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A B S T R A C T

This study detected the macronutrients retained in glutinous rice (GR) under different drying conditions by
innovatively applying visible-near infrared hyperspectral imaging coupled with different spectra preprocessing
and effective wavelength selection techniques (EWs). Subsequently, predictive models were developed based on
processed spectra for the detection of the macronutrients, which include protein content (PC), moisture content
(MC), fat content (FC), and ash content (AC). The result shows the raw spectra-based model had a prediction
accuracy (R2

p ) of 0.6493, 0.9521, 0.4594, and 0.9773 for PC, MC, FC, and AC, respectively. Applying Savitzky
Golay first derivatives (SG1D) method increases the R2

p value to 0.9972, 0.9970, 0.9857 and 0.9972 for PC, MC,
FC, and AC, respectively. Using the variable iterative space shrinkage algorithm (VISSA) as EWs reduces the
spectral bands by over 60%, and this increases the accuracy of the model (SG1D-VISSA-PLSR) to 100%.
Therefore, the developed SGID-VISSA-PLSR can be used to build a smart and reliable spectral system for
detecting the macronutrients in GR grains.

1. Introduction

Glutinous rice (GR) is one of Asia’s most commonly cultivated and
consumed rice varieties (Liu et al., 2023). The GR is known for its
opaque white colour, soft texture and stickiness after cooking due to
high amylopectin and low amylose content, which represent ~98% and
~2% of the total starch in the grains, respectively (Li et al., 2018). The
grains have high nutritional, social and commercial value (Buresova
et al., 2023). It is widely used as the raw ingredient for producing snacks,
desserts, wine, crackers and flour (Ding et al., 2022). The macronutri-
ents of the grains, including moisture, protein, fat, ash and gluten con-
tent, are some of the important quality parameters for quantifying the
nutritional value of the grains (Buresova et al., 2023). According to
Zhang et al. (2023), the nutritional properties of the grain play an
essential role in deciding the influence and suitability of the grain pro-
cessing techniques. The processing of GR begins immediately after
harvesting. The phases undergone during the processing include drying,

dehulling, polishing, grading, storage, and grinding. In all the processing
phases, the drying process contributes tremendously to the nutrients
retained in the final products (Coradi et al., 2020).

Drying of GR is an eminent pre-preprocessing stage which aids the
effectiveness of the subsequent processing of the grains into a finished
product (Jimoh et al., 2024a; Jimoh et al., 2023a). The primary goal of
the drying process is to reduce the moisture content (MC) of the GR to a
safe level for further processing (Jimoh et al., 2024b; Komolafe et al.,
2025; Tu et al., 2023). During the drying process, the grains are sub-
jected to a heated environment, leading to moisture loss due to moisture
phase change and migration from the grain to the heated environment
(Coradi et al., 2020; Jimoh et al., 2023b). The moisture in the grain is
highly related to the quality features of the grain, such as the physical,
structural, textural, and chemical properties (Dibagar et al., 2022). This
infers that the drying process has a potential impact on the nutritional
properties of grains. Therefore, the drying process can be controlled and
enhanced by effective and rapid determination of the nutritional
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properties of the grain. Using the traditional methods for the determi-
nation of nutritional properties of grains is accurate and reliable when
consciously carried out (Wang et al., 2022a). However, these methods
are laborious, time-consuming, require high amounts of chemicals and
are prone to human error, especially when dealing with large samples.
Therefore, it is essential to build a reliable, low-cost, accurate, rapid and
non-destructive technique to detect the nutrients in the grains.

Among the numerous emerging technologies, hyperspectral imaging
(HSI) is fast growing in quality detection because it can quickly obtain
extensive information from the sample to quantify the variability in the
surface properties and internal structures on both macro and micro-
scopic levels (Luo et al., 2023; Pandey et al., 2023; Park et al., 2023).
The HSI technology operates with a principle like other optical imaging
techniques that rely on the interaction between the sample and the light
(Wang et al., 2022a). The HSI prioritize the combination of the spectral
and spatial information in which the series of data in every pixel of the
image is equivalent to the spectral resolution of the image. In contrast,
every spectral band holds spatial information at a specific wavelength
(Jimoh and Hashim, 2024; Saha et al., 2023). The HSI technology has
the advantage of a rapid, non-destructive, contamination-free and effi-
cient mode of grain quality determination, which marks its ability to
overcome the traditional methods in terms of time consumption, sample
destruction, and labour-intensive. Several studies have applied the HSI
in grain quality determination by utilizing a large amount of annotated
which include moisture, protein and ash content of wheat (Chen et al.,
2021), protein and physical traits of corn kernel (Varela et al., 2022),
moisture and fatty acid in rice (Song et al., 2023) and moisture content
of soybean (Guo et al., 2023b). Most of the studies considered the
development of the HSI method as a non-destructive quality detection
approach by collecting random samples across different varieties of
grains (Wang et al., 2022b). However, the potential of applying HSI
technology for evaluating grain quality detection under different con-
ditions in a processing technique such as the drying process is scarcely
available. Therefore, a three-stage processing technique was innova-
tively employed in using HSI for rapid detection of nutrient retention in
the GR under different drying conditions. The three-stage process in-
cludes the evaluation of different preprocessing methods, selection of
effective wavelengths, and model development, which was formed into
a single processing train. The effective determination for the rapid
detection of nutrient retention in the GR under different drying condi-
tions through this method has a significant contribution to the timely
control and improvement of the drying performance for effective
high-quality grain production.

2. Materials and methods

2.1. Sample preparation and glutinous rice drying

Freshly harvested GR was supplied by Berkat Padi Sdn. Bhd., a local
supplier of rice in Malaysia. Unwanted materials such as immature
grains, broken grains, rice stalks, and foreign objects were removed from
the healthy paddy using paddy cleaner. For the drying experiment, the
GR was dried in a hot air box dryer (Model 3021, Malaysia). The dryer
has an external dimension of 650 x 900 x 1900 and an internal dimen-
sion of 590 x 580× 1400mm. The heat is externally produced by 2.5 kW
and distributed by the blower into the drying chamber through perfo-
rated media at ~1 m/s. The dryer was powered for about 60 min to
ensure even heat distribution in the drying chamber before loading the
GR samples into the dryer. The experiment was run at different tem-
peratures of 50 ◦C, 60 ◦C and 70 ◦C and different grain layer thicknesses
of 15 mm, 25 mm, 35 mm, and 45 mm, denoting a mass of 120 g, 190 g,
280 g and 380 g, respectively, and the experiment was performed in
triplicate. The selection of temperature follows the range reported by
Dey et al. (2024), Sadaka (2022) and Jimoh et al., (2024b), while the
grain layer thicknesses were chosen by following the report of Mahfeli
et al. (2022) on rice drying. For the rice milling, the dried GR was

dehulled using a paddy huller (Satake, THU35B, Saitama, Japan) to
obtain the brown rice. Using a paddy polisher (Satake TMO5C, Saitama,
Japan), the brown rice was transformed into white rice by removing the
rice bran. Subsequently, 72 samples of the polished grains were used for
the hyperspectral image acquisition of the white GR, followed by the
determination of the macronutrients of the grains.

2.2. Macronutrients determination by using reference method

The macronutrients in the milled GR which include protein content
(PC), moisture content (MC), fat content (FC) and ash content (AC) were
determined by using the Kjeldahl method, standard oven dryingmethod,
Soxhlet apparatus and furnace respectively.

2.2.1. Protein content
A Kjeldahl digester (Buchi, K-439 Model, Malaysia) was used to

digest the mixture of 1g of the GR, 5g of Kjeldahl tab, and 20 ml of
sulphuric acidH2SO4. After 4 h in the Kjeldahl digester, the colour of the
mixture changed to pale yellow, indicating a complete digestion. The
digested sample was distilled with a distillation system to recover the
ammonia solution. After the distillation, the ammonia recovered was
titrated with 0.2N H2SO4 solution, and the volume of the titrants was
recorded. The PC of the sample was calculated using Equation (1) (Kaur
and Asthir, 2021)

PC=
(TS − TB) × N× F ×mN× pf

m× 1000
(1)

where PC is the protein content (%), TS in the volume of the titrant for
the sample (ml), TB is the volume of titrant for blank (ml), N is the molar
reaction factor (H2SO4 = 2), M is the concentration of the titrants, m(N)
is the molar weight of nitrogen (14.007 g/mol) and pf is the protein
factor

2.2.2. Moisture content
The MC of the grains was measured by using standard oven drying.

About 5 g of the GR was placed in the laboratory oven (Carbolite, PF60)
at 105 ◦C for 24 h. The MC of the grains on a wet basis was calculated as
the percentage of the weight loss to the initial weight of the samples, as
expressed in Equation (2) (Qiao et al., 2022).

MC=
Ws − Wd

Ws
× 100 (2)

where MC is the moisture content (%), Wd is the weight of the sample
after oven drying (g), and Ws is the weight of the sample (g).

2.2.3. Fat content
The FC of the GR was evaluated by dissolving the rice sample’s fat in

an organic solvent using the Soxhlet equipment. Subsequently, the sol-
vent was evaporated from the fat extract using a rotary evaporator
(Rasool et al., 2015). The dried weight (3g) sample was transferred to a
thimble and the top was covered with a wad of fat-free cotton. The
thimble was dropped into the fat extraction tube and coupled with a
Soxhlet flask. A flask was filled with around 120 ml of petroleum ether.
The top of the fat extraction tube was connected to the condenser. The
material was extracted for 4 h at a temperature of 70–80 ◦C. After
extraction, the thimble was withdrawn from the apparatus, and most of
the ether was collected. The ether was evaporated using a rotary evap-
orator with low heat (50 ◦C). The flask was further dried at 100 ◦C for 1
h, and the difference in weights revealed the ether-soluble substance in
the sample. The FC of the rice samples was calculated using Equation (3)
(Kaur and Asthir, 2021; Verma and Srivastav, 2017).

FC=
We

Ws
× 100 (3)

where FC is the fat content (%),We is the weight of the extract (g) andWs
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is the weight of the sample (g).

2.2.4. Ash content
The AC of the selected sample was determined using the muffle furn.

The clean, dry, and empty crucible was weighed using an electrical
balance (±0.001 g). Three grams of GR were poured into the crucible,
placed inside the muffle furnace, and fired at 600 ◦C for 5 h. After
burning, the crucible was removed and cooled in a desiccator before
weighing the crucible and ash. The AC of the rice samples was calculated
using Equation (4) (Kaur and Asthir, 2021; Nath et al., 2022).

AC=
Wa

Ws
(4)

where AC is the ash content (%), Wa is the weight of ash (g), and Ws is
the weight of the sample (g).

2.3. Hyperspectral image acquisition and processing

The hyperspectral images of the milled GR were taken by using a
visible near-infrared (Vis/NIR) HSI system setup. The system was set up
in a low-light room to reduce the impact of light on the environment.

Fig. 1 shows the schematic view of the setup for the HSI system. The
components of the setup include a Vis/NIR-HSI camera (Cubert, S185
FireflEYE, Germany), a halogen lamp for lighting, a fan to cool the
system and prevent overheating, a moveable platform, and a computer
for managing, capturing, storing, and processing the hypercube image.
For initial setup testing, the lighting position and camera height were
manually adjusted to ensure a high-quality image was captured by the
camera. The lighting source was at ~45 to plane and the camera was
positioned at ~20 cm from the sample. The GR grains were placed in a 9
cm by 1.5 cm (diameter by height) Petri dish for image acquisition. The
samples were then positioned on the setup platform for sequential
hyperspectral image capturing. Calibration was performed using white
and black reference images to lessen the impact of noise and dark cur-
rent on the raw images. The white reference was measured using the
Cubert white card (reflectance = 0.99) and the dark reference was
recorded by shutting the lens cover of the camera. The HSI images were
corrected by using the expression in Equation (5).

R=
X − Xd
Xw − Xd

(5)

where R is the corrected image reflectance, X is the raw image sample,

Fig. 1. The setup of the visible-near infrared hyperspectral imaging system.
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Xw is the white reference image and Xd is the dark reference image.
The captured image has an output spatial resolution of 1000 × 1000

pixels and a spectral range of 450 nm–998 nmwith a spectral bandwidth
of 4 nm. The ROI was chosen using the HSI (Cubert Professional Soft-
ware) program. The ROI of each image was selected as 200 by 200 pixels
in a region with a high grain concentration and sufficient information to
explain the macronutrients of the GR sample.

2.4. Spectral preprocessing

Different factors, such as instrument noise, stray light, and dark
current could affect the original spectral data. To mitigate this effect, the
spectral data were subjected to different spectral data correction tech-
niques. Also, to increase the model’s accuracy and predictive capacity of
the model, spectral preprocessing is required to eliminate unnecessary
information that is unrelated to the sample’s characteristics (Panda
et al., 2022; Tian et al., 2023). In this study, four preprocessing tech-
niques that are often used in literature for the preprocessing of spectral
data were applied to the HSI reflectance spectra. The Savitzky-Golay
first derivative (SG1D) with five window sizes, standard normalized
variate (SNV), moving window smoothing (MWS) with five window
size, and multiplicative scattering correction (MSC) are all included in
this method (Jimoh and Hashim, 2024; Kim et al., 2023; Marín-Méndez
et al., 2024; Song et al., 2023). The raw spectra served as a benchmark
for assessing how well the pre-processed approach worked throughout
the model development process. By comparing the performance of these
techniques based on predictive model accuracy, the best method was
chosen for effective wavelength selection.

2.5. Effective wavelength selection

Hyperspectral images consist of many features with high dimen-
sionality, multicollinearity and multiple redundant pieces of informa-
tion that are time-consuming and complex to process (Song et al., 2023).
The dimension of the entire spectral feature is decreased by choosing the
effective wavelength. This approach eliminates redundant and unnec-
essary information and provides several advantages, including
improving accuracy, processing speed, and real-time quality detection
(Zhang et al., 2023a; Song et al., 2023; Zheng et al., 2018). To choose the
effective wavelength features, this study employed the competitive
adaptive reweighted sampling (CARS), random frog (RF), iteratively
retains informative variables (IRIV), variable combination population
analysis (VCPA), and variable iterative space shrinkage method (VISSA)
(An et al., 2022; Ren et al., 2020; Zhang et al., 2023a). The effective
wavelength selection was based on the adjudged best spectral pre-
processing strategy. Therefore, the full preprocessed spectra were used
as the benchmark to assess how the selection method affected the
model’s performance.

2.6. Partial Least Square Regression model development

Partial Least Square Regression (PLSR) is the conventional method
for developing models while working with high multicollinearity and
high dimensional data sets, such as HSI data (Xu et al., 2018). The PLSR
condensed input variable (X) of the data set into several latent variables
with the greatest amount of information while considering the vari-
ability in output variable (Y) and satisfies Equation (6) (Park et al.,
2023)

Y=TPt + E; X = TQt + F (6)

where T = (t1, t2,…., tn) is the variable; E and F are random errors of Y
and X, respectively. In this study, the maximum latent variable was set
as 10 with 5-fold cross-validation. To develop the PLSR predictive
model, the total 72 collected data was split into the calibration and
prediction data sets at a 3:1 ratio by using the Kennard-Stone (KS)

technique, which maximizes the Euclidean distance between the system
response to equally cover the multi-dimensional space. The larger part
(75%) of the data set was used for calibrating the model. Understanding
that model training is liable to overfit when using limited data, this
study used cross-validation techniques to avoid overfitting and ensure
model robustness and accuracy. The cross-validation techniques parti-
tion the calibration data set into multiple folds. The technique initially
trains the model using a data fold and validates the model with other
folds while correcting the models as the process is repeated for all the
folds (Zhang et al., 2023a). To ensure accurate and effective prediction
by the model, the prediction data set (25%) was used to test the repro-
ducibility of the developed quantitative models (Achata et al., 2021).

2.7. Model accuracy indices

Computing the model performance indices such as root mean
squared error (RMSE), coefficient of determination (R2) and mean ab-
solute percentage deviation (MAPD) are crucial phases of model
development. In this study, Equation (5) and Equation (6), were used to
calculate R2 and RMSE, respectively, for both model calibration and
prediction, while the MAPD, which further measures how well and
reliably the model performed during prediction is determined using
Equation (7). Consequently, the model with a higher R2 with a lower
RMSE and MAPD is considered the best model for the prediction of the
macronutrients of GR (Guo et al., 2023b; Sun et al., 2019b).

R2 =1 −

∑n

i=1

(
Ypre,i − Yexp,i

)2

∑n

i=1

(
Ypre,i − Yexp,i

)2
(5)

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Ypre,i − Yexp,i

)2

n

√
√
√
√
√

(6)

MAPD=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Ypre,i − Yexp,i

Ypre,i

⃒
⃒
⃒
⃒× 100 (7)

where Ypre,i, is the predicted value of the GR quality, Yexp,i is the refer-
ence quality parameter of the GR, Yexp,i is the reference quality param-
eter of the GR and n is the number of observations.

2.8. Visualization of the macronutrient distribution

In HSI, each image consists of a spectrum per pixel; therefore, the
model developed for the determination of the macronutrient in each
pixel was used to generate the spatial distribution map for the predicted
macronutrient. The distribution map was plotted by following the pro-
cedure described by Ahmed et al. (2024) and Malegori et al. (2021).
Each pixel macronutrient was predicted by employing the best predic-
tive model that was developed based on the selected effective wave-
length (SGID-VISSA-PLSR). Using the effective wavelength, the HSI
image data cube was transformed into a two-dimensional vector, which
was then subjected to the predictive model for macronutrient calcula-
tion. Subsequently, the generated one-dimensional vector was reshaped
to create a coloured image with the identical spatial dimension as the
initial data cube. Then, the distribution maps representing the macro-
nutrient distribution were created using a pseudocolour plot with a
linear colour scale. The computation of the preprocessing techniques,
effective wavelength selection algorithm, the development of the cor-
responding model, and visualization of macronutrient distribution in
this study were done on MATLAB 2023a software (Version 19.14.0,
Mathwork. inc).
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3. Results and discussions

3.1. Macronutrients in the glutinous rice

The result shows that the drying temperature and thickness signifi-
cantly contributed to the variability in the quality of the milled GR. As
shown in Fig. 2, The PC, MC, AC, and FC ranged from 4.67 ± 0.09% to
7.03 ± 0.26%, 12.05 ± 0.22% to 14.75 ± 0.12%, 0.4 ± 0.02% to 0.61
± 0.02%, and 0.5 ± 0.03% to 1.55 ± 0.09% respectively. On average,
the PC and MC were relatively reduced with the temperature, while the
AC relatively increased. However, the MC of the GR grain shows the
least significant (P < 0.05) variability with the drying conditions. This
behaviour was mainly because the drying of the grains was controlled
based on the gravimetric method to ensure a similar moisture level
(12%) was attained after drying (Nath et al., 2022). For FC at thicknesses
of 15 mm and 25 mm, the trend indicates a reduction in FC with
increasing temperature. However, at thicknesses of 35 mm and 45 mm,
the lowest FC was observed at 60 ◦C (0.5 ± 0.02% and 0.77 ± 0.04%,
respectively). The values were significantly lower than those obtained at
50 ◦C and 70 ◦C. Compared to the literature, the PC falls within the range
reported by Verma and Srivastav (2017) for non-aromatic rice (6.87 ±

0.10% to 7.09 ± 0.08%). Nevertheless, the values were slightly lower
compared to the range of 7.23%–9.96% reported by Verma and Sri-
vastav (2017) and Nath et al. (2022) for non-glutinous and aromatic
rice. However, the MC (8.9%–13.57%), AC (0.35%–0.73%), and FC
(0.06%–0.99%) reported by Rasool et al. (2015), Verma and Srivastav
(2017), Kaur and Asthir (2021) and (Nath et al., 2022) were similar to
the values in this study.

3.2. Hyperspectral reflectance

As stated earlier, the macronutrients retained in the milled GR vary
significantly with the grain layer thickness and the temperature of the
dryer. This section discusses the HSI reflectance curve as a non-
destructive approach for detecting macronutrients in the GR grains.

Using a 4 nm resolution sampling, the raw spectra of the images ob-
tained from the HSI camera span 450–998 nm. The mean value of the
reflectance curve for the pixels in the ROI of the sample is displayed in
Fig. 3a. The reflectance value in all samples exhibits a decreasing trend
from wavelength of 450 nm and reaches the absorbance valley between
490 and 520 nm. The subsequent absorption valley was found between
730 and 750 nm for most of the sample. This absorption valley is most
likely associated with the third overtone C-H lengths and the second
overtone O-H and N-H stretching vibration(Song et al., 2023). The third
absorption valley range of 920–950 nm was located close to the ab-
sorption valley at 960 nm, which was caused by the second overtone
O-H stretching linked to chemical composition (Qiao et al., 2022).

3.2.1. Spectral preprocessing method and model performance
The preprocessed reflectance spectral data under various processing

methods are displayed in Fig. 3. Among the methods are MWS, SNV,
MSC, and SG1D. The preprocessing technique was designed to lessen
human, operational, instrumental, and environmental errors. The MWS
minimized the noise and irregularities in the spectral data (Fig. 3b). The
MSC lessens the spectral multiplicative and additive effects. To reduce
the multiplicative and additive effects in the spectral data (Fig. 3d), the
SNV uses the normalization approach (Fig. 3c). The spectral data to
SG1D adjust the particle offset and scattering at the spectral baseline
(Fig. 3e). The original full spectra, preprocessing spectra, and effective
spectral bands served as the foundation for the development of the
model.

3.2.2. Preprocess and model performance
The performance accuracy of the PLSR model combined with various

preprocessing techniques for an efficient determination of the milled GR
reference quality is summarised in Table 1. The best preprocessing
method improves the predictive model’s accuracy so that the reference
macronutrient of the GR will be effectively detected, processed further,
or deployed for use in real time (He et al., 2023). The RAW-PLSR model
calibration had the R2

C of 0.9961, 0.9984, 0.9762, and 0.9917 with

Fig. 2. Macronutrients retained in the milled GR under different drying conditions. a: MC, b: PC, c. FC, and d. AC.
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RMSEC of 0.0552, 0.0420, 0.0583, and 0.0108 for the PC, MC, FC, and
AC, respectively. By using the RAW-PLSR model for the prediction data
set, the R2

P of 0.6493, 0.9521, 0.4594 and 0.9773; RMSEP of 0.7205,
0.1942, 0.2408 and 0.0235 with MAPD of 7.00%, 1.21, 35.09, and
4.89% for the PC, MC, FC, and AC, respectively were obtained.
Comparing all the preprocessing techniques, the SG1D-PLSR obtained
the best performance for all the quality parameters of the GR. The
SG1D-PLSR gave a compelling accuracy of 0.9963 ≤ R2

C ≤ 0.9974,
0.0052 ≤ RMSEC ≤ 0.0524, 0.9857 ≤ R2

P ≤ 0.9972, 0.0043 ≤ RMSEP ≤

0.0565 and 0.34 ≤ MAPD ≤ 3.36 Compared to the PLSR model of the
original spectral (RAW-PLS), applying SG1D-PLS to the prediction

dataset increases the accuracy of the model by 34.79%, 4.49%, 52.63%
and 1.99% for PC, MC, FC and AC respectively. The linear relationship
between the experimental and predicted value for the raw- and pre-
processed spectra-based PLSR model is presented in Fig. A1. To improve
the predictive model performance, the spectral data obtained from the
SG1D preprocessed algorithm was selected for further processing
(effective wavelength selection).

3.2.3. Feature selection accuracy

3.2.3.1. Competitive adaptive reweighted sampling. The CARS algorithm
was preset to 50 Monte Carlo simulation sample sizes with 5-fold cross-

Fig. 3. Reflectance spectral data of milled GR: [a] RAW, [b] MWS, [c] SNV, [d] MSC, and [e] SG1D.
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validation for model evaluation. Under different simulation runs,
Figs. A2a–d shows the resulting variation in the root mean square error
progression for cross-validation (RMSECV). The minimum RMSECV was
obtained at 19, 13, 22, and 22 iterations for the PC, MC, FC, and AC,
respectively. The RMSECV value was 0.078 for PC, 0.089 for MC, 0.0151
for FC, and 0.031 for AC. The number of wavelengths retained by the
CARS algorithm at the optimal selection point of 19, 13, 22, and 22 were
29 bands for PC, 49 bands for MC, 22 for the FC and 22 bands for AC. The
number of selected wavelengths is equivalent to a pronounced reduction
of 78.99%, 64.49%, 84.06%, and 86.06% compared to the full wave-
length of PC, MC, FC, and AC, respectively (Figs. A2e–h).

3.2.3.2. Random frog. For the parameters of the RF algorithm, the
number of Monte Carlo simulations was set to 1000 with aminimum of 2
features at the initial sampling point, and the regression coefficient was
used for variable index assessment. Figs. A3(a–d) presents the variation
in the RMSEP for all the Monte Carlo simulated samples of the RF
computation algorithm. Selecting the variable in the RF simulation with
the lowest RMSEP in the final stage gave a value of 0.838, 0.078, 0.024
and 0.003 for the PC, MC, FC, and AC, respectively. The algorithm se-
lects 19, 41, 17, and 41 bands as the effective wavelength for the PC, MC,
FC, and AC, which amount to 86.23%, 70.29%, 87.68% and 70.29%
reduction in the whole wavelength, respectively (Figs. A3e–h).

3.2.3.3. Iteratively retains informative variables. Figs. A4(a–d) shows the
variation in the remaining variable with the iteration round of the IRIV
algorithm during computation for the PC, MC, FC and AC of GR,
respectively. The session of variable selection was completed in 6 iter-
ations for PC, MC, and FC of the GR, and AC was attained in 7 iterations.
The selected wavelength was reduced continuously until the final round.
In the initial three rounds of iteration, more than 50% of bands were
eliminated for all quality parameters. Subsequently, the rate of band
removal stabilized, with 3–14 wavelengths being removed through
backward elimination in the final iteration round (Figs. A4a–d). This left
approximately 18.12%, 13.04%, 19.57%, and 29.71% of the total
wavelengths selected for PC, MC, FC, and AC, respectively, representing
25, 18, 27, and 41 selected wavelengths (Figs. A4e–h).

3.2.3.4. Variable combination population analysis. The RMSECV pro-
gression during the iterations in the exponential decreasing function
(EDF) for the VCPA computation algorithm is shown in Figs. A5(a–d) for
the PC, MC, FC and AC of GR. The characteristic space shrunk, and
RMSECV depicted a continuous downward trend with the repeated
operation of EDF. In the variable selection process, the VCPA run with
the lowest RMSECV in the final stage yielded values of 0.065, 0.065,
0.032, and 0.002 for the PC, MC, FC, and AC, respectively. Subse-
quently, 10, 11, 11, and 10 bands were identified as effective wave-
lengths for the PC, MC, FC, and AC, representing a reduction of 92.75%,

Table 1
Performance accuracy of the PLSR model coupled with different preprocessing methods.

Macronutrients Preprocessing R2
C RMSEC R2

P RMSEP MAPD (%)

PC RAW 0.9961 0.0552 0.6493 0.7205 7.00
​ MWS 0.9981 0.0419 0.6577 0.6037 5.87
​ SNV 0.9997 0.0173 0.9700 0.1611 2.44
​ MSC 0.9997 0.0169 0.9700 0.1611 2.44
​ SG1D 0.9974 0.0459 0.9972 0.0557 0.69
MC RAW 0.9984 0.0420 0.9521 0.1942 1.21
​ MWS 0.9954 0.0681 0.9834 0.1366 0.80
​ SNV 0.9998 0.0141 0.8986 0.3184 2.43
​ MSC 0.9991 0.0283 0.8981 0.3191 2.44
​ SG1D 0.9973 0.0524 0.9970 0.0565 0.34
FC RAW 0.9762 0.0583 0.4594 0.2408 35.09
​ MWS 0.9793 0.0577 0.8091 0.1105 9.93
​ SNV 0.9907 0.0352 0.9863 0.0411 4.07
​ MSC 0.9899 0.0366 0.9851 0.0428 4.24
​ SG1D 0.9964 0.0234 0.9857 0.0293 3.36
AC RAW 0.9817 0.0108 0.9773 0.0235 4.89
​ MWS 0.9926 0.0073 0.9351 0.0239 3.87
​ SNV 0.9979 0.0040 0.9778 0.0128 2.43
​ MSC 0.9979 0.0040 0.9778 0.0127 2.43
​ SG1D 0.9963 0.0052 0.9972 0.0043 0.74

Fig. 4. Result of effective wavelength selection of the VISSA algorithm. [a], [b], [c] and [d] represent the RMSECV at different numbers of iterations for PC, MC, FC
and AC respectively. [e], [f], [g] and [h] represent the selected wavelength and percentage reduction of wavelength for PC, MC, FC and AC respectively.
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92.03%, 92.03%, and 92.75% in the total number of wavelengths,
respectively (Figs. A5e–h).

3.2.3.5. Variable iterative space shrinkage approach. Fig. 4a–d shows the
RMSECV variation at different iteration numbers during computation
with the VISSA algorithm. For the PC, MC, FC, and AC of the GR, 30, 39,
36, and 35 iterations were conducted, respectively, with each achieving

minimum RMSECV values of 0.026, 0.018, 0.077, and 0.002. The final
bands selected by the VISSA algorithm after the iteration rounds are
depicted in Fig. 4(a–d) for the PC, MC, FC, and AC of GR, respectively. A
total of 53, 62, 50, and 59 bands were selected for the PC, MC, FC, and
AC, indicating reductions of 61.59%, 55.07%, 63.77%, and 57.25% in
the full wavelength, as shown in Fig. 4e–h.

Fig. 5. The linear relationship between the experimentally obtained value and the predicted value of the processing sequence for the PLSR model based on the Full
spectral (a–d) and best preprocessing method (e–h).
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3.2.4. Comparison of model accuracy
Table 2 summarises the result of the predictive model performance

by comparing the inclusion of different effective wavelength selection
techniques to the selected model with the best preprocessing method
(SG1D-PLSR). The linear relationship between the experimentally ob-
tained value and the predicted value of the selected best effective
wavelength-based and full spectral-based PLSR model is shown in Fig. 5.
All the effective wavelength selection techniques fall within the
acceptable limit based on prediction accuracy and precision. All the
methods except VCPA gave a decent performance, which was higher
than that of using full spectral (SG1D-Full-PLSR). Although the VCPA
has the highest wavelength reduction (>90%) when compared to full
spectral, the SG1D-VCPA-PLSR reduced the accuracy by 1.03%, 3.47%,
2.11%, and 2.05% for the PC, MC, FC, and AC, respectively. For all the
quality parameters, the SG1D-VISSA-PLSR model attained 100% accu-
racy during the calibration and prediction with 0.0005 ≤ RMSE ≤

0.0045 and 0.0005 ≤ RMSE ≤ 0.0035 respectively. This model had the
most significant improvement compared to the accuracy of SG1D-Full-
PLSR, which ranged from 99.63% to 99.74% and 98.57%–99.72% for
calibration and prediction, respectively. Therefore, the combination of
the SG1D preprocessing method and VISSA effective wavelength selec-
tion techniques (SG1D-VISSA-PLSR model) was considered the best
processing sequence. In a similar study by Zhang et al. (2022b), the FC of
maize was determined using HSI, achieving an accuracy of 91.98%.
Song et al. (2023) demonstrated the effectiveness of CARS-PLSR in
predicting moisture for rice samples using an HSI system, achieving an
accuracy of 0.9643, and 0.0032 for R2

P, and RMSEP, respectively. Man-
suri et al. (2022) utilized Vis/NIR-HSI to determine fungal contamina-
tion in maize, achieving an accuracy of over 95%. Guo et al. (2023b)
determined the MC of soybean seed with a prediction accuracy of R2

p of
97.13% by using a Vis/NIR-HSI system. Aulia et al. (2022) determined
the PC of soybean with a prediction accuracy of 92% using near-infrared
HSI. Sun et al. (2019b) determined the MC of peanut kernels using HSI,
achieving an accuracy of 93.63%.

3.3. Macronutrient visualization

The accuracy of the developed model has a significant bearing on the
dependability and correctness of the distribution maps. Using a wrong
model could provide false information about the spatial distribution,

which could have a detrimental effect on how the distribution map and
its implications are interpreted (Ahmed et al., 2024). Therefore, creating
a distribution map is another way of ensuring the model prediction ac-
curacy by visualizing the spatial variation of the response. Fig. 6 illus-
trates the selected GR sample with high, medium, and low values of the
tested macronutrients. Based on the best predictive model developed
from the selected effective wavelength (VISSA-PLSR), the map was used
to depict the distribution of the macronutrient distribution in GR. The
visualization accuracy is relative to the performance of the developed
model, it can be assessed based on the colour scale. The application of a
linear colour scale for mapping the micronutrient guarantees that the
pixels with the same predicted macronutrient values are depicted with
comparable colour characteristics when mapping the variation in the
macronutrient retained in the GR. The relative distribution of the PC,
MC, AC, and FC is thus represented by the corresponding pixel value, as
seen in Fig. 6a to d, respectively. The macronutrient distribution map
not only illustrates the variations in micronutrients at the pixel level but
also shows how HSI may be used to reveal the pixel-wise chemical
constituent, which may be difficult to accomplish with RGB image and
unaided human vision. Consequently, an essential application of optical
images in grain processing is the use of HSI to map the spatial distri-
bution of the grain quality parameters.

4. Conclusion

In this study, Vis/NIR HSI coupled with different spectral pre-
processing (MWS, SNV, MSC, and SG1D) and effective wavelength se-
lection techniques (CARS, IRIV, RF, VCPA and VISSA) for the detection of
macronutrients retained in GR under different drying conditions. Subse-
quently, predictive models were developed based on processed spectra to
rapidly detect the macronutrients, including PC, MC, FC and AC. The
result shows the spectral preprocess with the SG1D method has the
highest performance with the best accuracy of 0.9963 ≤ R2

C ≤ 0.9974,
0.0052 ≤ RMSEC ≤ 0.0524, 0.9857 ≤ R2

P ≤ 0.9972, 0.0043 ≤ RMSEP ≤

0.0565 and 0.34 ≤ MAPD ≤ 3.36. Compared to the RAW-PLSR, the
SG1D-PLSR increases the model accuracy for the prediction dataset by
34.79%, 4.49%, 52.63% and 1.99% for PC, MC, FC and AC, respectively.
Using the VISSA technique for effective wavelength selection reduces the
total number of wavelengths by over 60%. This method increases the
accuracy of the model (SG1D-VISSA-PLSR) to 100% for both model

Table 2
Summary of the performance predictive model under different effective wavelength selection techniques.

Quality Model Wavelength selection R2
C RMSEC R2

P RMSEP MAPD (%)

PC SG1D-PLSR Full 0.9974 0.0459 0.9972 0.0557 0.69
​ ​ CARS 0.9997 0.0161 0.9997 0.0177 0.21
​ ​ IRIV 0.9971 0.0489 0.9968 0.0601 0.79
​ ​ RF 0.9999 0.0122 0.9997 0.0148 0.20
​ ​ VCPA 0.9907 0.0879 0.9868 0.1256 1.07
​ ​ VISSA 1.0000 0.0047 1.0000 0.0035 0.03
MC SG1D-PLSR Full 0.9973 0.0524 0.9970 0.0565 0.34
​ ​ CARS 0.9995 0.0217 0.9996 0.0197 0.12
​ ​ IRIV 0.9984 0.0398 0.9976 0.0526 0.33
​ ​ RF 0.9993 0.0249 0.9994 0.0254 0.16
​ ​ VCPA 0.9657 0.1855 0.9622 0.1856 1.14
​ ​ VISSA 1.0000 0.0033 1.0000 0.0020 0.01
FC SG1D-PLSR Full 0.9964 0.0234 0.9857 0.0293 3.36
​ ​ CARS 0.9996 0.0084 0.9986 0.0088 0.81
​ ​ IRIV 0.9965 0.0230 0.9883 0.0252 2.81
​ ​ RF 0.9981 0.0115 0.9996 0.0082 0.81
​ ​ VCPA 0.9833 0.0507 0.9646 0.0470 5.07
​ ​ VISSA 1.0000 0.0023 1.0000 0.0014 0.13
AC SG1D-PLSR Full 0.9963 0.0052 0.9972 0.0043 0.74
​ ​ CARS 0.9998 0.0012 0.9998 0.0012 0.17
​ ​ IRIV 0.9996 0.0018 0.9996 0.0018 0.30
​ ​ RF 0.9991 0.0024 0.9995 0.0019 0.28
​ ​ VCPA 0.9847 0.0107 0.9767 0.0125 1.96
​ ​ VISSA 1.0000 0.0005 1.0000 0.0005 0.07
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calibration and training. Subsequently, the macronutrient distribution of
GR was effectively visualized by using a chemical colour map based on
the best predictive model. Although the predictive model gave a good
performance, further improvement could study a wider range of quality
determination, and consider the variability of macronutrients with other
factors such as dryer type, air velocity and air humidity. Also, further
studies could evaluate HSI techniques with higher wavelengths such as
short-wave far infrared. Since this study is specifically conducted for GR,
it is crucial to recalibrate the developedmodel before adopting it for other
rice varieties. However, the developed SG1D-VISSA-PLSR model is sug-
gested for effective and rapid detection of macronutrients in GR grains on
both small and industrial scales based on near-infrared hyperspectral
imaging. Technological industries can adopt the model as a reliable basis
for building a smart and reliable spectral system for rapid detection of the
macronutrients in GR.

CRediT authorship contribution statement

Kabiru Ayobami Jimoh: Conceptualization. Norhashila Hashim:
Conceptualization. Rosnah Shamsudin: supervised and provided crit-
ical discussion and contribution to the manuscript revision. Hasfalina
Che Man: supervised and provided critical discussion and contribution
to the manuscript revision. Mahirah Jahari: supervised and provided
critical discussion and contribution to the manuscript revision. Puteri
Nurain Megat Ahmad Azman: collected the data. Daniel I. Onwude:
provided critical discussion and contribution to the manuscript revision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Fig. 6. Distribution of the macronutrient in the GR. [a]: PC, [b]: MC, [c]: AC and [d]: FC.

K.A. Jimoh et al. Current Research in Food Science 10 (2025) 100963 

10 



Acknowledgements

The authors acknowledge the financial support of the Ministry of
Higher Education, Malaysia, through the Transdisciplinary Research
Grant Scheme Project (TRGS/1/2020/UPM/02/7).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.crfs.2024.100963.

Data availability

Data will be made available on request.

References

Achata, E.M., Esquerre, C., Ojha, K.S., Tiwari, B.K., O’Donnell, C.P., 2021. Development
of NIR-HSI and chemometrics process analytical technology for drying of beef jerky.
Innovative Food Sci. Emerging Technol. 69, 102611. https://doi.org/10.1016/j.
ifset.2021.102611.

Ahmed, T., Wijewardane, N.K., Lu, Y., Jones, D.S., Kudenov, M., Williams, C.,
Villordon, A., Kamruzzaman, M., 2024. Advancing sweetpotato quality assessment
with hyperspectral imaging and explainable artificial intelligence. Comput. Electron.
Agric. 220 (January), 108855. https://doi.org/10.1016/j.compag.2024.108855.

An, T., Yu, S., Huang, W., Li, G., Tian, X., Fan, S., Dong, C., Zhao, C., 2022. Robustness
and accuracy evaluation of moisture prediction model for black tea withering
process using hyperspectral imaging. Spectrochimica Acta - Part A: Molecular and
Biomolecular Spectroscopy 269, 120791. https://doi.org/10.1016/j.
saa.2021.120791.

Aulia, R., Kim, Y., Zuhrotul Amanah, H., Muhammad Akbar Andi, A., Kim, H., Kim, H.,
Lee, W.H., Kim, K.H., Baek, J.H., Cho, B.K., 2022. Non-destructive prediction of
protein contents of soybean seeds using near-infrared hyperspectral imaging.
Infrared Phys. Technol. 127 (June), 104365. https://doi.org/10.1016/j.
infrared.2022.104365.

Buresova, I., Cervenka, L., Sebestikova, R., Augustova, M., Jarosova, A., 2023.
Applicability of flours from Pigmented and glutinous rice in gluten-free Bread
Baking. Foods 12 (6), 1–13. https://doi.org/10.3390/foods12061324.

Chen, X., Siesler, H.W., Yan, H., 2021. Rapid analysis of wheat flour by different
handheld near-infrared spectrometers: a discussion of calibration model
maintenance and performance comparison. Spectrochimica Acta - Part A: Molecular
and Biomolecular Spectroscopy 252, 119504. https://doi.org/10.1016/j.
saa.2021.119504.
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2024. Hyperspectral imaging as a non-destructive technique for estimating the
nutritional value of food. Curr. Res. Food Sci. 9 (March). https://doi.org/10.1016/j.
crfs.2024.100799.

Nath, S., Bhattacharjee, P., Bhattacharjee, S., Datta, J., Dolai, A.K., 2022. Grain
characteristics, proximate composition, phytochemical capacity, and mineral
content of selected aromatic and non-aromatic rice accessions commonly cultivated
in the North-East Indian plain belt. Applied Food Research 2 (1), 100067. https://
doi.org/10.1016/j.afres.2022.100067.

Panda, B.K., Mishra, G., Ramirez, W.A., Jung, H., Singh, C.B., Lee, S.H., Lee, I., 2022.
Rancidity and moisture estimation in shelled almond kernels using NIR
hyperspectral imaging and chemometric analysis. J. Food Eng. 318, 110889. https://
doi.org/10.1016/j.jfoodeng.2021.110889.

Pandey, P., Veazie, P., Whipker, B., Young, S., 2023. Predicting foliar nutrient
concentrations and nutrient deficiencies of hydroponic lettuce using hyperspectral
imaging. Biosyst. Eng. 230, 458–469. https://doi.org/10.1016/j.
biosystemseng.2023.05.005.

Park, S., Yang, M., Yim, D.G., Jo, C., Kim, G., 2023. VIS/NIR hyperspectral imaging with
artificial neural networks to evaluate the content of thiobarbituric acid reactive
substances in beef muscle. J. Food Eng. 350 (September 2022), 111500. https://doi.
org/10.1016/j.jfoodeng.2023.111500.

Qiao, M., Xu, Y., Xia, G., Su, Y., Lu, B., Gao, X., Fan, H., 2022. Determination of hardness
for maize kernels based on hyperspectral imaging. Food Chem. 366 (March 2021),
130559. https://doi.org/10.1016/j.foodchem.2021.130559.

Rasool, N., Baba, W.N., Muzzaffar, S., Masoodi, F.A., Ahmad, M., Munaff Bhat, M., 2015.
A correlation study of proximate composition, physical and cooking properties of
new high yielding and disease resistant rice varieties. Cogent Food Agric. 1 (1).
https://doi.org/10.1080/23311932.2015.1099175.

Ren, G., Ning, J., Zhang, Z., 2020. Intelligent assessment of tea quality employing visible-
near infrared spectra combined with a hybrid variable selection strategy.
Microchem. J. 157, 105085. https://doi.org/10.1016/j.microc.2020.105085.

Sadaka, S., 2022. Impact of grain layer thickness on rough rice drying kinetics
parameters. Case Stud. Therm. Eng. 35, 102026. https://doi.org/10.1016/j.
csite.2022.102026.

Saha, D., Senthilkumar, T., Sharma, S., Singh, C.B., Manickavasagan, A., 2023.
Application of near-infrared hyperspectral imaging coupled with chemometrics for
rapid and non-destructive prediction of protein content in single chickpea seed.
J. Food Compos. Anal. 115 (June 2022), 104938. https://doi.org/10.1016/j.
jfca.2022.104938.

Song, Y., Cao, S., Chu, X., Zhou, Y., Xu, Y., Sun, T., Zhou, G., Liu, X., 2023. Non-
destructive detection of moisture and fatty acid content in rice using hyperspectral
imaging and chemometrics. J. Food Compos. Anal. 121 (May), 105397. https://doi.
org/10.1016/j.jfca.2023.105397.

Sun, J., Shi, X., Zhang, H., Xia, L., Guo, Y., Sun, X., 2019b. Detection of moisture content
in peanut kernels using hyperspectral imaging technology coupled with
chemometrics. J. Food Process. Eng. 42 (7), 1–10. https://doi.org/10.1111/
jfpe.13263.

K.A. Jimoh et al. Current Research in Food Science 10 (2025) 100963 

11 

https://doi.org/10.1016/j.crfs.2024.100963
https://doi.org/10.1016/j.crfs.2024.100963
https://doi.org/10.1016/j.ifset.2021.102611
https://doi.org/10.1016/j.ifset.2021.102611
https://doi.org/10.1016/j.compag.2024.108855
https://doi.org/10.1016/j.saa.2021.120791
https://doi.org/10.1016/j.saa.2021.120791
https://doi.org/10.1016/j.infrared.2022.104365
https://doi.org/10.1016/j.infrared.2022.104365
https://doi.org/10.3390/foods12061324
https://doi.org/10.1016/j.saa.2021.119504
https://doi.org/10.1016/j.saa.2021.119504
https://doi.org/10.1038/s41598-020-78914-x
https://doi.org/10.1038/s41598-020-78914-x
https://doi.org/10.1016/j.jclepro.2024.142204
https://doi.org/10.1016/j.jclepro.2024.142204
https://doi.org/10.1016/j.fbp.2022.01.004
https://doi.org/10.1016/j.foodhyd.2021.107377
https://doi.org/10.1016/j.jfca.2022.105048
https://doi.org/10.1016/j.jfca.2022.105048
https://doi.org/10.1016/j.jfca.2022.105069
https://doi.org/10.1016/j.jfca.2022.105069
https://doi.org/10.1016/bs.afnr.2024.09.006
https://doi.org/10.1016/j.ifset.2024.103733
https://doi.org/10.1016/j.jspr.2023.102145
https://doi.org/10.1002/jsfa.13445
https://doi.org/10.1007/s12393-023-09333-7
https://doi.org/10.1007/s12393-023-09333-7
https://doi.org/10.1007/s42976-020-00101-5
https://doi.org/10.1016/j.crfs.2023.100647
https://doi.org/10.1115/1.4066694
https://doi.org/10.1115/1.4066694
https://doi.org/10.1016/j.jcs.2017.09.016
https://doi.org/10.1016/j.lwt.2023.114825
https://doi.org/10.1016/j.lwt.2023.114825
https://doi.org/10.1016/j.lwt.2023.115018
https://doi.org/10.1016/j.lwt.2023.115018
https://doi.org/10.1002/fsn3.2953
https://doi.org/10.1016/j.foodchem.2020.128547
https://doi.org/10.1016/j.foodcont.2022.109077
https://doi.org/10.1016/j.foodcont.2022.109077
https://doi.org/10.1016/j.crfs.2024.100799
https://doi.org/10.1016/j.crfs.2024.100799
https://doi.org/10.1016/j.afres.2022.100067
https://doi.org/10.1016/j.afres.2022.100067
https://doi.org/10.1016/j.jfoodeng.2021.110889
https://doi.org/10.1016/j.jfoodeng.2021.110889
https://doi.org/10.1016/j.biosystemseng.2023.05.005
https://doi.org/10.1016/j.biosystemseng.2023.05.005
https://doi.org/10.1016/j.jfoodeng.2023.111500
https://doi.org/10.1016/j.jfoodeng.2023.111500
https://doi.org/10.1016/j.foodchem.2021.130559
https://doi.org/10.1080/23311932.2015.1099175
https://doi.org/10.1016/j.microc.2020.105085
https://doi.org/10.1016/j.csite.2022.102026
https://doi.org/10.1016/j.csite.2022.102026
https://doi.org/10.1016/j.jfca.2022.104938
https://doi.org/10.1016/j.jfca.2022.104938
https://doi.org/10.1016/j.jfca.2023.105397
https://doi.org/10.1016/j.jfca.2023.105397
https://doi.org/10.1111/jfpe.13263
https://doi.org/10.1111/jfpe.13263


Tian, P., Meng, Q., Wu, Z., Lin, J., Huang, X., Zhu, H., Zhou, X., Qiu, Z., Huang, Y., Li, Y.,
2023. Detection of mango soluble solid content using hyperspectral imaging
technology. Infrared Phys. Technol. 129. https://doi.org/10.1016/j.
infrared.2023.104576.

Tu, Q., Ma, Z., Wang, H., 2023. Investigation of wet particle drying process in a fluidized
bed dryer by CFD simulation and experimental measurement. Chem. Eng. J. 452,
139200. https://doi.org/10.1016/j.cej.2022.139200.

Varela, J.I., Miller, N.D., Infante, V., Kaeppler, S.M., de Leon, N., Spalding, E.P., 2022.
A novel high-throughput hyperspectral scanner and analytical methods for
predicting maize kernel composition and physical traits. Food Chem. 391 (December
2021), 133264. https://doi.org/10.1016/j.foodchem.2022.133264.

Verma, D.K., Srivastav, P.P., 2017. Proximate composition, mineral content and fatty
acids Analyses of aromatic and non-aromatic Indian rice. Rice Sci. 24 (1), 21–31.
https://doi.org/10.1016/j.rsci.2016.05.005.

Wang, Z., Fu, Z., Weng, W., Yang, D., Wang, J., 2022a. An efficient method for the rapid
detection of industrial paraffin contamination levels in rice based on hyperspectral
imaging. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 171
(November).

Wang, Z., Fu, Z., Weng, W., Yang, D., Wang, J., 2022b. An efficient method for the rapid
detection of industrial paraffin contamination levels in rice based on hyperspectral
imaging. Lwt 171 (June), 114125. https://doi.org/10.1016/j.lwt.2022.114125.

Xu, D., Ma, W., Chen, S., Jiang, Q., He, K., Shi, Z., 2018. Assessment of important soil
properties related to Chinese Soil Taxonomy based on vis–NIR reflectance
spectroscopy. Comput. Electron. Agric. 144, 1–8. https://doi.org/10.1016/j.
compag.2017.11.029.

Zhang, L., An, D., Wei, Y., Liu, J., Wu, J., 2022b. Prediction of oil content in single maize
kernel based on hyperspectral imaging and attention convolution neural network.
Food Chem. 395, 133563. https://doi.org/10.1016/j.foodchem.2022.133563.

Zhang, J., Guo, Z., Ren, Z., Wang, S., Yue, M., Zhang, S., Yin, X., Gong, K., Ma, C., 2023.
Rapid determination of protein, starch and moisture content in wheat flour by near-
infrared hyperspectral imaging. J. Food Compos. Anal. 117, 105134. https://doi.
org/10.1016/j.jfca.2023.105134.

Zheng, H., Cheng, T., Li, D., Yao, X., Tian, Y., Cao, W., Zhu, Y., 2018. Combining
unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based
hyperspectral data for plant nitrogen concentration estimation in rice. Front. Plant
Sci. 9, 1–13. https://doi.org/10.3389/fpls.2018.00936.

K.A. Jimoh et al. Current Research in Food Science 10 (2025) 100963 

12 

https://doi.org/10.1016/j.infrared.2023.104576
https://doi.org/10.1016/j.infrared.2023.104576
https://doi.org/10.1016/j.cej.2022.139200
https://doi.org/10.1016/j.foodchem.2022.133264
https://doi.org/10.1016/j.rsci.2016.05.005
http://refhub.elsevier.com/S2665-9271(24)00290-9/sref43
http://refhub.elsevier.com/S2665-9271(24)00290-9/sref43
http://refhub.elsevier.com/S2665-9271(24)00290-9/sref43
http://refhub.elsevier.com/S2665-9271(24)00290-9/sref43
https://doi.org/10.1016/j.lwt.2022.114125
https://doi.org/10.1016/j.compag.2017.11.029
https://doi.org/10.1016/j.compag.2017.11.029
https://doi.org/10.1016/j.foodchem.2022.133563
https://doi.org/10.1016/j.jfca.2023.105134
https://doi.org/10.1016/j.jfca.2023.105134
https://doi.org/10.3389/fpls.2018.00936

	Hyperspectral imaging for detection of macronutrients retained in glutinous rice under different drying conditions
	1 Introduction
	2 Materials and methods
	2.1 Sample preparation and glutinous rice drying
	2.2 Macronutrients determination by using reference method
	2.2.1 Protein content
	2.2.2 Moisture content
	2.2.3 Fat content
	2.2.4 Ash content

	2.3 Hyperspectral image acquisition and processing
	2.4 Spectral preprocessing
	2.5 Effective wavelength selection
	2.6 Partial Least Square Regression model development
	2.7 Model accuracy indices
	2.8 Visualization of the macronutrient distribution

	3 Results and discussions
	3.1 Macronutrients in the glutinous rice
	3.2 Hyperspectral reflectance
	3.2.1 Spectral preprocessing method and model performance
	3.2.2 Preprocess and model performance
	3.2.3 Feature selection accuracy
	3.2.3.1 Competitive adaptive reweighted sampling
	3.2.3.2 Random frog
	3.2.3.3 Iteratively retains informative variables
	3.2.3.4 Variable combination population analysis
	3.2.3.5 Variable iterative space shrinkage approach

	3.2.4 Comparison of model accuracy

	3.3 Macronutrient visualization

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Data availability
	References


