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Abstract: PRMT1, the major protein arginine methyltransferase in mammals, catalyzes monomethy-
lation and asymmetric dimethylation of arginine side chains in proteins. Initially described as a
regulator of chromatin dynamics through the methylation of histone H4 at arginine 3 (H4R3), nu-
merous non-histone substrates have since been identified. The variety of these substrates underlines
the essential role played by PRMT1 in a large number of biological processes such as transcriptional
regulation, signal transduction or DNA repair. This review will provide an overview of the structural,
biochemical and cellular features of PRMT1. After a description of the genomic organization and
protein structure of PRMT1, special consideration was given to the regulation of PRMT1 enzymatic
activity. Finally, we discuss the involvement of PRMT1 in embryonic development, DNA damage
repair, as well as its participation in the initiation and progression of several types of cancers.

Keywords: PRMT1; arginine methylation; H4R3 methylation; transcriptional regulation; cell signal-
ing; DNA damage repair; cancer

1. Introduction

Arginine methylation is a common and widespread post-translational modification
(PTM) in eukaryotes that regulates numerous biological processes. Currently, nine protein
arginine methyltransferases (PRMTs) have been described which are divided into three
families according to the type of methylarginine produced. Type I PRMTs (PRMT-1, 2,
3, 4, 6 and 8) generate ω-NG-monomethylarginine (MMA) and ω-NG, NG-asymmetric
dimethylarginine (ADMA), Type II PRMTs (PRMT-5 and 9) generate MMA and ω-NG,
N’G-symmetric dimethylarginine (SDMA) and finally the unique Type III PRMT, PRMT7,
generates MMA. Mechanistically, all PRMTs catalyze the transfer of a methyl group from
S-adenosyl methionine (AdoMet) to the guanidino nitrogen atom of arginine [1]. Though
considered for a long time as a stable mark, it is now well-known that arginine methylation
is a dynamic PTM that can be removed by arginine demethylases [2].

PRMT1, which is the major type I PRMT, is responsible for 85% of the activity at-
tributed to type I PRMTs in mammals [3]. Moreover, it plays key roles in various cellular
processes such as transcriptional regulation, signal transduction or DNA damage repair,
owing to the diversity of its histone and non-histone substrates [1].

The aim of this review is to provide an overview of the literature concerning PRMT1
structure, activities and functions. After a detailed description of the genomic organization
and the protein structures of the different PRMT1 isoforms, the substrate specificity and
the regulatory mechanisms of PRMT1 itself will be discussed. Finally, the cellular roles and
functions of PRMT1, as well as its involvement in cancer, will be addressed.

2. Structural Features
2.1. Genomic Organization

Human PRMT1 is encoded by the PRMT1 gene located on chromosome 19 (19q13.3)
and composed of 12 exons and 11 introns. At the 5′ end of this genomic locus of

Life 2021, 11, 1147. https://doi.org/10.3390/life11111147 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0001-6665-841X
https://orcid.org/0000-0002-8491-4015
https://doi.org/10.3390/life11111147
https://doi.org/10.3390/life11111147
https://doi.org/10.3390/life11111147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11111147
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11111147?type=check_update&version=1


Life 2021, 11, 1147 2 of 23

11.3 kilobases (kb) are four alternative exons (e1a-e1d) involved in the synthesis of at least
seven splice variants of PRMT1 (v1–v7) [4,5] (Figure 1A,B). More recently, next-generation
sequencing led to the identification of a novel exon located between exons 11 and 12, and 58
additional alternative splice variants of the PRMT1 gene. Among them, 34 are speculated
to encode additional protein isoforms of PRMT1 but remain to be characterized [6].
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loop and the phosphorylation site Y291 are represented (adapted from [5,6]).

2.2. Protein Structure

At the protein level, human PRMT1 shares a high degree of homology with the
different members of the PRMT family that is conserved in eukaryotes. Phylogenetic
studies based on the methyltransferase domain highlighted that PRMT1 is closely related
to PRMT8 [7]. The canonical structure of PRMT1 includes three functional domains: (i) the
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N-terminal methyltransferase domain characterized by the Rossmann fold constituting
the AdoMet binding pocket, (ii) the C-terminal β-barrel domain which forms a cylindrical
structure corresponding to the arginine-substrate binding site and (iii) the α-helical dimer-
ization arm which originates from the N-terminal part of β-barrel domain and connects to
the Rossmann fold of a second monomer [8].

The catalytic core of PRMT1 is composed of 6 highly conserved peptide motifs essential
for the methyltransferase activity. Motif I (VLDVGSGTG) delimits the AdoMet-binding
site and is stabilized by motifs II (VDI) and III (LAPDG). The binding of the AdoMet in this
pocket is favored by the formation of hydrogen bonds with the glutamic acid residue of the
post-motif I (VIGIE). In addition, the double-E motif (SEWMGYCLFYESM) and the THW
loop (YTHWK) define the peptidyl arginine-substrate pocket (Figure 1C). The double-E
motif is composed of two negatively charged glutamic acid residues (E144 and E153) that
neutralize the positively charged guanidium group of the target arginine, whereas the
THW loop stabilizes three dynamic α-helices (αX, αY, αZ) located at the N-terminus of the
Rossmann fold that participates in peptidyl arginine recognition [9–11]. To illustrate the
organization of the catalytic core of PRMT1, an extensive study of the crystal structure of
rat PRMT1 which shares 96% identity with the amino acid sequence of human PRMT1 was
performed by Zhang and Cheng [10].

Dimerization of PRMTs is a conserved process, crucial for their methyltransferase
activity. This mechanism is mediated by the dimerization arm that interacts with the
outer surface of the AdoMet binding site through hydrophobic interactions and hydrogen
bonds [12]. PRMT1 mutants displaying a mutation or a deletion of the dimerization arm
were key to demonstrating the importance of dimerization for AdoMet binding, substrate
specificity and the processivity of the methyltransferase activity [10]. As previously de-
scribed for the yeast PRMT1 counterpart, Hmt1, rat PRMT1 dimers can be assembled
into oligomers through hydrophilic interactions [13,14]. This oligomerization is notably
associated with a stimulation of the PRMT1 methyltransferase activity [14].

2.3. PRMT1 Isoforms

To date, seven PRMT1 isoforms, PRMT1-v1 to PRMT1-v7, that differ in length and
sequence of their N-terminal region have been identified (Figure 1B). These variations of
the N-terminal sequence can impact enzymatic activity and substrate specificity. Unlike
PRMT1-v7 which is catalytically inactive, variants PRMT1-v1 to PRMT1-v6 exhibit a
methyltransferase activity in vitro on different previously described PRMT1 substrates.
However, PRMT1-v3 and PRMT1-v4 display a lower methylation efficiency compared to
the others. Studies of Goulet et al. also showed that each substrate can be preferentially
methylated by a particular isoform. For example, Sam68 and SmB are mainly methylated
by PRMT1-v1 and PRMT1-v2 [5]. Currently, studies describing the functionality of the
PRMT1-v7 variant are lacking. Although it has retained the ability to heterodimerize with
other isoforms, it does not seem to be involved in the regulation of their activity [5].

Differences in enzymatic activities observed among the different PRMT1 isoforms can
be partly explained by their subcellular localization. Using a GFP-PRMT1 isoform reporter
system, Goulet et al. showed that PRMT1-v1 and -v7 are mainly nuclear, whereas PRMT1-
v2 is primarily cytoplasmic [5]. The nucleocytoplasmic shuttling of PRMT1-v2 depends on
a leucin-rich nuclear export sequence (NES) encoded by the retained exon 2, but also on
its enzymatic activity [15]. Interestingly, there is also a tissue-specific expression pattern
of the different PRMT1 isoforms. PRMT1-v1, -v2 and -v3 are ubiquitously expressed in
human tissues [4], whereas PRMT1-v4 to -v7 are tissue-specific. More precisely, expression
of PRMT1-v4 and -v5 is restricted to the heart and pancreas, respectively; yet, PRMT1-v7
is detectable in the heart and skeletal muscle. PRMT1-v6 expression has so far not been
detected in any normal human tissues but was detected in certain breast cancer cell lines [5].
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3. Biochemical Features
3.1. Sequence Specificity

PRMT1, like the other type I PRMTs, except PRMT4, catalyzes the asymmetric dimethy-
lation of arginine residues localized in glycine/arginine rich regions and more particularly
within RGG or RXR motifs [10]. “RGG” sequences that are often located in regions rich in
“RG” dinucleotides are also described as “RGG/RG” motifs that can be subdivided into 4
categories according to the number of repeats: “Tri-RGG”, “Di-RGG”, “Tri-RG” or “Di-RG”
motifs [16]. Many substrates of PRMT1 contain a combination of these different motifs such
as TAF15 (3 Tri-RGG, 1 Di-RGG) or Sam68 (1 Di-RGG, 1 Tri-RG, 1 Di-RG). Structurally, the
presence of glycine residues near the target arginine induces a conformational flexibility
that facilitates substrate recognition [17].

The modification of a single residue in conserved motifs like “RGG” can abolish the
activity of PRMT1 towards the mutated substrate. For instance, the helicase eIF4A1 that
contains an “RGG” motif is methylated by PRMT1, whereas the eIF4A3 isoform in which
“RGG” is replaced by an “RSG” sequence is not a substrate for PRMT1. However, it was
shown in the same study that PRMT1 is able to methylate synthetic peptides that contain a
“RSG” sequence [18]. This suggests that other residues located at a long distance from the
target arginine can also be involved in its recognition. This hypothesis was substantiated
by a study of Osborne et al., which showed that the affinity of PRMT1 for its arginine
substrate relies on long-range interactions involving an acidic residue located away from
the PRMT1 active site and probably a positively-charged residue on the substrate [19].

3.2. Product Specificity

Understanding mechanisms that regulate the degree (mono- or dimethylation) and
the type (symmetric or asymmetric) of methylation catalyzed by each member of the
PRMT family is a major challenge. Indeed, MMA, ADMA and SDMA induce distinct and
sometimes antagonistic biological effects as notably described for mono- and dimethylated
H3R2 [20,21].

Studies conducted by Gui et al. on rat PRMT1 that shares 96% sequence identity with
its human counterpart, identified two conserved methionine residues, M48 and M155,
located in the active site that position the target arginine in a favorable configuration for
asymmetric dimethylation. Interestingly, M48 also participates in the specific recognition
of the target arginine in multi-arginine protein substrates [20]. Mutations in M48L and
M155A induce an imbalance in the proportion of MMAs and ADMAs, but do not allow
SDMA generation [20]. However, when M48 is mutated to phenylalanine (M48F), a
switch in PRMT1 activity occurs, enabling it to induce symmetrical dimethylation. This is
consistent with the fact that product specificity of PRMT5 which catalyzes SDMA formation
is controlled by the conserved F379 residue in its active site [22]. More recently, mutagenesis
studies showed that H293S mutation of the PRMT1 active site does not affect the production
of MMA and ADMA by itself, but leads to a predominant formation of SDMA when it is
associated with the M48F mutation [23].

The product specificity of PRMT1 which is non-stochastic and regioselective can also
be guided by the substrate itself. It seems that the N-terminal arginyl-groups of substrates
constitute the main targets for PRMT1 methylation, whereas positively-charged C-terminal
residues (including arginines) participate in long-range interactions with acidic residues of
PRMT1. This strengthens the affinity of PRMT1 for its arginine substrates [19,24].

Interestingly, the amino acid sequence of the substrate can also direct the degree of
methylation (mono- or dimethylation) by regulating PRMT1 processivity [24,25]. Whether
PRMT1 dimethylates its substrates in a distributive or processive manner is a matter of
debate in the literature. While numerous studies support that PRMT1 acts distributively by
transiently releasing MMA and replacing the methyl donor between the two methyl-group
transfers [26–28], Obianyo and co-workers described a semi-processive activity of PRMT1.
In this model the mono-methylated intermediate remained associated with the enzyme but
the product S-adenosylhomocysteine (AdoHcy) was replaced by a novel AdoMet to allow
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the second reaction [19,29,30]. Studies on the catalytic activity and processivity of PRMT1
are ongoing, and the latest data indicate that the degree of processivity of PRMT1 depends
on its dimerization but is also dependent on cofactor or enzyme concentrations [10,25].

3.3. Regulation of PRMT1 Expression and Enzymatic Activity

Many studies have sought to decipher the different levels of regulation of PRMT1
expression and enzymatic activity. Indeed, substrate methylation by PRMT1 is a highly
regulated and dynamic phenomenon, occurring directly through PRMT1 PTMs or through
its association with co-regulators. In addition, crosstalk between different PTMs on the
same substrate can influence arginine methylation by PRMT1. Finally, methyl marks on
arginine can be removed by PAD4 which demethylates histones by converting MMA to cit-
rulline [31] or by JMJD6 which directly removes the methyl group to convert methylarginine
into arginine [32]. More recently, JMJD1B, a well-known lysine demethylase for H3K9me2,
has also been described as effective in demethylating H4R3me1 and H4R3me2a [33].

3.3.1. Regulation of PRMT1 Expression

PRMT1 can be regulated at the level of its expression. Indeed, a very recent study
discovered that the serine/threonine kinase mTOR is involved in the regulation of PRMT1
expression in a fasting context. Forty-eight hours of experimental fasting was shown to
induce a decrease in STAT1 phosphorylation mediated by mTOR, leading to the inhibition
of STAT1 binding to the PRMT1 promoter. In this fasting condition, the decrease in PRMT1
expression induced a decrease in mitochondrial mass and thus a decrease in cellular energy
availability [34]. Moreover, the expression level of PRMT1 can also be regulated by micro-
RNAs (miR). This is the case for example for miR-503 that has a tumor suppressor role
and whose expression is low in several types of cancers. In hepatocellular carcinoma cells,
miR-503 directly targets PRMT1 and reduces its expression level. Consequently a decrease
in cell invasion, migration and epithelial-mesenchymal transition are observed [35].

3.3.2. Post-Translational Modification of PRMT1

Unlike other PRMTs, few PTMs of PRMT1 have been described to date. A first study
in 2004 conducted using mass spectrometry found that PRMT1 is phosphorylated on Y291.
Using non-natural amino acid mutagenesis, the authors showed that phosphorylation of
PRMT1 on Y291 alters protein-protein interactions and substrate specificity. Indeed, Y291
phosphorylation of PRMT1 decreases its interaction with hnRNP, and enzymatic activity
on hnRNP in vitro. This is due to the negative charge of the phosphate group that modifies
the tertiary structure of the enzyme and in particular of the THW loop [36]. Following
this first finding, another study in keratinocytes revealed that PRMT1 is a substrate of the
kinase CSNK1a1. Although phosphorylation of PRMT1 by CSNK1a1 does not affect the
methylation efficiency of PRMT1 on several known substrates, it seems that it modulates
its transcriptional activity on some target genes. Indeed, phosphorylated PRMT1 seems to
induce the transcription of genes involved in proliferation and repress the expression of
genes involved in keratinocyte differentiation [37]. More recently, in ovarian cancer cells, it
was shown that PRMT1 can be phosphorylated by DNA-PK in response to cisplatin, thus
inducing its recruitment on chromatin and its enzymatic activity towards H4R3 [38].

PRMT1 activity is also modulated by its degradation mediated by the proteasome
pathway. In this context, a study in human embryonic kidney cells showed that PRMT1
is polyubiquitinated by the E3 ubiquitin ligase, TRIM48. Thus, the polyubiquitination
of PRMT1 decreases the level of methylation of the substrate ASK1, a kinase involved
in the cellular stress response. Downregulation of PRMT1 thus promotes cell death in-
duced by ASK1-mediated oxidative stress. Polyubiquination of PRMT1 also negatively
impacts FOXO1 methylation and its transcriptional activity [39]. Another in vivo study
used an engineered ubiquitin transfer method called “orthogonal UB transfer” to profile
E3 substrate specificity. This method showed that PRMT1 is polyubiquitinated by two
other E3 ubiquitin ligases, CHIP and E4B, leading to its proteasome-mediated degradation.
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Nevertheless, the physiological consequences of this polyubiquitination were not inves-
tigated in this study [40]. Given the importance of PRMT1, it probably undergoes many
other PTMs including methylation, such as PRMT5 which is methylated by PRMT4 [41], or
OGT-glycosylation [42]. Although other modifications (i.e., acetylation and sumoylation)
have not been described in the PRMT family, it is likely that these events exist.

3.3.3. PRMT1 Association with Co-Regulators

PRMT1 activity can also be regulated through its interaction with non-substrate
proteins that modulate its methyltransferase activity. The first regulators were described in
1996, with the BTG1 (B-cell translocation gene 1) and BTG2. This study showed in vitro
that the interaction of BTG1 and BTG2 with PRMT1 positively modulates its enzymatic
activity towards a substrate, hnRNPA1 [43]. Several years later, our team discovered a
new regulator of PRMT1, hCAF1. We showed by in vitro methylation assay that hCAF1
inhibits PRMT1-mediated methylation of histone H4 on arginine 3 (H4R3) by PRMT1. This
observation was confirmed in breast cancer cells where depletion of hCAF1 induces a
strong reduction in the overall level of asymmetric arginine methylation, indicating that
hCAF1 modulates PRMT1 activity towards several substrates [44]. Interestingly, a study
in HeLa cells revealed a crosstalk between PRMT1 and PRMT2. Indeed, PRMT2 binds
to PRMT1 without methylating it and potentiates its enzymatic activity towards H4R3.
Surprisingly, PRMT2-mediated activation of PRMT1 also induces an increase in SDMA
levels in vivo, implying possible further crosstalk between the different enzymes of the
PRMT family [45].

PRMT1 activity can also be modulated by exogenous regulators. For instance, the ser-
ine/threonine phosphatase PP2A has been described to regulate PRMT1 activity. PRMT1
methylate hepatitis C virus NS3 protein and inhibits its helicase activity. PP2A binds to
PRMT1 and inhibits its enzymatic activity towards a NS3 protein, which affects inhibitory
role of PRMT1 on the helicase activity of NS3. Interestingly, the hepatitis C virus upreg-
ulates PP2A expression, thus counteracting the downregulation of NS3 by PRMT1. This
study highlights the complexity of the pathways regulating PRMT1 enzymatic activity [46].

In addition, other regulators have been identified, such as RALY [47], TR3 [48], PDGF-
BB [49], or GFI1 [50]. Moreover, other mechanisms of regulation of PRMT1 have been
uncovered, such as oxidative stress [12] or iron deficiency [51].

3.3.4. PTMs Influencing PRMT1 Activity

In parallel to the direct regulation of PRMT1 by PTMs or by the binding of co-
regulators, a crosstalk between arginine methylation and different PTMs deposited by
other enzymes on the same substrate has been described. For example, a 2006 study
showed that methylation of H4R3 by PRMT1 at the pS2 promoter is required to activate its
expression. Interestingly, this study showed that histone hypoacetylation is necessary for
the recruitment of PRMT1 to the promoter and for the deposition of the H4R3 methylation
mark. The patient SE translocation (SET) protein, which is part of the INHAT complex,
prevents the acetylation of the histone at the pS2 promoter [52]. Another study investi-
gated the effect of histone H4 phosphorylation on serine 1 (H4S1). The authors showed
by in vitro methylation assays that H4S1 phosphorylation leads to a 3-fold decrease in
PRMT1-mediated H4R3 methylation. Interestingly, mass spectrometry analysis revealed
MMA as a PRMT1 major product. Indeed, further in vitro methylation assays revealed a
3-fold decrease in ADMA, due to an approximate 11-fold reduction in PRMT1 catalytic
efficiency. Moreover, H4S1 phosphorylation also leads to a 8-, 5-, and 3-fold decrease in
PRMT3, PRMT8 and PRMT5 activity, respectively [53].

These in vitro studies highlighted the complex crosstalk between the different PTMs
in the histone code and the tight regulation of the activity of each enzyme. Although this
phenomenon has only been described on H4R3 for PRMT1, this is probably because PRMT1
was first described as a histone methyltransferase catalyzing H4R3 methylation [54]. Many
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non-histone substrates have since been described, and likely display similar crosstalk that
remains to be depicted.

3.4. Substrates

Arginine 3 of histone H4 was the first substrate described for PRMT1 [54,55]. The
asymmetric dimethylation of H4R3 constitutes an activating mark of transcription [56]. It
was also demonstrated that PRMT1 methylates histone H2A at R3, R11 and R29, although
the latter two are not localized within a consensus motif recognized by PRMT1 [57]. Further
studies are expected to clarify the impact of these two histone marks on transcriptional
activity. In addition to the activity of PRMT1 as a chromatin modifying enzyme, a plethora
of non-histone substrates of PRMT1 have been identified and can be classified according
to their cellular functions: transcriptional and translational regulation, RNA-processing,
DNA damage repair and signal transduction. A list of the currently identified substrates of
PRMT1 is available in Table 1.

It is important to note that some substrates are common to different types of PRMTs
and that competitive mechanisms may exist. This hypothesis is supported by the observa-
tions of Dhar et al. who showed that inhibition of PRMT1 induces a decrease in the level of
ADMA concomitant with an increase in MMA and SDMA levels [58].

Table 1. List of non-histone substrates of PRMT1 classified according to their cellular functions.

Biological Function Substrate Methylation Site Biological Outcome Reference

Transcriptional
Regulation

Transcriptional
regulation

BRCA1 Within the 504–802 region Promotes BRCA1 recruitment to
specific promoters [59]

C/EBPα R35, R156, R165 Prevents C/EBPα interaction with the
corepressor HDAC3 [60]

c-Myc R299, R346 Promotes c-Myc interaction with p300 [61]

EZH2 R342 Prevents EZH2 target gene expression [62]

FOXO1 R248, R250 Prevents FOXO1 phosphorylation by
Akt [63]

FOXP3 R48, R51 Enhances FOXP3 transcriptional
activity [64]

GLI1 R597 Enhances GLI1 binding to target gene
promoters [65]

MyoD R121 Promotes MyoD DNA-binding and
transcriptional activity [66]

Nrf2 R437 Promotes Nrf2 DNA-binding and
transcriptional activity [67]

PR R637 Accelerates PR recycling and
transcriptional activity [68]

RACO-1 R98, R109 Promotes c-Jun/AP1 activation [69]

RelA R30 Prevents RelA DNA-binding and
represses NF-κB target genes [70]

RIP40 R240, R650, R948 Favors RIP140 nuclear export and
prevents the recruitment of HDAC3 [71]

RunX1 R206, R210 Prevents Sin3a binding and promotes
RUNX1 transcriptional activity [72]

STAT1 R31
Prevents STAT1 association with

PIAS1 and enhances IFNα/β induced
transcription

[73]

TAF15 R203
Affects the subcellular localization of

TAF-15 and enhances its
transcriptional activity

[74]
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Table 1. Cont.

Biological Function Substrate Methylation Site Biological Outcome Reference

FUS/TLS R216, R218, R242, R394
Participates in the nuclear cytoplasmic
shuttling of FUS/TLS and enhances its

transcriptional activity
[75,76]

TOP3B R833, R835
Promotes TOP3B interaction with

TDRD3, stress granule localization
and topoisomerase activity

[77]

Twist1 R34 Regulates the nuclear import of Twist1
and represses E-cadherin expression [78]

RNA- processing

CNBP R25, R27 Prevents its RNA binding activity [79]

G3BP1 R435, R447 Prevents stress granule formation
during oxidative stress [80]

hnRNPA1 R214, R226, R223, R240 Prevents hnRNPA1 ITAF activity and
RNA-binding ability [81]

HSP70 R416, R447 Enhances HSP70 RNA-binding and
-stabilization abilities [82]

NS3 R1493 Affects NS3 RNA-binding and
helicase activity [46,83]

RBM15 R578 Promotes RBM15 degradation by
CNOT4 (RNA splicing) [84]

Sam68 Within the 276–343 region Prevents Sam68 poly(U) RNA-binding
activity [85,86]

SF2/ASF R93, R97, R109
Affects SF2/ASF nucleocytoplasmic

distribution and modulates the
alternative splicing of target genes

[87,88]

Translational
Regulation

eIF4A1 R362 Prevents eIF4A1 interaction with
eIF4G1 and inhibits ATPase activity [18,89]

eIF4G1 R689, R698
Regulates eIF4G1 stability and the

assembly of the translation initiation
complex

[90]

rpS3 R64, R65, R67 Promotes rpS3 import into the
nucleolus and ribosome assembly [91]

DNA damage
repair

53BP1 Within the 1319–1480
region

Promotes 53BP1 recruitment to
DNA-damage sites [92]

APE1 R301

Promotes APE1 mitochondrial
translocation (translocase Tom20) and

protects mitochondrial DNA from
oxidative damage

[93]

DNA pol β R137 Prevents DNA pol β interaction with
PCNA in BER pathway [94]

E2F-1 R109 Promotes E2F-1-dependent apoptosis
in DNA-damaged cells [95]

FEN1 Not determined Stabilizes FEN1 and upregulates its
DNA damage repair activities [96]

hnRNPK R296, R299 Prevents PKCδ-dependent apoptosis
during DNA damage [97]

hnRNPUL1 R584, R618, R620, R645,
R656

Promotes hnRNPUL1 association with
NBS1 and recruitment to

DNA-damage sites
[98]

MRE11 GAR domain
Promotes MRE11 recruitment to
DNA-damage sites and favors its

exonuclease activity
[99,100]
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Table 1. Cont.

Biological Function Substrate Methylation Site Biological Outcome Reference

RunX1 R233, R237
Confers resistance to apoptosis under

stress condition and DNA damage
accumulation

[101]

ASK1 R78, R80 Prevents the stress-induced
ASK1-JNK1 signaling [102]

Signal transduction

Axin R378
Favors Axin stability and

consequently prevents Wnt/β-catenin
signaling

[103]

BAD R94, R96 Prevents BAD phosphorylation by
Akt and subsequent survival signaling [104]

CaMKII R9, R275 Prevents CaMKII-dependent signaling
in cardiomyocytes [105]

CDK4 R55, R73, R82, R163
Prevents the formation of a
CDK4/Cyc D3 complex and

subsequent cell cycle progression
[106]

cTnI R146, R148 Induces cardiac cell hypertrophy [107]

EGFR R198, R200 Upregulates EGFR signaling [108]

ERα R260

Promotes the formation of the
ERα/PI3K/Src/FAK complex and

subsequent activation of downstream
kinase cascades

[109]

INCENP R887 Enhances INCENP binding-affinity to
AURKB and promotes cell division [110]

KCNQ R333, R345, R353, R435 Promotes PIP2 binding and
subsequent KCNQ channel activity [111]

MYCN R65 Enhances MYCN stability through
CDK-dependent phosphorylation [112]

NONO R251 Favors NONO oncogenic function [113]

p38 MAPK R49, R149

Promotes p38 MAPK phosphorylation
by MKK3 and the subsequent

activation of MAPKAK2 involved in
erythroid differentiation

[114]

Smad4 R272
Promotes Smad4 phosphorylation by
GSK3 and support the activation of

the canonical Wnt signaling
[115]

Smad6 R74, R81 Participates in BMP signaling and
prevents NF-κB activation [116,117]

Smad7 R57, R67 Facilitates TGF-β signaling [118]

TRAF6 R88, R125
Prevents TRAF6 ubiquitin ligase
activity and regulates Toll-like

receptor signaling
[119]

TSC2 R1457, R1459
Blocks the Akt-dependent

phosphorylation of TSC2 and
regulates mTORC1 activity

[120]

4. Cellular Features
4.1. Connection with Chromatin Dynamics and Transcriptional Regulation

Arginine methylation was first described as a PTM of histones that regulates reader
protein recruitment and therefore chromatin dynamics. The main target of PRMT1 at the
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chromatin level is the arginine 3 of histone H4 (H4R3) [54,55]. Asymmetrically dimethy-
lated H4R3, H4R3me2a, is associated with an active form of the chromatin and recognized
by different Tudor domain-containing proteins, such as TDRD3 [121]. This protein, with no
intrinsic activity, serves as a scaffold coregulator for the assembly of protein complexes at
the transcription start sites of target genes. More precisely, TDRD3 can recruit, through its
OB-fold domain, the DNA Topoisomerase IIIβ [122] and can directly interact with the RNA
Polymerase II, previously methylated at R1810 by PRMT4 also known as CARM1 [123].
Therefore, this complex assembled through TDRD3 and likely involving other actors
promotes transcription at H4R3me2a loci (Figure 2).
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activation of histone acetyltransferases p300 and pCAF induces acetylation of H4K5, H4K8, H4K12 but also of H3K9 and
H3K14. H4K5 and H4K12 are involved in the recruitment of TAFII250 that associates with RNA pol II. H4K5ac and H4K16ac
are also involved in PRMT1-activity regulation. Ac = Acetylation, m = methylation.

Interestingly, H4R3me2a can also recruit chromatin modifying enzymes involved
in transcriptional regulation by depositing other histone marks on chromatin. Indeed,
methylation of H4R3 by PRMT1 promotes the subsequent acetylation of H4K8 and H4K12
by the histone acetyltransferase p300 [56]. An H4R3me2a-dependent induction of H4K5 and
H4K12 acetylation, allowing the recruitment of the transcription initiation factor TAFII250
and therefore contributing to chromatin opening, was also suggested using the chicken
β-globin locus as a model [124]. Finally, the ability of H3R4me2a to act in trans to promote
the acetylation of histone H3K9 and H3K14 by the histone acetyltransferases p300 and
PCAF was demonstrated within the β-major globin promoter in murine erythroleukemia
cells [124,125]. It is worth noting that PCAF directly interacts with H4R3me2a and this could
explain how PRMT1-dependent methylation potentiates H3K9 and H3K14 acetylation [125]
(Figure 2).

Conversely, the activity of PRMT1 on H4R3 is inhibited by the presence of acetylation,
propionylation, crotonylation, butyrylation or 2-hydroxyisobutyrylation of H4K5 [126].
Moreover, H4K5ac combined with H4K8ac or H4K12ac increases its repressive effect on
PRMT1 activity. There is currently one known exception, as acetylated H4K16 is associated
with an increase in PRMT1 activity. Interestingly, the inducing effect of H4K16ac dominates
the repressive effect of H4K5ac when the 2 histone marks co-exist [53,127] (Figure 2).

Aside from chromatin regulation, a large number of transcription factors whose activ-
ity can be regulated by PTMs are known PRMT1 substrates (Table 1). PRMT1-dependent
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methylation can notably increase their stability and thus promote their transactivation
function. This type of mechanism has been described for FOXO1 whose methylation by
PRMT1 prevents its proteosomal degradation and favors its nuclear localization [63]. The
methyltransferase activity of PRMT1 can also impact interactions between transcription
factors and their corepressors. For example, PRMT1 was shown to act as a coactivator of
RUNX1 by inducing its methylation at R206 and R210, and thereby preventing its inter-
action with the transcriptional corepressor SIN3A [72]. Similarly, C/EBPαmethylation at
R35, R156 and R165 blocks its interaction with the corepressor HDAC3 [60].

4.2. Connection to Cell Signaling Pathways
4.2.1. Steroid Receptors

To date, PRMT1 has been shown to methylate two steroid receptors; estrogen receptor
(ERα) and progesterone receptor (PR). These arginine methylation events control different
signaling pathways involved in breast tumorigenesis.

Estrogen Receptor (ERα)

ERα regulates many physiological processes, notably the growth and survival of
breast tumor cells, acting as a ligand-dependent transcription factor. Aside from the well
described transcriptional effects, estrogen also mediates extranuclear events called non-
genomic signaling via its receptor [128]. Our group showed that ERα is methylated on the
residue R260 (met260ERα) by PRMT1 in response to estrogen or IGF-1 [109,129]. This event
is a prerequisite for the formation of a signaling complex containing met260ERα, Src and
PI3K, which orchestrates cell proliferation and survival. The involvement of this complex
in breast carcinogenesis will be addressed in Section 5.1 of this review. Met260ERα is a
transient event downregulated by the arginine demethylase JMJD6 [130].

Progesterone Receptor (PR)

Our group also demonstrated that PRMT1 methylates PR on the residue R637, within
a RGG consensus site. This methylation event decreases PR stability in order to accelerate
its recycling and its transcriptional activity. In addition, PRMT1 depletion decreases the
expression of a specific subset of progesterone-target genes, involved in breast cancer cell
proliferation and migration [68].

4.2.2. Akt Signaling Pathway

Several reports demonstrated that specific arginine methylation, catalyzed by PRMT1
within the Akt consensus phosphorylation motif, works as an inhibitor of Akt-dependent
survival signaling.

FOXO

Forkhead box O (FOXO) is a family of transcription factors controlling a large va-
riety of biological processes including cell survival [131]. Several studies revealed that
FOXO proteins are phosphorylated by Akt, resulting (i) in the export of FOXO proteins
from the nucleus to the cytoplasm [132,133] and (ii) in FOXO proteasomal degradation
through polyubiquitination [134,135]. Interestingly, a member of the FOXO family, FOXO1
was shown to be methylated by PRMT1 on R248 and R250, in the consensus Akt phos-
phorylation site, impeding Akt phosphorylation on S253 [63]. This methylation event
results in a decrease in its cytoplasmic localization and its subsequent degradation. PRMT1
depletion decreases oxidative-stress-induced apoptosis regulated by the Akt-FOXO1 path-
way. These results indicated that PRMT1 arginine methylation can act as a modulator of
Akt-phosphorylation by regulating responses to oxidative stress in mammalian cells.

BAD

Similarly, PRMT1 binds and methylates the proapoptotic protein BCL-2 antagonist of
cell death (BAD) on R94 and R96, in the Akt consensus site. PRMT1 methylation on these
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two residues inhibits Akt phosphorylation on S99, a modification that is necessary for its
interaction and sequestration with 14-3-3 proteins, resulting in cell survival [104].

4.2.3. NF-κB Signaling

NF-κB plays an important role in the transcriptional regulation of genes involved in
inflammation and cell survival. Toll-like receptor (TLR), when activated by lipopolysaccha-
rides, triggers the recruitment of the adaptor protein Myd88 and the subsequent activation
of the transcription factor NF-κB. TGFβ inhibits TLR signaling through the methylation
of SMAD6 by PRMT1. Indeed, the binding of methylated SMAD6 to Myd88 results in
its degradation, impeding TLR signaling to NF-κB [117]. Moreover, PRMT1 serves as a
coactivator of NF-κB, synergistically with CARM1, although the underlying mechanisms
are not fully elucidated [136]. More recently, the methylation of the RelA subunit of NF-κB
by PRMT1 was identified as a repressive mark modulating TNFα/NF-κB response [70].

4.2.4. Wnt Signaling

Wnt signaling plays important roles in embryonic development and cell proliferation.
Aberrant Wnt signaling leads to several human diseases including cancer. Axin is a
negative regulator of the Wnt pathway, as it is a key scaffold protein for the β-catenin
destruction complex. PRMT1-induced methylation of axin enhances its interaction with
GSK3β, leading to a decrease in axin ubiquitination and degradation [103]. Therefore,
PRMT1 seems to be a new modulator of Wnt/β-catenin signaling. Moreover, PRMT1 also
regulates this pathway by methylating substrates prior to their phosphorylation by GSK3β
and its sequestration in endolysosomes, a key event in Wnt signaling [115]. Altogether
PRMT1 appears as an important modulator of the Wnt pathway at the interface of protein
phosphorylation and trafficking.

4.3. Cellular Role and Functions
4.3.1. Embryogenesis and Development

The critical role of PRMT1 in embryogenesis and development was first suggested
by the study of Pawlak et al. which showed that PRMT1 knockout mouse embryos,
generated by insertion of a gene trap retrovirus in the second intron of the PRMT1 gene,
failed to develop beyond embryonic day 6.5, which would coincide with the exhaustion
of the maternal stock of PRMT1 enzymes and methylated substrates [137]. It is worth
noting that homozygous PRMT1 mutant embryonic stem (ES) cells isolated from mutant
preimplantation blastocysts at day 3.5 are viable and retained the morphology and the
same doubling time as wild-type ES cells. Moreover, in these cells, loss of PRMT1 activity
is not balanced by the activation of other methyltransferases. Therefore, PRMT1 activity
does not seem to be required for cell viability [137].

Early lethality of homozygous PRMT1 KO mouse embryos, as well as their uterus-
enclosed localization, makes it difficult to study the epigenetic regulation of vertebrate
development and emphasizes the importance to develop other models. Among them, Zebra
fish embryos constitute a promising model as they are suitable for genetic manipulation
approaches and express a highly conserved PRMT1 protein (90% identity with human
PRMT1) at different stages of embryogenesis. A study conducted by Tsai et al. showed
that PRMT1 knockdown, by antisense morpholino oligo injection into one-cell stage zebra
fish embryos, induces developmental defects at gastrulation notably including a shortened
body-length. This highlighted the importance of the methyltransferase activity of PRMT1
in early embryogenesis [138]. More recently, Shibata et al. used the TALEN genome editing
technology to knockout PRMT1 in the diploid anuran Xenopus tropicalis that undergoes an
external and biphasic development (embryogenesis and metamorphosis). They observed
that H4R3me2a methylation by PRMT1 is not required for early embryogenesis but is
essential for the growth and development of various organs including the brain, liver and
intestine during late embryonic developmental stages, occurring prior to metamorphosis.
This effect is directly related to the drastic inhibition of cell proliferation associated with
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PRMT1 KO in this model [139]. Interestingly, Xenopus embryos were already used to
demonstrate the involvement of the xPRMT1b gene in early neural determination [140].

Another interesting aspect is the potential involvement of PRMT1 in placental devel-
opment. A study of Sato et al. showed that murine placental expression of two PRMT1
isoforms is differentially regulated during the gestational period. More precisely, while
PRMT1-v1 expression reaches a maximum at embryonic day E11 before decreasing, PRMT1-
v2 expression increases from E13. This balance between the two isoforms explains the
change in subcellular localization of PRMT1 observed between early and late stages of
gestation; though further studies are required to determine the exact role played by PRMT1
in the placenta [141].

4.3.2. DNA Damage Repair

The conditional knockout of PRMT1 in mouse embryonic fibroblasts is associated
with a severe genetic instability characterized by the occurrence of spontaneous DNA
damage, chromosome copy number variations and defective mitotic checkpoint [142]. The
relevance of PRMT1 in the maintenance of genome integrity is based on the methylation
and subsequent regulation of key factors involved in the major DNA repair pathways.

The first substrate of PRMT1, involved in DNA damage repair, to be identified was
MRE11 (Meiotic recombination 11). This component of the MRN complex (MRE11/RAD50/
NBS1), recruited early upon DNA double-strand break (DSB), participates in the initiation
of DNA repair pathways by homologous recombination (HR) or by non-homologous end
joining (NHEJ). Methylation of the C-terminal GAR motif of MRE11 at R587 by PRMT1
does not seem to participate in the formation of the MRN complex but it promotes the
relocalization of MRE11 from PML nuclear bodies to DNA-damage sites and it favors its
exonuclease activity [92,99,100]. These events are essential to allow the recruitment of
RAD51 and the subsequent activation of HR [100]. By using a model of knock-in mice
that express the mutated MRE11RK protein devoid of methylarginines, Yu et al. also
demonstrated that MRE11 methylation participates in the activation of the ATR/CHK1
checkpoint signaling [143]. Finally, methylated MRE11 is involved in telomere maintenance
and regulates DNA replication by controlling the intra-S phase checkpoint in response to
DNA damage [99,144].

The choice of pathways between NHEJ or HR is directly influenced by the DNA-end
structure of DNA DSBs. Among the actors that play a pivotal role to orient this choice
are the tumor suppressor protein BRCA1, which promotes HR repair by activating DNA-
end resection, and p53-Binding Protein 1 (53BP1) that inversely activates NHEJ repair
by inhibiting the recruitment of BRCA1 to DNA DSBs [145]. Interestingly, these two
proteins are methylated by PRMT1, suggesting that arginine methylation may play an
important role in directing the switch from HR to NHEJ repair pathways. More precisely,
53BP1 is methylated by PRMT1 at a canonical GAR motif localized in its kinetochore-
binding domain and this methylation is essential for its DNA-binding activities [92,146].
Concerning BRCA1, the methylation status of the 504–802 protein region, that encompasses
the DNA-binding domain, directly influences its interaction with transcription factors such
as Sp1 or STAT1 and its subsequent recruitment to specific promoters [59].

The base excision repair mechanism (BER) that can correct single-stranded DNA
breaks and oxidative or alkylation damage is also regulated by PRMT1, which methylates
two major players in this pathway, namely the Flap endonuclease 1 (FEN1) and the DNA
polymerase β (DNA Pol β). Methylation of FEN1 by PRMT1, at an arginine residue that
remains to be determined, stabilizes the protein without disturbing its localization [96].
Moreover, unlike PRMT5-dependent methylation at residue R192 which strengthens the
interaction between FEN1 and the DNA polymerase processivity factor PCNA necessary
for a faithful and efficient BER, PRMT1-dependent methylation of FEN1 does not seem to
impact this interaction [96,147]. Interestingly, methylation of the DNA Pol β by PRMT1
on R137 abolishes its binding with PCNA without affecting its enzymatic activities (poly-
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merase and dRA-lyase) [94]. This suggests that methylation could regulate the sequential
interaction of FEN1 and DNA Pol βwith PCNA during BER.

5. PRMT1 in Cancer

Since the substrates methylated by most PRMTs regulate various biological functions
essential for cellular homeostasis, it is not surprising that a dysregulation of arginine
methylation may contribute to cancer initiation and progression. The involvement of
PRMT1 in carcinogenesis is no longer questioned due to its overexpression or aberrant
splicing observed in numerous types of cancers.

5.1. Breast Cancer

Various studies have shown that PRMT1 gene expression is higher in breast tumor
samples than in healthy tissue suggesting the involvement of PRMT1 in breast carcino-
genesis [5,148]. Despite the detection of PRMT1-v1, v2 and v3 isoforms in breast tumor
tissue, it seems that only the predominant PRMT1-v1 variant is correlated with clinical
parameters such as histological grade [148].

ERα is an important PRMT1 substrate whose methylation can be associated with
the development of breast cancer. Our group highlighted that a PRMT1-dependent hy-
permethylation of ERα at R260, induced in response to estrogen or IGF-1, is observed in
different subtypes of breast cancers and regulates cell proliferation and survival [109,129].
We notably showed that the signaling complex containing met260ERα, Src and PI3K (de-
scribed in Section 4.2.1 of this review) is expressed at low levels in the cytoplasm of normal
mammary epithelial cells but highly expressed in 55% of breast tumors [149]. Moreover,
its overexpression is correlated with the activation of Akt (pAkt), the main effector of the
pathway, showing that this signaling pathway exists in vivo. In addition, a high expression
of the complex is an independent marker of poor prognostic [149] and has been linked
with resistance to tamoxifen [150,151].

Another interesting aspect is the key role of PRMT1 in the maintenance of stem-
cell-like properties of breast cancer cells. PRMT1-dependent EGFR methylation on R198
and R200 upregulates different signaling cascades, notably those involving Akt, ERK or
STAT3 in triple-negative breast cancer (TNBC) cells, MDA-MB-468. EGFR/ERK-dependent
activation of ZEB1, a transcription factor that regulates epithelial-mesenchymal transi-
tion, may be implicated in cancer stem cell maintenance [152]. Interestingly, asymmetric
dimethylation of H4R3 by PRMT1 at the ZEB1 promoter is another mechanism described
to activate this factor and therefore promotes migration, invasion and acquisition of stem
cell characteristics. It is worth noting that ZEB1 may simultaneously contribute to the
PRMT1-dependent inhibition of senescence in breast cancer cells [153].

PRMT1-dependent methylation also inhibits the tumor suppressive function of some
substrates. For example, methylation of C/EBPα at R35, R156 and R165 by PRMT1 prevents
its interaction with the corepressor HDAC3, thus promoting the expression of cell-cycle
genes such as cyclin D1 and the subsequent growth of breast cancer cells [60]. In the same
line, BRCA1 methylation by PRMT1 affects its recruitment to responsive promoters but
also its ability to interact with certain partners such as Sp1 or STAT1. As a result, this can
significantly affect the tumor suppressive activity of BRCA1 [59].

5.2. Colorectal Cancer

Two clinical reports demonstrated the unfavorable prognosis associated with PRMT1
expression in colorectal cancer (CRC) patients by discussing the respective involvement
of PRMT1-v1 and PRMT-v2 isoforms [154,155]. Mechanistically, it was described that
H4R3me2a can recruit SMARCA4, an ATPase subunit of the SWI/SNF complex, to the
promoter of certain target genes including EGFR to promote their expression. PRMT1-
dependent enhancing of EGFR signaling is associated with a significant increase in the
proliferative and migratory abilities of human CRC cells [156]. Moreover, methylation
of EGFR at R198 and R200 by PRMT1 leads to an EGF-dependent hyperactivation of
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EGFR signaling and confers cells with resistance to the anti-EGFR monoclonal antibody,
cetuximab. Indeed, in CRC patients, the rate of EGFR methylation is directly correlated
with a higher recurrence rate after cetuximab treatment and a poorer overall patient
survival [108].

Recently, the non-POU domain-containing octamer-binding protein (NONO), which
is overexpressed in CRC tissue, was described as a substrate of PRMT1. Methylation of
NONO at R251 is required to promote its oncogenic function including the induction of
CRC cell proliferation, migration and invasion [113].

5.3. Lung Cancer

As described for other cancers, PRMT1 expression is significantly increased in lung
cancer tissue compared to non-neoplastic ones though very little data are available in the
literature to explain its role in lung carcinogenesis [157]. A study by Avasarala et al. high-
lighted that PRMT1 participates in non-small cell lung cancer progression and metastasis
through the methylation of the EMT-associated transcription factor Twist1 at R34. PRMT1-
dependent Twist1 methylation is associated with inhibition of E-cadherin expression [78].
Moreover, PRMT1 can methylate the inner centromere protein (INCENP) at R887 to favor
its interaction and the subsequent activation of aurora kinase B in A549 non-small cell lung
cancer cells. This mechanism regulates the alignment and segregation of chromosomes
during cell division to promote the growth of cancer cells [110].

5.4. Other Cancers

Dysregulation of PRMT1 expression has been reported in several other types of can-
cers, albeit the molecular mechanisms that drive the initiation and progression of these
cancers remain incompletely understood. The limited data available in the literature in-
dicate that PRMT1 is particularly dysregulated in bladder cancer, esophageal squamous
cell carcinoma, as well as in acute myeloid leukemia [157–159]. Interestingly, in ovarian
carcinomas, upregulation of PRMT1 expression is associated with an increased methylation
of the apoptosis signal-regulated kinase 1 (ASK1), which confers tumor cells with resis-
tance to platinum-based chemotherapeutic agents [160]. Moreover, in prostate cancer, the
methylation status of H4R3 is significantly correlated with clinical features, such as tumor
grade or the risk of prostate cancer recurrence. This study highlighted the fact that histone
modifications can also serve as a prognostic marker [161].

5.5. PRMT1 Inhibitors

In 2004, the symmetrical sulfonated urea salt named arginine methylation inhibitor-1
(AMI-1) was the first PRMT inhibitor characterized [162]. Since then, two substrate compet-
itive inhibitors, MS023 and GSK3368715, that broadly target type I PRMTs (Table 2), were
developed and displayed antitumor activities notably on xenograft mouse models of acute
myeloid leukemia or breast cancer, respectively [163–165]. Promisingly, the GSK3368715
inhibitor is currently undergoing a first-time clinical trial (NCT03666988) for patients
with solid tumors and diffuse large B-cell lymphoma. However, high affinity of these
inhibitors for other type I PRMTs, renders the identification and characterization of specific
PRMT1-dependent effects difficult.

Currently, two PRMT1-specific inhibitors, TC-E-5003 and C7280948, are mentioned
in the literature (Table 2). TC-E-5003 displays significant antitumor activity in vitro on
breast or lung cancer cell lines and inhibits the growth of xenografted A549 lung cancer
cells in mice [166]. Concerning C7280948, a study of Yin et al. showed that it suppresses
colorectal cancer cell proliferation, migration and invasion [113]. Additionally, a structure-
based virtual screening of different libraries of compounds allowed the identification
of several potential PRMT1-specific inhibitors, the properties of which were detailed by
Hu et al. [167]. Although these inhibitors are promising, more studies are needed to
characterize and consider their clinical potential.
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Table 2. List of PRMT inhibitors targeting PRMT1. ND: Not defined in literature.

Name Mechanism of Action Target(s) IC50 Reference

AMI-1 Substrate competitive
SAM uncompetitive PRMT1 8.81 µM [162]

MS023
Substrate competitive
SAM uncompetitive

PRMT1 30 nM

[163]
PRMT3 119 nM

PRMT4/CARM1 83 nM

PRMT6 4 nM

PRMT8 5 nM

GSK3368715
Substrate competitive
SAM uncompetitive

Reversible

PRMT1 33.1 nM

[165]

PRMT3 162 nM

PRMT4/CARM1 38 nM

PRMT6 4.7 nM

PRMT8 3.9 nM

TC-E-5003 ND PRMT1 1.5 µM [166]

C7280948 Interaction with the
substrate-binding pocket PRMT1 12.8 µM [113]

6. Outlook

Over the last twenty years since the discovery of PRMT1, the number of studies
conducted on this enzyme has constantly increased. This interest, which persists today, has
improved our knowledge on the diversity of its substrates and the numerous biological
functions regulated by PRMT1. Its key role in cancer initiation and progression makes
PRMT1 an interesting target for the development of new anti-cancer therapeutic strategies.
Therefore, the development of inhibitors that target PRMT1 activity is an ongoing challenge
that may offer new therapeutic opportunities for various pathologies in the coming years.
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