. Genome fraction rises
to >95% on average for strains of coverage of least 10×.
Across all coverage ranges, StrainXpress outperforms all
other tools significantly. For 5× and more, StrainXpress is
also significantly more stable, as indicated by smaller sized
boxes in Figure 2. This last point suggests that strain spe-
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Figure 2. Genome fraction versus the coverage of strains on the high complexity data set (2× 250 bp). The high complexity data set contains 1057 strains
from 376 species. The average coverage of the 1057 strains is 10× but varies according to a log-normal distribution. We display the genome fraction of the
different strains in the different coverage intervals. Different colors denote different assembly methods.

cific sequential phenomena have less of an influence on the
performance of StrainXpress than that of the other tools.

For results relating to shorter read lengths (2× 150 bp, 2×
100 bp), please see Supplementary Table S1. For 2× 150 bp,
StrainXpress still outperforms the other methods in terms
of the central measures Genome Fraction, Identity and
Misassembled Contig Rate. For read length of 2× 100 bp,
however, Genome Fraction of XC+IDBA-UD (52.77%) is
slightly higher than that of StrainXpress (50.38%). To an-
alyze this further, we found that decreasing the length of
the contigs that are evaluated by Quast (which operates
at a default of 500 bp) to 400 or 300 bp––which is still
considerably longer than the original read length––we find
that Genome Fraction increases for StrainXpress (400 bp:
56.34%, 300 bp: 63.34%), while not noticeably increasing for
the other tools (XC+IBDA-UD – 400 bp: 53.77%, 300 bp:
55.04%). Similar effects show for reads of length 2× 150 bp
already. This indicates that StrainXpress still generates sub-
stantial amounts of high-quality contigs, a substantial por-
tion of which is <500 bp, however. So, comparing tools
across the whole spectrum of contig length, StrainXpress
still has considerable advantages. The likely reason for this
phenomenon is that due to the short read length, branches
in the assembly graph show earlier, which prevents expand-
ing contigs further.

Moreover, note that the strain composition for certain
species in the high complexity data is extremely challenging.
For example, the 71 Neisseria meningitidis strains come at
ANI between 97.76% and 99.9997%, at a median of 99.97%,
which renders them extremely difficult to distinguish. This
further emphasizes the difficulties above described, because
branches in the assembly graph tend to show earlier for such
species.

Figure 3. We generated simulation data sets with different coverage, which
contains 10 salmonella strains. The synthetic reads are mixed with real gut
metagenome sequencing data and then assemble them with different ap-
proaches. The figure presents the change of Genome Fraction in distinct as-
sembly methods with the increase of coverage of the ten salmonella strains.

Strain-mixing spike-in data: the influence of coverage. We
assembled the 8 ‘strain-mixing spike-in’ data sets and eval-
uated the quality of the assemblies of the 10 spiked in
salmonella strains using metaQuast. We recall that an im-
portant particular aspect was that the 8 data sets varied
in terms of coverage of the spiked-in strains, ranging from
5× to 40× in steps of 5×, across the 8 data sets. See Fig-
ure 3 for results with respect to Genome Fraction and see
Supplementary Table S1 for full details. As becomes obvi-
ous from Figure 3, StrainXpress still reconstructs 70.26% of
the genomes at coverage of only 5×, which outperforms the
second best method by 22% (MEGAHIT: 48.26%). From
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coverage of 15× onwards, the Genome Fraction increases
to 84.29% and tends to stabilize. In comparison with other
methods, this means an advantage of at least 36.05% (sec-
ond best: MEGAHIT at 48.24%). As becomes further evi-
dent from Supplementary Table S1, StrainXpress achieves
competitive, if not even optimal performance, also in the
categories ‘Misassembled Contigs’, ‘Identity’ and ‘Error
Rate’. In a final remark, note that the effects observed gener-
ally agree with those observed for the high complexity data
set (see Figure 2).

Comparison with reference-guided methods. In the follow-
ing, we discuss the experiments run for the above-mentioned
4 reference-guided tools. We recall that the 4 methods were
suggested by (35) as establishing the current state of the art.

Gretel: Initially, we tried to run Gretel on the low com-
plexity data set containing reads of length 2× 250 bp.
Following the instructions provided on Gretel’s web-
site (https://gretel.readthedocs.io/en/latest/protocol.html),
we first processed the low complexity data using SPAdes
and MEGAHIT, as the currently most popular state-of-the-
art methods for de novo metagenome assembly (recalling
that SPAdes outperforms MetaSPAdes, which explains our
preferences), and used the resulting contigs as reference for
Gretel. However, Gretel did not terminate within two weeks
(on 32 CPU’s and 500 GB RAM), such that we aborted the
run.

To nevertheless provide a meaningful comparison, we
generated a smaller data set of even lower complexity. This
small data set contains 3 Salmonella strains drawn from
(30), each of which comes at a coverage of 20× (read length
again is 2× 250 bp). Please see Supplementary Table S1 for
Genome Id’s and ANI’s.

For the results obtained, please see Supplemen-
tary Table S8. MEGAHIT+Gretel slightly outper-
forms StrainXpress in terms of Genome Fraction
(StrainXpress: 90.84%; SPAdes+Gretel: 83.78%;
MEGAHIT+Gretel: 92.54%). However, this (slight)
advantage comes at enormous expenses in terms of Du-
plication Rate (StrainXpress: 1.21; SPAdes+Gretel: 8.16;
MEGAHIT+Gretel: 9.66), Error Rate (StrainXpress:
0.059%; SPAdes+Gretel: 1.164%; MEGAHIT+Gretel:
1.861%), Identity (StrainXpress: 99.93%; SPAdes+Gretel:
97.70%; MEGAHIT+Gretel: 97.12%) and Misassembled
Contig Rate (StrainXpress: 0.06%; SPAdes+Gretel:
0.46%; MEGAHIT+Gretel: 0.68%). Moreover,
MEGAHIT+Gretel and SPAdes+Gretel are 45 times
slower than StrainXpress.

StrainFinder: We did not manage to run StrainFinder nor
on our regular benchmark data neither on the small data set
generated for Gretel due to an error thrown during the pre-
processing step. This agrees with the experiences of other
users. See the Supplement (‘Alternative Methods: Errors’)
for more details.

ConStrains: Just as StrainFinder, also ConStrains throws
an error on any of the data sets considered. Again, analo-
gous issues were also encountered by other users and, un-
fortunately, have so far (as of 20 March 2022) not been com-
mented on by the authors. Again, see the Supplement (‘Al-
ternative Methods: Errors’) for more details.

DESMAN: Unlike StrainFinder and ConStrains, DES-
MAN successfully terminated on the small data set that
we had generated for running Gretel. However, DES-
MAN solely estimates the number of strains and their rel-
ative abundances. It does not provide sufficient haplotype-
specific information based on which one can generate non-
ambiguous, haplotype-aware contigs. This does not allow
one to establish a meaningful comparison in terms of
metagenome assembly; evidently, DESMAN is not primar-
ily meant to be an assembly tool. Of course, this does not
deny its obvious usefulness when evaluating the strain con-
tent of metagenomes in terms of other relevant quantities,
apart from reconstructing the genomes of strains.

Summary: Unlike the de novo assembly approaches, all
reference-guided methods either encountered difficulties
when processing both our simulated and real data sets or
are not designed to compute assemblies. We feel that it is
important to mention that these tools may put other valu-
able challenges that arise in metagenome analysis, such as
estimating numbers and abundances of strains and species,
in their main focus.

Experiments: real data sets

We further evaluated all approaches on the real data sets
‘Bmock 12’, ‘NWCs’ and ‘Gut metagenome’.

Bmock12: Successful separation of strains of 99% iden-
tity. We recall that the ‘Bmock12’ data set contains 11
strains from 9 species, so is of rather low complexity. The
two species that exhibit >1 strain are Marinobacter and
Halomonas. Naturally, we will pay particular attention to
them in the following:

See Table 2 for the following results. All methods achieve
fairly large Genome Fraction, which is explained by the low
complexity of the data: 7 out of 9 species only have 1 strain,
so can be assembled without difficulties regardless of the ap-
proach. Nevertheless, the Genome Fraction of StrainXpress
exceeds that of others by at least 3.7%, approaching 99.04%
overall, which demonstrates near-perfect separation of all
strains involved.

To evaluate the corresponding details, we further strati-
fied the results by the individual strains; see Table 3. The
two Marinobacter strains agree on 85% of their nucleotides
(average nucleotide identity [ANI] = 85%), whereas the
two Halomonas strains have ANI = 99%, exposing the
Halomonas strains as the real challenge. We recall that the
7 strains of the other species pose no difficulties for any
method. While StrainXpress has relatively small advan-
tages on Marinobacter (StrainXpress: 99.5% versus other
Materials and Methods: 97-98%), StrainXpress has deci-
sive advantages over all other approaches on Halomonas:
StrainXpress reconstructs both strains at at least 95.5%,
whereas other methods do not exceed 70% (second best:
GATB-Minia) for at least one of the strains. In summary,
StrainXpress is the only method that can successfully distin-
guish between strains of identity of 99%. This demonstrates
clear advantages relative to strain specific reconstruction of
genomes.

As for N50 and NGA50, SPAdes clearly outperforms all
other tools, tripling the values of StrainXpress in particu-

https://gretel.readthedocs.io/en/latest/protocol.html
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Table 2. Evaluation of the real data sets. Having removed a strain of coverage too low to allow for reconstruction, Bmock12 effectively corresponds to
11 effective bacterial strains. NWCs reflects metagenome sequencing data of natural whey starter cultures (NWCs), and contains 6 bacterial strains from
3 species. Error Rate = mismatch rate + indel rate. For results on Gut Metagenome, please see Figure 3

Assembly Genome Identity (%) Total assembly N50 NGA50 Misassembled Error
Fraction (%) Length Contig rate (%) Rate (%)

Bmock12
StrainXpress 99.04 99.93 55332069 60566 65743 0.78 0.018
GATB-Minia 95.31 99.92 49058237 96537 80434 0.47 0.014
SPAdes 95.28 99.98 49055870 189251 171570 0.06 0.012
metaSPAdes 94.55 99.97 48998826 171793 155762 0.13 0.028
IDBA-UD 94.67 99.99 48465926 72765 60987 0.05 0.006
MEGAHIT 93.25 99.87 48637140 120129 105626 2.79 0.027
NWCs
StrainXpress 75.29 99.47 8858666 1056 636 3.34 0.30
SPAdes 59.37 99.38 6083388 10160 - 2.72 0.08
metaSPAdes 57.96 99.68 5767394 9871 - 1.05 0.05
MEGAHIT 57.81 97.78 6141276 14456 - 12.52 0.16
GATB-Minia 56.78 98.78 5779411 11081 - 4.16 0.05
IDBA-UD 56.44 98.87 5873327 9320 - 3.97 0.07

Table 3. Genome fraction of individual strains in the Bmock12 data set of the assemblies of the different approaches

Strains StrainXpress GATB-Minia SPAdes metaSPAdes IDBA-UD MEGAHIT

Cohaesibacter 98.58 97.57 98.07 97.4 97.7 97.48
sp. ES.047
Halomonas 95.54 69.29 54.39 48.6 56.26 39.07
sp. HL-4
Halomonas 97.44 85.43 96.00 95.5 91.95 91.35
sp. HL-93
Muricauda 99.85 99.34 99.5 99.66 99.49 99.63
sp. ES.050
Micromonospora 99.87 99.54 99.84 99.61 99.382 99.23
echinofusca
Marinobacter 99.58 98.15 98.81 98.17 97.42 97.82
sp.LV10R510-8
Marinobacter 99.44 97.59 98.39 97.69 96.7 97.78
sp.LV10MA510-1
Micromonospora 99.7 99.34 99.42 99.35 99.13 99.37
echinaurantiaca
Psychrobacter 98.97 97.7 97.93 97.74 97.49 97.36
sp.LV10R520-6
Propionibacteriaceae 100 99.98 99.99 99.98 99.95 99.96
bacterium
Thioclava 99.55 99.03 99.37 99.22 99.2 99.04
sp.ES.032

lar. Of further note, one sees that in addition to SPAdes
(0.06%), also IBDA-UD (0.05%) achieves a remarkably low
misassembly rate. Although still very low (that is below 1),
StrainXpress has slight disadvantages here (Misassembled
Contig Rate: 0.78%). As always, the explanation for this
is the fact that StrainXpress does not collapse sequence
patches into longer consensus sequence as easily as the
other methods.

NWCs: Dominant strain awareness on highly similar strains
above 25×. This data set contains three species (Strepto-
coccus thermophilus, Lactobacillus delbrueckii and Lacto-
bacillus helveticus), of two strains each, coming at ANI’s
of 99.99%, 99.24% and 98.03%, respectively, rendering this
data set particularly challenging in terms of strain diversity;
see Supplementary Table S5 for additional information.

Note that we removed reads that became too short by the
trimming procedure that was originally applied (see Ma-
terials and Methods for details). It is important to under-
stand that beyond just re-establishing a data set following a

common read length distribution, the corresponding reduc-
tion in terms of coverage rendered the data set particularly
challenging: the average coverage of strains was 25.47×, at
a minimum of 7.46× for one of the Lactobacillus helveti-
cus strains. So the reduction in terms of reads allowed to
evaluate tools with respect to low sequence coverage when
dealing with real data.

Indeed, we found this data set to be the most difficult one
for StrainXpress: while still showing ∼15% more Genome
Fraction than all competitors (see Supplementary Table
S7), Genome Fraction drops to 76.13% in the NWCs data
set. For explaining these effects, we stratified the fraction
of reconstructed genomes relative to the individual strains,
see Supplementary Table S7. We see that Genome Fraction
drops from 97.28% and 94.57% for the Streptococcus ther-
mophilus strains (38.36× and 37.42×), to 68.71% and even
39.59% for the Lactobacillus helveticus strains (13.07× and
7.46×). We also evaluated the identity between contigs and
reference in the individual strains, see Supplementary Table
S9. The assembly results of StrainXpress are highly identi-
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Figure 4. Genome Fraction (%) of ‘Gut Metagenome’. In the 5 real gut metagenome sequencing data, StrainEst predicted 11 strains applicable to serve as
ground truth. The performance of the different methods is evaluated with METAQUAST. The first column displays the GenBank access numbers of the
11 strains. Numbers in the heatmap correspond to genome fraction.

cal with reference strain genomes, which all identity values
excess 99%. In summary, results point out that StrainXpress
requires approximately 30× for strains that are highly simi-
lar to other strains, to operate at the usual levels of quality,
in this real scenario, while clearly dominating the other ap-
proaches on all strains.

Gut Metagenome: distinction of near-identical strains at low
coverage. We recall that ‘Gut Metagenome’ consists of 5
data set that refer to 11 E. coli strains overall (see Materials
and Methods for full details). While the average of cover-
age of the 11 strains is 76× (17× 341×), the average ANI
between two strains stemming from one of the 5 samples is
97.97% (96.59–99.65%). Reads were assembled for each of
the five data sets individually. According to the variations in
terms of coverage and ANI of strain content, the data sets
correspond to five real scenarios of varying degrees of diffi-
culty, so enable the evaluation of the limits of the methods
in terms of strain specific reconstruction of genomes relative
to identity of strains and coverage.

In the following, we focus on evaluating Genome Frac-
tion, as the decisive quantity in the context of these data
sets; see Figure 4 for corresponding results, where strains
are listed in descending order relative to the depth of cov-
erage at which they were sequenced. Note however that, in
addition to coverage, average nucleotide identity (ANI) is an
important factor, too. One observes that Genome Fraction
increases on increasing coverage per strain, which was to
be expected. StrainXpress achieves 73.41% for the strain of
lowest coverage (17×) while achieving 98.04% for the strain
of greatest coverage (341×). We recall that every strain has
at least one other strain that matches it closely, pointing out
that the performance rates of StrainXpress are very compet-
itive. Indeed, all other methods only reach 10–25% Genome
Fraction for at least one of the lowly covered strains. Also,

StrainXpress’ Genome Fraction drops below 75% only for
strains of coverage below 24×, whereas all other methods
require at least 50× for successful reconstruction of strain-
specific genomes.

See Supplementary Table S1 for a full overview of results,
stratified by the different data sets to which the strains be-
long. As for criteria other than Genome Fraction, one can
see in Supplementary Table S1 that the usual trends con-
tinue also here: StrainXpress’ contigs are shorter in com-
parison with other approaches. This is compensated, how-
ever, by less misassemblies: obviously, StrainXpress does
not stitch together sequence patches from different strains,
as a potential explanation for the superior Misassembled
Contig Rate. Also, while exhibiting excellent Error Rate,
StrainXpress does not necessarily dominate the other ap-
proaches (in particular SPAdes) in terms of this particular
category.

In summary, StrainXpress clearly outperforms all other
methods when reconstructing strains across all combina-
tions of coverage and identity of strains reflected by the data
sets presented.

DISCUSSION

Although different strains from the same species can be
near-identical in terms of sequence, they can vary greatly
in terms of their phenotypes, such as drug resistance or
pathogenicity. Short read sequencers, which in the mean-
time belong to the standard equipment in genomics labo-
ratories, offer inexpensive means to analyze the sequence
content of mixed samples such as metagenomes.

This combination explains why assembling strain specific
genomes from metagenome short read data is of utmost cur-
rent interest. On the one hand, it is worthwhile to study the
spectrum of phenotypes characterizing a metagenome by
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way of a routine experimental protocol. On the other hand,
however, the technical challenges are enormous: strain
aware assembly of metagenomes has remained a largely un-
resolved problem, despite the well-deserved attention it has
been receiving throughout.

Here, we have presented StrainXpress, which implements
a major step toward resolving the issue. In benchmarking
experiments of great variability that adhere to the currently
highest standards, we have demonstrated that StrainXpress
outperforms the current state of the art by large margins.
StrainXpress demonstrated its greatest advantages when
differences between strains were small, or when strains were
subject to low read coverage.

Overall, StrainXpress appeared to be the only ap-
proach whose assemblies tended to cover at least 90%
of strain specific sequence content. Toughest competitors
have been trailing by at least roughly 20%, on all data
sets. Only when undergoing newly developed preprocess-
ing routines––themselves being integral components of
StrainXpress––losses in performance could be limited to be-
low 20% for the prior approaches.

StrainXpress is a de novo approach. As such, it does not
suffer from reference-induced biases, so has relevant advan-
tages over reference-assisted approaches. Importantly, reli-
able reference genomes are not yet available for a multitude
of prokaryotic species, which prevents the usage of refer-
ence genomes altogether. This justifies why de novo assem-
bly is regarded the approach of choice when distinguishing
strains in metagenomes. Beyond this theoretical insight, us-
age of de novo assembly approaches became further justi-
fied through experiments with reference-guided tools. Un-
like the de novo approaches, reference-guided tools often
tend to focus on challenges other than assembly when ana-
lyzing metagenomes in terms of species and strain content.

Key to success for the design of StrainXpress was the in-
sight that recent progress in overlap graph based short read
assembly had pointed out a way to successfully identify the
genomes of strains, and not just their species. The founda-
tion of the corresponding ideas are the fact that patterns of
co-occurring mutations––as the decisive characteristic se-
quential phenomenon of strains––can be highlighted opti-
mally with overlap graphs. Unlike de Bruijn graph based ap-
proaches, they do not chop reads into smaller subsequences
which breaks up, and therefore masks such patterns.

While this establishes a clear conceptual advantage, the
decisive challenge when dealing with overlap graph based
approaches are requirements in terms of computational re-
sources. In fact, the computational ‘heaviness’ required to
both design a framework in which the different subroutines
could be integrated, and to develop and implement practi-
cal solutions through which the framework and its integral
components were applicable in real world scenarios.

The combination of framework overall, and sufficiently
lightweight integral components that support it, has estab-
lished a methodical novelty in metagenome assembly. We
have demonstrated that our implementation of substan-
tially accelerated individual components has led to very fea-
sible run times in practice, at no sacrifices in terms of the
quality of the assemblies. The general flexibility (and, ar-
guably, the general value) of our approach was further high-
lighted by the fact that one of the individual components

can also be used to improve the results of alternative ap-
proaches, regardless of the methodical details of the ap-
proaches, and to enable them to work with much larger data
sets.

In conclusion, we have presented StrainXpress, a de
novo method that assembles individual genomes from
metagenomes at strain resolution. In this, StrainXpress not
only is the first fully overlap graph based approach that
overcomes the underlying great technical challenges. It is
also the first approach to redeem the great advantages that
such overlap graph based approaches had recently been
promising. In summary, our approach is able to recon-
struct substantially greater portions of individual genomes
at strain resolution, with advantages being most striking
when dealing with extremely similar strains, or strains lack-
ing sequencing coverage.

Further improvements are conceivable. In particular, the
short length of Illumina type reads puts constraints on the
length of the contigs a strain aware assembler can compute.
This prevents to compute strain specific contigs that span
the genomes of the individual strains at their full length:
trying to increase their length introduces ambiguities that
cannot be resolved using short reads. For this issue, third
generation sequencing reads used in the context of over-
lap graphs present promising opportunities. The great Error
Rate of third generation sequencing reads, however, intro-
duce a range of issues that still need to be resolved.

For the time being, StrainXpress, the approach we have
presented, points out a way to thoroughly explore the strain
content of huge amounts of metagenomes that so far have
been (and further will be) sequenced using Illumina type
platforms.

DATA AVAILABILITY

The source code of StrainXpress is https://github.com/
HaploKit/StrainXpress.

ENDNOTES

In the sense of sharing a large part of their nucleotides in
identical order, which applies for the genomes of two differ-
ent strains of the same species.
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