
Frontiers in Pharmacology | www.frontiers

Edited by:
Mounir Tarek,

Centre National de la Recherche
Scientifique (CNRS), France

Reviewed by:
Michael E. O'Leary,

Cooper Medical School of Rowan
University, United States

Roope Mannikko,
University College London,

United Kingdom

*Correspondence:
Alain J. Labro

alain.labro@uantwerpen.be

†These authors share first authorship

Specialty section:
This article was submitted to

Pharmacology of Ion Channels
and Channelopathies,
a section of the journal

Frontiers in Pharmacology

Received: 31 January 2020
Accepted: 04 May 2020
Published: 15 May 2020

Citation:
Van Theemsche KM,

Van de Sande DV, Snyders DJ and
Labro AJ (2020) Hydrophobic

Drug/Toxin Binding Sites in
Voltage-Dependent K+

and Na+ Channels.
Front. Pharmacol. 11:735.

doi: 10.3389/fphar.2020.00735

REVIEW
published: 15 May 2020

doi: 10.3389/fphar.2020.00735
Hydrophobic Drug/Toxin Binding
Sites in Voltage-Dependent K+ and
Na+ Channels
Kenny M. Van Theemsche†, Dieter V. Van de Sande†, Dirk J. Snyders and Alain J. Labro*

Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium

In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of
fenestrations in the channel pore wall are well defined and categorized. No such
classification exists in the much larger Kv channel family, although certain lipophilic
compounds seem to deviate from binding to well-known hydrophilic binding sites. By
mapping different compound binding sites onto 3D structures of Kv channels, there
appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front
and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these
sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This
review describes the different lipophilic binding sites and location of pore wall fenestrations
within the Kv channel family and compares it to the knowledge of Nav channels.

Keywords: hydrophobic binding sites, voltage-gated potassium channels, voltage-gated sodium channels, channel
fenestrations, lipophilic compounds
INTRODUCTION

Voltage-gated ion channels are transmembrane proteins that are selectively permeable to
physiological important ions such as Na+, K+, Ca2+, and Cl-. Under influence of the membrane
potential (Vm) these channels change their conductance. In the conductive open (or activated)
state, ions flow down their electrochemical gradient through the channel pore. The flux of these ions
elicits an electrical current that directly influences the Vm. For voltage-gated sodium and potassium
channels (Nav and Kv), the main focus of this review, the Vm will shift towards the ion's equilibrium
potential, which under normal conditions is depolarizing and repolarizing, respectively (Hille,
2001). Although Nav and Kv channels differ in selectivity from one another, their structure is quite
similar. However, a main difference is that Nav channels are characterized by one large a-subunit
containing four recognizable domains (DI–IV), whereas Kv channels are formed by tetramerization
of four individual a-subunits. In both cases, these four entities comprise six transmembrane
segments (S1–S6), which are divided into a voltage sensing domain (VSD, S1–S4) and a pore-
forming domain (PD, S5–S6) that are connected by the S4–S5 linker. The four PDs assemble into
the ion permeation pathway (or pore) that is surrounded by four VSDs. In the non-conductive
closed (or deactivated) state, ion permeation is prevented by the intracellular activation gate, located
at the point where the four S6 helices cross. The aperture-like opening and closure of this gate is
controlled by the VSD (Doyle et al., 1998; Bavro et al., 2012; Labro and Snyders, 2012; Lenaeus et al.,
2017). The main component of the VSD is the S4 segment that physically moves in response to a
change in Vm, due to the presence of positively charged residues (arginine and lysine) that detect
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changes in the membrane electric field (Bezanilla, 2008). The S4–
S5 linker is a component of the electro-mechanical coupling that
translates S4 movements into opening or closing of the activation
gate (Bezanilla, 2008; Blunck and Batulan, 2012). After opening,
fast inactivation occurs in Nav and in some Kv channels, which is
caused by the physical occlusion of the pore by an inactivation
particle. For Nav channels this inactivation particle is the linker
between DIII and DIV, while in Kv channels it is located at the N-
terminus of each subunit, hence termed N-type inactivation
(Hoshi et al., 1990; West et al., 1992; Armstrong and
Hollingworth, 2018). Alternatively, Kv channel inactivation can
occur via the slower C- or U-type inactivation mechanism that
makes the channels non or less conductive (Hoshi et al., 1991;
Klemic et al., 1998; Cuello et al., 2010).

Binding of drugs/toxins to Nav and Kv channels may alter the
activation, deactivation, and/or inactivation process(es), which
may cause or alleviate aberrant electrical excitability. Therefore,
knowledge about the different binding sites is key for drug
development and pharmacovigilance. The binding sites for
these drugs/toxins are well defined and categorized within the
Nav channel family, as opposed to the much larger Kv channel
family. Most binding sites are enveloped by water, locating either
inside or outside the channel's pore. However, some compounds
bind to a site(s) that does not fit any of the hydrophilic binding
sites. For instance, brevetoxins and ciguatoxins bind to a
conserved hydrophobic site within the Nav channel family,
termed neurotoxin site 5 (Catterall and Risk, 1981; Cestele and
Catterall, 2000). For the Kv channel family no such site has been
described, but certain compounds have been shown to deviate
from binding to hydrophilic binding sites like; retigabine,
gambierol, psora-4, polyunsaturated fatty acids (PUFAs), ICA-
compounds (Vennekamp et al., 2004; Kopljar et al., 2009; Lange
et al., 2009; Borjesson and Elinder, 2011). It is notable that these
are rather lipophilic compounds and there has been, and still is, a
growing interest in such compounds for their use in treating
neurological disorders (e.g., as anti-convulsant).

So, is there a unifying picture of the lipid exposed/accessible
drug/toxin binding sites within the large Kv channel family and
even between Kv and Nav channels? Several lipophilic binding
sites have been described in different Kv channels, while in fact
some may converge to just one binding region preserved between
Kv channel (sub)families. In this review, the well-documented
Nav lipophilic binding sites, neurotoxin site 2, site 5, and the
access to the local anaesthetic (LA) binding site within the pore
through fenestrations is compared to what has been reported for
Kv channels.
VOLTAGE-GATED SODIUM CHANNELS

The Nav channel family contains nine isoforms (Nav1.1 to
Nav1.9) that display a high sequence homology, especially
within the transmembrane segments (Marban et al., 1998;
Ahern et al., 2016). This facilitated the categorization of drug/
toxin binding sites within the Nav channel family. Over the past
decades a detailed picture emerged on where compounds bind
Frontiers in Pharmacology | www.frontiersin.org 2
within these channels and resulted in a well-documented
classification of seven different sites (site 1 to 7) and a LA
binding site (Stevens et al., 2011; De Lera Ruiz and Kraus,
2015). As the focus of this review is on the binding sites that
involve lipid soluble and/or transmembrane binding compounds
only binding site 5 and site 2 will be briefly discussed. The LA
binding site is also mentioned as some compounds can reach
their binding site via hydrophobic fenestrations in the pore wall
of the channel protein. To maintain an orderly overview, all Nav
residues are numbered according to the Nav1.4 channel when
possible. In case the sequence could not be aligned, as for
bacterial Nav structures, it will be noted and the original
numbering is maintained.

The Closed State Accessible LA
Binding Site: Pore-Accessibility
Through Channel Fenestrations
LA compounds and anti-arrhythmic drugs inhibit Nav channels
by occlusion of the pore. Most LA compounds have a similar
structure consisting of a tertiary hydrophilic amine domain
(head) linked with an aromatic hydrophobic ring domain, with
a total length of 10–15Å (Courtney, 1988). Three types of block
can be observed. First type is the use dependent open state
block, or high affinity block, which occurs after channel opening
and LA compounds enter the pore via the intracellular side
(Grant et al., 1989; Benz and Kohlhardt, 1991; Gingrich et al.,
1993). The second type is flicker block, or fast block, which is
only observed when the channel's inactivation process is
modulated. For example, by other compounds such as
batrachotoxin (BTX) (CAS No.:23509-16-2) that binds at site 2
(Cahalan, 1978; Uehara and Moczydlowski, 1986; Zamponi et al.,
1993). The third and least common type is the resting or
hydrophilic block that establishes when the channel is closed.
LA compounds are thought to enter the ion conductive pore and
find their binding site trough fenestrations in the lipid exposed
part of the PD (Gamal El-Din et al., 2018). LA compounds are
protonated but for crossing the cell membrane they need to be
deprotonated. This is possible when their pKA value is close to
the physiological pH values in the extracellular environment.
After traversing the cell membrane the compounds are
protonated again to exert their pharmacological effect (Hille,
1977). As the binding site is located within the pore, block occurs
with the highest affinity when the channel is opened or used,
while applying frequent channel activating stimuli. Two residues
within the S6 of domain four (DIV-S6) have been identified to be
important for LA binding/modulation, namely, F1586 and
Y1593, (Nav1.4 numbering). F1586 probably binds to the
alkylamino head, while Y1593 interacts with the aromatic ring
structure (Ragsdale et al., 1994; Yarov-Yarovoy et al., 2002)
(Figures 1A, B). As these residues reside within the pore and
certain compounds display closed state block, this requires a
hydrophobic pathway to the binding site when the channel gate
is closed (Hille, 1977).

These pathways, or fenestrations, in the lipid exposed part of
the PD were first observed in the crystal structure of bacterial
Nav channels such as NavAb (Payandeh et al., 2011;
May 2020 | Volume 11 | Article 735
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Payandeh et al., 2012), NavMs (Mccusker et al., 2012) and NavRh
(Zhang et al., 2012). It should be noted that bacterial Nav
channels are constructed out of four separate a-subunits
instead of one large subunit. For the bacterial Nav channels,
four fenestrations are observed between the different domains
where the radius of the fenestration varies from 0.8Å minimally
to 2.59-2.83Å (Kaczmarski and Corry, 2014). Nonetheless, these
fenestrations are wide enough for small LA compounds and anti-
arrhythmic drugs to pass. The narrowest point in the
Frontiers in Pharmacology | www.frontiersin.org 3
fenestration, termed “bottleneck”, is created by the amino acid
residues M174, T175, F203, T206, and M209 (NavAb
numbering), with F203 being the most important residue
(Figure 1C). These amino acids will sterically hinder the
passage of compounds through the fenestration. Mutation of
F203 to an alanine increased the size of the fenestration allowing
easier access of flecainide (CAS No.:54143-55-4, polar surface
area=59.6Å) to its binding site within the pore, with as result an
increased tonic, closed state, block (Gamal El-Din et al., 2018).
A B

C

FIGURE 1 | Representation of the local anaesthetic (LA) binding site and the hydrophobic access paths or fenestrations. (A) Schematic representation of the Nav
channel topology which contains four domains (DI to DIV) each consisting out of six transmembrane segments (S1–S6). Regions and location of residues important
for LA binding are indicated with red arrows. Fenestrations that are sufficiently large to allow passage of LA compound are between DI–DII (fenestration 1) and DIII–
DIV (fenestration 3) with the bottleneck residues listed below. This schematic representation is then followed by an alignment of Nav1.4 DIV with the other human
isoforms, with marked in grey S6 and marked in red well conserved residues for LA binding and the fenestration bottleneck (I1582–I1583). Mutation of I1582 can
also create a pathway connecting the inner pore with the extracellular environment. (B) 3D structure of the Nav1.4 channel representing the S5–S6 segments of DIII
and DIV. In red are the residues, forming the LA binding site, visualized which are listed in panel A, clearly marking the inner pore LA binding site. (C) In the middle a
top view of the 3D structure of the Nav1.4 channel is shown with in blue the DI–DII domains and in yellow the DIII-DIV domains. Fenestration 1 locates between DI
and DII a side view of it shown on the left. A side view of fenestration 3 is shown on the right. Both fenestrations are highlighted by a red circle and the residues
responsible for creating the bottleneck of the fenestration are represented in red. Below are the alignments of Nav1.4 with the other isoforms. On the left the
bottleneck residue of DI is marked in red, on the right the bottleneck residues of DII. Amino acid sequence alignment and 3D structures are visualized using Jalview
and chimera software, respectively (Pettersen et al., 2004; Waterhouse et al., 2009).
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The mutation did not affect lidocaine block as this compound is
smaller (polar surface area=32.3Å) and can easily traverse the
wild type fenestration (Courtney, 1988). The F203W mutation
on the other hand reduces fenestration size and consequently the
access of both lidocaine and flecainide is reduced, decreasing
tonic block (Gamal El-Din et al., 2018). Computational
modelling using the Nav1.4 3D structure resulted in the
observation of four fenestrations just as in bacterial Nav
channels, with the exception that the size of two out of the
four fenestrations seemed inadequate for compound access,
namely the fenestration constructed by DII–DIII and DIV–DI
(Kaczmarski and Corry, 2014). Fenestrations in between DI-DII
and DIII-DIV seemed sufficiently wide for compounds to cross
(Figure 1C). The bottleneck of these fenestrations is formed by
residues N790, L438, and M786 for the fenestration between DI-
DII and by I1582, I1583, and F1586 (if rotated) for the
fenestration between DIII-DIV. These fenestrations lining
residues, are well conserved in the different Nav channel
isoforms. Mutating DIV-S6 residue I1582 appeared to create
an extra pore access pathway (Ragsdale et al., 1994) and allowed
the external blocker QX314 (CAS No.:24003-58-5, polar surface
area: 29.1Å), which is a charged LA compound at physiological
pH and therefore not able to traverse the membrane, to access
the LA binding site when added in the extracellular environment
(Sunami et al., 2001).

Apart from LAs that have a distinct binding site, sevoflurane
(CAS No.: 28523-86-6), an inhalational anaesthetic, has a more
complex binding profile. Sevoflurane binding results in a
decrease of the peak sodium current, a hyperpolarised shift in
the voltage dependence of inactivation and a slowing of the
recovery from inactivation (Horishita et al., 2008; Ouyang et al.,
2009). Within the bacterial sodium channel NaChBac, binding
regions have been located at the pore region, selectivity filter, and
the S4–S5 linker/S6 interface (Ouyang et al., 2007; Raju et al.,
2013). MD simulations suggested that the binding of sevoflurane
to the selectivity filter and the S4–S5 linker occurs mainly when
the channel is in the activated/open state, while in the closed state
the channel gate and the VSD are targeted (Barber et al., 2014). A
state independent binding site is possibly the central cavity that is
accessed by the fenestrations. Residues T220 and F227
(NavChBac numbering) are proposed to be responsible for
sevoflurane binding in the central cavity, which are the
homologue residues for LA binding in Nav1.4 (F1764, Y1771).

Binding Site 2 Compounds, Though Being
Lipophilic, Bind to the Inner Pore
Compounds binding at site 2 of the Nav channel include
batrachotoxin (Daly et al., 1965; Huang et al., 1982),
grayanotoxin (Yuki et al., 2001; Jansen et al., 2012), CAS No.:
54781-61-2), and alkaloids from plant such as veratridine
(Ulbricht, 1969; Sutro, 1986), CAS No.:71-62-5), aconitine and
mesaconitine (Herzog et al., 1964; Friese et al., 1997) (CAS No.:
302-27-2). All these compounds are lipid soluble and need to
traverse the cell membrane before influencing the channel in a
use-dependent manner, comparable to the action of LA
compounds (Herzog et al., 1964; Catterall, 1980; Huang et al.,
Frontiers in Pharmacology | www.frontiersin.org 4
1982; Dubois et al., 1983; Sutro, 1986; Barnes and Hille, 1988;
Ameri et al., 1996; Yuki et al., 2001; Wang and Wang, 2003).
Their effects can be a combination of: (1) a hyperpolarised shift
of the voltage dependence of activation, (2) inhibition of the
fast inactivation process, leading to persistent sodium currents,
(3) decrease in ion conductance, and/or (4) decrease of the Na+

selectivity. The location of binding site 2 is thought to be at the S6
of all four domains and to overlap with the LA binding site or at
least allosterically hinder LA binding.

To describe neurotoxin site 2 in more detail, we focus on the
most potent site 2 toxin reported to date, batrachotoxin (BTX) a
steroidal alkaloid indirectly produced by the South-American
poison dart frogs of the genus Phyllobates (Daly et al., 1965).
Binding of BTX is highly irreversible and only possible when the
channel is in its activated open state (Huang et al., 1982; Dubois
et al., 1983). BTX shifts the voltage dependence of channel
activation by approximately −40 mV toward more
hyperpolarized potentials (Linford et al., 1998), reducing the
channel's ion conductance and selectivity. BTX also reduces the
affinity for LA, which is thought to be caused by non-competitive
antagonism (i.e., allosteric effect) because of overlapping binding
sites as BTX and LA share the binding residue F1586 (Linford
et al., 1998). Residue mutations affecting BTX in Nav1.4 were first
described in DI-S6 and DIV-S6: I439K, N440K, L443K, F1586K,
and N1591K, respectively (Wang and Wang, 1998; Wang and
Wang, 1999). Afterwards the DIII-S6 residues Ser1283 and
leu1287 were identified (Wang et al., 2000) and finally DII-S6
residues N790 and L794 (Wang et al., 2001). All these residues
line the inside of the pore (Figure 2). Non-pore lining residues
involved in BTX sensitivity locate at the putative hinge region of
the channel gate, Gly1282 and Phe1284, respectively (Du et al.,
2011). While Phe1284 is important for the stabilisation of the
ammonium group of BTX, Gly1282 is not a direct binding
receptor for BTX and mutations of this residue affect binding
allosterically by changing the channels gating properties.
Modeling studies suggest that BTX binds to the pore but does
not completely prevent ion conduction because of its
“horseshoe-like” structure (Du et al., 2011). Only upon
mutation of DII-S6 N790 BTX becomes a full blocker (Wang
et al., 2007).

Binding Site 5 Locates Between
DIS6 and DIVS5
Some of the toxins that bind to site 5 of Nav channels are
brevetoxins (Catterall and Gainer, 1985; Poli et al., 1986) and
ciguatoxins (Murata et al., 1990; Lewis et al., 1998), both
originate from marine dinoflagellates (Gambierdiscus toxicus)
and are structurally comparable. Brevetoxins are produced by
unarmoured marine dinoflagellates (e.g., Karenia brevis,
Gymnodinium breve, or Ptychodiscus brevis). Ingestion of
these toxins can lead to poisoning and death of marine
animals and cause the disease neurotoxic shellfish poisoning in
humans (Baden, 1983; Flewelling et al., 2005). Eleven different
brevetoxins have been discovered today with brevetoxin A
(PbTX1, CAS No.:98112-41-5) and brevetoxin B (PbTX2 and
3, CAS No.:79580-28-2 and 85079-48-7) being the most
May 2020 | Volume 11 | Article 735
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investigated ones. These toxins are about 30Å in length, 6Å in
width, and 6Å high. They are composed of four recognizable
parts: a lactone ring (the head) linked with a linker to a multiple
carbon ring (the tail) ending in a rest-group (Lin et al., 1981).
While the head is responsible for the effect, without the linker
and the tail the toxin cannot modulate the channel as it allows
the head region to reach its binding site (Rein et al., 1994). PbTX
binds to the Nav channel at the DI-S6, DIV-S5, and DIV-S6
segments (Trainer et al., 1991; Trainer et al., 1994; Konoki et al.,
2019). The region spans within DI-S6 from Ala418/Thr422 to
Lys465/Lys477 and within DIV-S5 from Glu1510 to lys1557 with
possible extension to Lys1565 (Figure 3). The tail of the molecule
will be situated at the S5–S6 extracellular loop while the head is
able to reach, due to the long linker and tail region, the
inactivation gate at the intracellular side of the channel
(Trainer et al., 1991; Trainer et al., 1994). Interaction of the
head with the inactivation gate reduces channel inactivation,
leading to a persistent sodium current (Sheridan and Adler,
1989; Schreibmayer and Jeglitsch, 1992).

Like brevetoxins, ciguatoxins (CTX) bind at site 5 and their
effects are consequently similar. Ciguatoxins are classified based
on their geographic origin, with P-CTX (Murata et al., 1990) and
Frontiers in Pharmacology | www.frontiersin.org 5
C-CTX (Lewis et al., 1998) standing for Pacific and Caribbean,
respectively. In all Nav channel isoforms P-CTX1 (CAS No.:11050
21 8), the most potent CTX discovered to date, induces a
hyperpolarizing shift in the voltage dependence of channel
activation (Bidard et al., 1984; Benoit et al., 1986; Strachan et al.,
1999) concomitantly with a shift in the voltage dependence of
inactivation in some (Inserra et al., 2017). As CTX and brevetoxin
share the same binding site, they are logically going into
competition with each other (Lombet et al., 1987). Gambierol
(CAS No.: 146763-62-4, origin Gambierdiscus Toxicus) has a
similar structure as brevetoxins and CTXs, being a lipophilic
multi-ring polyether toxin, but has no effect on the sodium
currents (Lepage et al., 2007). However, when administered
simultaneously it decreases the effect of CTX and brevetoxin,
suggesting that gambierol acts as a competitive antagonist that
binds to site 5 or at least exerts a negative allosteric effect.
VOLTAGE-GATED POTASSIUM CHANNELS

The Kv channel family is impressively large compared to this of
Nav channels, due to an extensive library of genes encoding
A

B

FIGURE 2 | Location of binding site 2 within the Nav1.4 channel. (A) Schematic visualisation of the Nav ion channel structure which is constructed out of four
domains (DI to DIV) each consisting out of six transmembrane segments (S1–S6). The red arrows indicate the probable residues responsible for constructing the site
2 receptor, residues are noted in their Nav1.4 annotation. (B) The bottom view of a 3D structure of the Nav1.4 channel with in red marking the residues constructing
the binding site 2. Only the S5–S6 segments of each domain is shown for a clear view on the inner pore binding site. Around the 3D structure are the alignments of
the known human sodium channels with the Nav1.4 channel (SCN4A) as reference, all positioned at the corresponding domain of the 3D structure. Marked in red
are the residues which are necessary for site 2 toxin binding. While some variability is observed between some isoform, most of the residues are well conserved.
Amino acid sequence alignment and 3D structure are visualized using Jalview and chimera software, respectively (Pettersen et al., 2004; Waterhouse et al., 2009).
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different a-subunits that in some subfamilies can “mix-and-
match” to form functional Kv channels. Additionally, alternative
splicing, RNA editing, and post-translational modification
further expand on the Kv channel family (Jan and Jan, 2012).
This explains why the binding sites of the much larger Kv

channel family are less well categorized than those of the Nav
channel family. The next part will highlight different binding
sites and pore wall fenestrations within several, but not all,
members of the Kv channel family. After a short overview of
the well-documented extracellular and intracellular exposed
“hydrophilic” binding sites, we will discuss in detail the lesser-
known lipid embedded “hydrophobic” binding site(s) in different
Kv channels.

Extracellular and Intracellular Exposed
“Hydrophilic” Binding Sites
The well-documented Kv channel binding sites can be
topologically located on the intracellular or extracellular side of
Frontiers in Pharmacology | www.frontiersin.org 6
the channels. Extracellularly the most well-known conserved
binding sites are those of the pore blockers and VSD targeting
gating modifiers, while intracellularly the inner pore block is the
most notable one (Wulff et al., 2009). Certain toxins from a
variety of venomous animals target the extracellular binding
sites. For example, scorpion toxins like charybdotoxin (CTX,
CAS No.: 95751-30-7) and agitoxin (AgTx, CAS No.: 168147-41-
9) target the water enveloped extracellular mouth of Kv channels,
thereby physically occluding the permeation pore (Eriksson and
Roux, 2002; Banerjee et al., 2013). Other scorpion toxins, like
ergotoxin (ErgTx1, CAS No.: 8006-25-5) and BeKm-1 (CAS No.:
524962-01-4), cause an incomplete block of Kv current. This is
because they only partially occlude the permeation pathway,
which is known as “turret-block” (Xu et al., 2003; Zhang et al.,
2003; Hill et al., 2007). Gating modifier toxins, like tarantula
toxins (Hanatoxin, SGTx1, and VSTx1), bind to the paddle motif
(S3b helices, S3–S4 linkers, and S4 helices) at the extracellular
protein-lipid interface of the VSD. This binding site cannot be
A

B

C

FIGURE 3 | Location of binding site 5 in Nav1.4. (A) Alignment of the rat brain IIa sodium channel (SCN2A) with the human Nav1.4 (SCN4A) as reference. Marked in
red are the regions where brevetoxin could bind. (B) Schematic topology of the Nav1.4 channel with the residues of DIS6 and DIVS5 that form the binding site listed
below. On the right a schematic representation of the PD (top view) with the ion permeation pore represented in black and the location of binding site 5 indicated by
the red circle. (C) 3D structures of the Nav1.4 channel seen from the top (left) and side (center, between DIII and DIV) are represented with in red the regions which
are, using radioactive labelling studies, probably the location for brevetoxin binding. In blue residues are shown which had an effect on brevetoxin binding. With for DI
M424, V429, I430, G434 decreasing affinity and F436, Y437 increasing affinity when mutated to alanine. In case of DIV mutation of I1485, G1486, L1488, L1489
lead to decrease and L1491, V1492, G1500, Y1506 to increase of affinity when mutated (Nav1.4 numbering) (Konoki et al., 2019). A cleft can be observed in
between DIS6 and DIVS5, at the side view, where the toxin could bind. This cleft is also located around fenestration four of the ion channel. At the left the structure
of brevetoxin with the head region (1) attached with a linker (2) to the tail structure (3). The structure is orientated as it would bind at the channel compared to the
side view. Amino acid sequence alignment and 3D structures are visualized using Jalview and chimera software, respectively (Pettersen et al., 2004; Waterhouse et
al., 2009).
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characterized as strictly hydrophilic as the hydrophobic residues
of these amphipathic peptide toxins allow it to partially partition
into the membrane, and interact with the VSD (Lee et al., 2004;
Jung et al., 2005; Alabi et al., 2007; Swartz, 2007; Jung et al., 2010;
Mihailescu et al., 2014). Intracellularly, compounds can bind in
the inner cavity, either physically blocking ion permeation (e.g.,
quaternary ammonium ions) or allosterically modulating the
gating machinery of Kv channels (e.g., 4-aminopyridine, CAS
No.: 504-24-5) (Armstrong, 1971; Armstrong and Loboda, 2001;
Del Camino et al., 2005). Also, the quaternary ammonium ion
TEA can occlude the external Kv pore, similar to the scorpion
toxins mentioned above (Luzhkov and Aqvist, 2001). Apart
from the gating modifier binding site, which is partially
enveloped by water, the binding sites mentioned here are
exposed to an aqueous environment. Hence, referring them
here as “hydrophilic” binding sites.

Lipid Embedded “Hydrophobic” Binding
Site(s) and Pore Wall Fenestrations in the
Shaker-Type Kv Family, Kv7 Family, and
Kv10.1/Kv11.1 Channel
The next part reviews the potential lipophilic binding sites and
pore wall fenestrations in different Kv channel types. To define
the binding site(s) of certain compounds, the PD is divided into a
“front side” and “back side”. Residues of the front side point
towards the VSD of the same a-subunit, while residues of the
“back side” point in the opposite direction, thus towards the VSD
of a neighboring a-subunit (Figures 4D, 5D and 6C).

The Shaker-Type Kv Channel Family
Whereas gambierol does not modulate Nav channels, it is capable of
inhibiting Kv1 and Kv3 channels (Nicholson and Lewis, 2006;
Cuypers et al., 2008; Kopljar et al., 2009). Gambierol's inhibitory
mechanism has been extensively studied, whereby a threonine on
S6, T427 in Kv3.1, is an important determinant (Kopljar et al., 2009).
Substitution of the polar threonine by a hydrophobic valine
abolishes the high gambierol affinity (Kopljar et al., 2009).
Additional determinants are a leucine and phenylalanine on S5:
L348 and F351 in Kv3.1, respectively. Kv1 channels possess a
threonine residue equivalent to T427 (T401 in Kv1.2), explaining
their similar gambierol sensitivity (Cuypers et al., 2008; Kopljar
et al., 2009; Martinez-Morales et al., 2016). These residues are
mostly positioned on the front side of the PD (Figure 4).

On the other hand, psora-4 (CAS No.: 724709-68-6), a potent
inhibitor of Kv1.3, has been shown to predominantly bind to the
back side of the PD (Figure 4) (Vennekamp et al., 2004; Marzian
et al., 2013). A single psora-4 molecule acts as a central pore
blocker of Kv1 channels (Kv1.1-Kv1.5, and Kv1.7), thereby
preventing ions from permeating. However, four additional
drug molecules can bind the lipid-exposed pocket on the back
side of the PD, thereby causing the selectivity filter to narrow.
Thus, the binding of five psora-4 molecules leads to a stable non-
conducting state. The residues identified in Kv1.5 as playing a key
role in psora-4 action map on the back side of S5–S6 (Figure 4).
Additionally, some residues in S4 and the S4–S5 linker also seem
involved (Marzian et al., 2013).
Frontiers in Pharmacology | www.frontiersin.org 7
The inhalation anaesthetic, sevoflurane, seems to bind within
the central cavity and to a similar hydrophobic pocket as psora-4
(Stock et al., 2018). Apart from these binding regions, the polar
lipophilic molecule has been shown to interact with the S4–S5
linker, pore helix, segment S6, and even the VSD, likewise to the
many binding regions of sevoflurane on the Nav channel (Barber
et al., 2011; Barber et al., 2014). These sites are primarily
dehydrated and lipid accessible, which is highly favourable for
the polar lipophilic sevoflurane molecule (Stock et al., 2018). The
specific residues involved in sevoflurane binding are not known,
but one residue within the S4–S5 linker (G329 according to Kv1.2
numbering) has been identified to play an important role (Liang
et al., 2015).

PUFAs are charged lipophilic compounds that position at the
lipid membrane interface, although in small quantities (Yazdi
et al., 2016). Nonetheless, PUFAs may play an important role in
the treatment of arrhythmias and epilepsy, due to their
modulating effect on, but not limited to, voltage-gated ion
channels (Lefevre and Aronson, 2000; Leaf, 2007; Boland and
Drzewiecki, 2008; Borjesson and Elinder, 2011). The Shaker Kv

channel has been extensively studied as one of the targets of
PUFAs. They interact with the channel at several sites, but the
major one seems located within the lipid-facing cleft between S3
and S4 (S3–S4 cleft) of the VSD (Borjesson and Elinder, 2011).
This hydrophobic cleft is perfectly shaped to accommodate the
lipophilic carbon tail of the PUFAs, causing the negatively
charged carboxyl head group to be positioned close to the S4
segment. In this way, PUFAs electrostatically affect the VSD by
trapping S4 toward the extracellular position, stabilizing the open
state of Shaker Kv channels (Borjesson et al., 2008; Yazdi et al.,
2016). Accordingly, a series of point mutations on the lipid
facing side of S3-S4 (I325C, T329C, A359C, and I360C, Shaker
numbering) had a significant impact on the PUFA-induced
hyperpolarizing shift in the channel's voltage dependence of
activation (Figure 4) (Borjesson and Elinder, 2011). Although
the binding site for gating modifier toxins is in close proximity to
that of PUFAs, the action sites do most likely not overlap as the
residues important for PUFA action are more deeply embedded
into the lipid bilayer (Borjesson and Elinder, 2011). Interestingly,
dehydroabietic acid (DHAA) and some of its derivatives, the
most potent being Wu32and Wu122, have a similar effect on
Shaker Kv channels. The carboxyl group of DHAA is positioned
at roughly the same site, namely the S3–S4 cleft (Ottosson et al.,
2017). Wu32 possibly interacts with residues between the S2–S3
and/or S3–S4 cleft as five cysteine mutations in S3, which have
been shown to alter its affinity and/or efficacy, point towards S2
(I320C and F324C, shaker numbering) and S4 (I318C, P322C,
and T326C), respectively (Ottosson et al., 2017).

The Kv7 Family
The well characterized retigabine (RTG, CAS No.: 150812-12-7)
binding site is localized between the front side of one PD and the
back side of an adjacent PD of Kv7.2–Kv7.5 (KCNQ2-5) channels
(Figure 5) (Schenzer et al., 2005; Lange et al., 2009). These
channels are predominantly expressed in neurons where they
underlie the native M-current that plays a major role in
regulating neuronal excitability (Wang et al., 1998; Kubisch
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et al., 1999; Schroeder et al., 2000). RTG amplifies the Kv7.2–
Kv7.5 currents by stabilizing the open-channel conformation, by
which it acts as a brake on neuronal excitability in vivo (Lange
et al., 2009). Hence, the potential use of RTG and RTG-derived
compounds as anticonvulsants (Rundfeldt, 1997; Wang et al.,
2018). RTG binding has been attributed to several conserved
residues on S5–S6, lining a hydrophobic pocket near the channel
gate of Kv7.2–Kv7.5. According to Kv7.2 numbering these
Frontiers in Pharmacology | www.frontiersin.org 8
residues are: W236, L243, L275, L299, and G301 (Figure 5).
Kv7.1 channels lack these amino acids (apart from L243),
explaining their RTG-insensitivity (Schenzer et al., 2005; Lange
et al., 2009). Because of the role of Kv7 in diseases of neuronal
hyperexcitability, the search for positive allosteric modulators
such as RTG, for which the clinical use is currently discontinued
(Wang et al., 2018), is pursued. For example, BMS-204352, ML-
213, and the acrylamide compound (S)-1 act on the canonical
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FIGURE 4 | Lipid-exposed binding sites within the crystal structure of a Kv1.2–Kv2.1 paddle chimera channel (PDB: 2R9R). (A) Sequence alignment of part of the
PD (S5-S6 segment) of Kv1.2-2.1, Kv1.2, Kv1.5, and Kv3.1, with Kv1.2-2.1 as reference. Residues important for gambierol and psora-4 action are highlighted in blue
and yellow respectively. (B) Sequence alignment of the S3–S4 segments of Kv1.2–2.1 and shaker, with Kv1.2–2.1 as reference. Highlighted in green are the residues
important for PUFA action. (C) Schematic visualization of one Kv channel a-subunit consisting out of six transmembrane segments (1–6) and a pore helix (PH). In
blue the residues important for gambierol binding (L327, F330, and T397 according to Kv1.2–2.1 numbering) and in yellow those for psora-4 binding (L327, F329,
F330, I333, L337, F338, I392, T397, and L400). Residues important for PUFA interaction are shown in green (V268, R287, V288, and L272). (D) Schematic
visualization of the pore domain of the Kv1.2–Kv2.1 channel. Four pore-forming domains tetramerize to form the channel pore. The blue and yellow circle highlights
the proposed gambierol/psora-4 binding site regions on the front- and/or backside of the pore-forming domain, respectively. (E) Side view of the Kv1.2–Kv2.1
channel with the front and back subunit omitted for clarity. Residues involved in gambierol and psora-4 interaction are shown in blue (L327, F330, and T397) and
yellow (I392, T397, and L400), respectively. The PUFA action site is visualized in green (V268, R287, V288, and L272). (F) Top view of the Kv1.2–Kv2.1 channel, with
each a subunit named a1–a4. Residues involved in gambierol and psora-4 interaction are shown in blue (L327, F330, and T397) and yellow (I392, T397, and L400),
respectively. In green the PUFA action site comprising residuesV268, R287, V288, and L272. Kv1.2–Kv2.1 crystal structure (PDB: 2R9R) (Long et al., 2007) was
visualized with chimera software (Pettersen et al., 2004) and amino acid sequence alignment with Jalview (Waterhouse et al., 2009).
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RTG binding site (Bentzen et al., 2006; Kim et al., 2015; Wang
et al., 2018).

The hydrophobic pocket of the RTG binding site also seems
to be able to accommodate endogenous hydrophilic
neurotransmitters like g-aminobutyric acid (GABA), which
directly activates Kv7.3 and Kv7.5 via W236. In contrast to
RTG, GABA does not readily cross the plasma membrane to
reach its site of action. Based on the Kv1.2–Kv2.1 paddle chimera
structure the tryptophan also seems to be accessible from the
extracellular side (Manville et al., 2018). It is possible that this
accessibility is dependent of the state of the channel, such that in
Frontiers in Pharmacology | www.frontiersin.org 9
certain conformations the mostly hydrophobic binding pocket
can be reached by hydrophilic compounds like GABA.
Additionally, not all Kv7 channel openers interact with residue
W236. Zinc pyrithione for instance interacts with two residues at
the back side of S5 and the pore helix (L249 and L275) (Figure 5)
(Schenzer et al., 2005; Xiong et al., 2007; Lange et al., 2009).

ICA-compounds (ICAgen, Durham, NC, US), which are
benzanilide Kv7 channel openers, were developed as RTG
alternatives (Mcnaughton-Smith et al., 2002). Of these, the
most well-documented is ICA-27243 (ICA43), which has been
shown to be more selective than RTG (Wickenden et al., 2008).
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FIGURE 5 | Lipid-exposed binding sites within a homology model of the Kv7.2 channel based on the 3D structure of Kv7.1 (PDB: 5VMS). (A) Sequence alignment of
part of the PD of Kv7.1–Kv7.5, with Kv7.2 residue numbering. Highlighted in red and purple are the residues important for RTG and zinc pyrithione action,
respectively. (B) Sequence alignment of the S3-S4 segment of Kv7.2, Kv7.4, and Kv7.5, with Kv7.2 as reference. Highlighted in green is the residue important for
ICA73 action. (C) Schematic visualization of one Kv7 channel a-subunit consisting out of 6 transmembrane segments (1–6) and a pore helix (PH). Location of the
residues involved in the interaction of Kv7.2 with retigabine are represented in red. Represented in purple are residues important for zinc pyrithione action). The
residue important for ICA73 interaction is shown in green. (D) Schematic visualization of the PD of Kv7.2. The red and purple circle highlight the proposed retigabine/
zinc pyrithione binding site on either the front- or back-side of the PD pore-forming domain, respectively. (E) Side view of Kv7.2 with the front and back subunit
omitted for clarity. Residues involved in retigabine and zinc pyrithione interaction are shown in red (W236, L243, L299, and G301) and purple (L249 and L275),
respectively. In green the ICA73 action site is visualized (A181). (F) Top view of Kv7.2, with each a subunit named a1–a4. Residues important for retigabine, zinc
pyrithione, and ICA73 action are shown in red (W236, L243, L299, and G301), purple (L249 and L275), and green (A181), respectively. Shown Kv7.2 structure is a
homology model of the 3D structure of Kv7.1 (PDB: 5VMS) (Sun and Mackinnon, 2017), generated with SWISS-MODEL (Waterhouse et al., 2018) and visualized
using chimera software (Pettersen et al., 2004). The amino acid sequences are aligned using Jalview (Waterhouse et al., 2009).
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The individual residues that determine ICA43 binding have not
been identified, but the C-terminal end of S2 and the N-terminal
part of S3 (S2–S3 cleft) are proposed to be involved (Padilla et al.,
2009). Later, Wang AW, et al. continued the investigation of the
mechanism of action of ICA-compounds on Kv7 channels, but
focussed on ICA-069673 (ICA73) (Wang et al., 2017). They
identified two key residues in S3 of Kv7.2: A181 and F168,
respectively. Mutation of these residues did not affect RTG-
mediated gating, but did alter the action of ICA73 (Wang et al.,
2017). Furthermore, it has been shown that ICA43 and ICA73
are resistant to mutation of the RTG binding site, supporting that
not all Kv7 channel openers bind to the PD, but also can interact
with a VSD site (Padilla et al., 2009; Wang et al., 2017). However,
it remains debated whether residues A181 and F168 are involved
in ICA binding directly or allosterically (Wang et al., 2018). In
case these residues are binding ICA73, the position of residue
A181 toward the lipid-exposed surface of the VSD suggests the
presence of a drug binding site at the lipid-exposed cleft of S2–S3
and/or S3–S4 in Kv7 channels, similar to the interaction of Wu32
with Shaker Kv channels (Figure 5).

PUFAs have also been described to electrostatically affect
Kv7.1 channels, resulting in a negative shift of the conductance-
voltage curve. This modulation of Kv7.1 channels by PUFAs is
similar to what has been described for shaker Kv channels
(Borjesson et al., 2008; Borjesson and Elinder, 2011). Hence,
the binding site and mechanism of action of PUFAs are most
likely similar for both channels (Liin et al., 2015).

The hERG (Kv11.1) and EAG (Kv10.1) Channel
The human ether-a-go-go related gene (hERG) type 1 encodes for
the Kv11.1 channel, which functions as the rapid component of
the delayed rectifier K+ current contributing to the repolarization
of cardiac action potentials (Vandenberg et al., 2012). Alteration
of the native functioning of Kv11.1 channels, either genetically or
pharmacologically, can disrupt this repolarization, leading to
various cardiac rhythm disorders (Thomas et al., 2006).
Furthermore, the role of Kv11.1 is not limited to the heart, as it
also seems to play a role in the central nervous system, digestive,
secretory, and reproductive system, and even cancer (Babcock
and Li, 2013). Hence, it has become common practice to screen
compounds on hERG channel activity during the early stages of
drug development, as unintentional side-effects may lead to
disease and sudden-death (Mitcheson et al., 2000; Thomas
et al., 2006; Babcock and Li, 2013). Most hERG inhibitors
interact with residues inside the channel's permeation pathway,
either located on the pore helix (T623,S624, and V625, according
to hERG numbering) or on segment S6 (G648, Y652, and F656)
(Lees-Miller et al., 2000; Mitcheson et al., 2000; Kamiya et al.,
2001; Sanchez-Chapula et al., 2002; Sanchez-Chapula et al., 2003;
Fernandez et al., 2004; Kamiya et al., 2008). On the other hand,
some small molecule hERG activators have been discovered who
deviate from this binding site, like ICA-105574 (ICA74) and PD-
118057 (PD57). The most critical binding determinants for
ICA74 are F557 and L622 (Garg et al., 2011), which
topologically would situate the binding site at the front side of
the PD (Figure 6). Apart from these critical binding
Frontiers in Pharmacology | www.frontiersin.org 10
determinants several other residues have been proposed to line
the hydrophobic ICA binding pocket of Kv11.1 (F619, T623,
M645, L646, M651, Y652, and F656), situating the ICA74
binding site between the front side of one a-subunit and the
back side of an adjacent a-subunit (Garg et al., 2013). PD57
seems to bind the same hydrophobic pocket, with key residues
being L646 on segment S6 and F619 on the pore helix of an
adjacent subunit (Figure 6) (Perry et al., 2009).

Interestingly, ICA74 binds to a similar hydrophobic pocket in
the related ether-a-go-go (EAG) type 1 channel (Kv10.1),
although eliciting an opposite effect as in Kv11.1. ICA74
inhibits Kv10.1 currents by enhancing channel inactivation
(Garg et al., 2012). The key residues for ICA74 binding in
Kv11.1 (F557 and L622) are indeed conserved in Kv10.1 (F359
and L434). Furthermore, only three residues (F619, L646, and
M651) of the proposed ICA binding pocket in Kv11.1 appeared
not to be conserved in the Kv10.1 channel. This strongly suggests
that ICA74 binds to the same hydrophobic site in Kv10.1 and
Kv11.1 channels (Garg et al., 2013).

Lateral Pore Wall Fenestrations
The reports of compounds that can access the inner cavity from
lipid exposed side-pocket through lateral pore wall fenestrations
in Kv channels is still very limited. In Kv7.1 a pore wall
fenestration is formed upon interaction with the b-subunit
KCNE1 such that adamantane compounds, AC-1 (CAS No.:
878489-28-2) and its analogs (ACs), can reach their binding site
(Jaraskova et al., 2005; Wrobel et al., 2016). Interestingly, AC-1
does not affect currents generated by homomeric Kv7.1,
channels, nor Kv7.1 co-expressed with other KCNE isoforms
(KCNE2-5). Thus, the “b-subunit-induced fenestrations” seem
to be required for AC binding. Within these fenestrations many
residues have been identified as important for AC-1 activity
(V334, F335, I337, F340, and A344, according Kv7.1 numbering),
but its position relative to the central cavity and lipophilic side-
pocket could not be elucidated (Wrobel et al., 2016).

In Kv11.1, a lateral pore wall fenestration is possibly formed
upon mutation of residue F557 to leucine (F557L), explaining the
decrease in current inhibition of six known hERG blockers
(dofetilide, haloperidol, terfenadine, astemizole, cisapride, and
amiodarone) (Saxena et al., 2016). For Kv1.5 it has been proposed
that psora-4 molecules can move in the I502A mutant between
the central cavity and the lipophilic side-pockets through
fenestration between segments S5–S6 (Marzian et al.,
2013).Hence, the presence of pore wall fenestrations has thus
far only been observed upon b-subunit interaction with Kv7.1
and to be induced by mutations in Kv1.5 and Kv11.1 (Marzian
et al., 2013; Saxena et al., 2016; Wrobel et al., 2016). Although the
presence of fenestrations has not been reported yet for wild-type
channels, the likelihood that some Kv channel types express
lateral pore wall fenestrations increases. If present, these
fenestrations may be similar to those characterized in Nav
channels, which allow LA's to pass between the central cavity
and lipophilic side-pockets (Payandeh et al., 2011; Mccusker
et al., 2012; Payandeh et al., 2012; Zhang et al., 2012; Kaczmarski
and Corry, 2014; Wrobel et al., 2016).
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UNIFYING THE LIPID EXPOSED/
ACCESSIBLE DRUG/TOXIN BINDING
SITES OF KV AND NAV CHANNELS

Whereas a classification exists for the different drug/toxin binding
sites in Nav channels, such a categorization is currently lacking for
the Kv channel family. In this review we take a first step and
describe the hydrophobic binding sites reported in different Kv

channel families. A compound like gambierol (Figures 4 and 7) has
Frontiers in Pharmacology | www.frontiersin.org 11
been shown to mostly bind to the front side of the PD, while RTG
(Figures 5 and 7) PD57, and ICA74 (Figure 6) also interact with
the back side of the PD of an adjacenta-subunit.Whenmapping all
the sites it appears that gambierol, ICA74, RTG, and PD57 bind to
an analogues binding site present in different Kv channel types
(Figure 7) (Schenzer et al., 2005; Kopljar et al., 2009; Lange et al.,
2009; Perry et al., 2009; Garg et al., 2011; Martinez-Morales et al.,
2016). This indicates that an analogues lipophilic binding site is
conserved between the different Kv channel types.
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FIGURE 6 | Lipid-exposed binding site(s) within the cryo-EM structure of the Kv11.1 (hERG) channel (PDB: 5VA1). (A) Sequence alignment of part of the PD of
Kv11.1 and Kv10.1, with Kv11.1 residue numbering. Highlighted in pink and blue are the residues important for ICA74 and PD57 action, respectively. (B) Schematic
visualization of one Kv channel a-subunit consisting out of six transmembrane segments (1–6) and a pore helix (PH). In blue the critical residues of PD57 (F619 and
L646 according to Kv11.1 numbering) and in pink the residues lining the proposed hydrophobic ICA74 binding pocket (F619, F557, L622, T623, M645, L646,
M651, Y652, and F656). (C) Schematic visualization of the pore domain of the Kv11.1 channel. Four pore-forming domains tetramerize to form the channel pore. The
blue and pink circle highlights the proposed PD57 and ICA74 binding site regions on the front- and/or backside of the pore-forming domain. (D) Side view of the
Kv11.1 channel with the front and back subunit omitted for clarity. Residues involved in PD57 and ICA74 interaction are shown in blue (F619 and L646) and pink
(F619, F557, L622, T623, M645, L646, M651, Y652, and F656), respectively. The residues F619 and L646 are both critical residues for PD57 and ICA74, but are
shown in blue. (E) Top view of the Kv11.1 channel, with each a subunit named a1–a4. Residues involved in PD57 and ICA74 interaction are shown in blue (F619
and L646) and pink (F619, F557, L622, T623, M645, L646 M651, Y652, and F656), respectively. Kv11.1 cryo-EM structure (PDB: 5VA1) (Wang and Mackinnon,
2017) was visualized with chimera software (Pettersen et al., 2004) and amino acid sequence alignment with Jalview (Waterhouse et al., 2009).
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Zinc pyrithione, on the other hand, seems to solely bind to the
back side of the PD, implying that the front and back side of the
PD could serve as distinct binding sites (Figures 5 and 7) (Xiong
et al., 2007). Psora-4 and sevoflurane are less specific regarding
their binding site, as they both bind to the front and back side of
the PD, among others (Marzian et al., 2013; Liang et al., 2015;
Stock et al., 2018). Although certain compounds solely bind to
the front or back side of the PD it seems that all residues point
toward a similar lipophilic region, leading to the speculation that
these seemingly distinct binding sites may converge to just one
conserved lipophilic binding region in Kv channels. This binding
site is then most likely similar to neurotoxin site 5 in Nav
channels (Figure 3) (Catterall and Risk, 1981; Cestele and
Catterall, 2000), located between DIS6-DIVS5 (Figures 3, 4, 5)
(Konoki et al., 2019). The idea that these binding sites are
orthologous equivalents is because gambierol presumably binds
to site 5 in Nav channels (Lepage et al., 2007). In the case of Kv

channels four such binding sites are present due to its tetrameric
nature, as opposed to Nav channels who only have one
neurotoxin site 5 (Schenzer et al., 2005; Kopljar et al., 2009;
Lange et al., 2009; Marzian et al., 2013; Stock et al., 2018).
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Another lipid facing binding site is located on the VSD, in
particular the cleft between segments S2–S3 and S3–S4. PUFAs,
DHAA and its derivatives, and ICA-compounds allegedly bind to
these clefts in Shaker and Kv7 channels, respectively (Figures 4D,
5D, and 7) (Padilla et al., 2009; Borjesson and Elinder, 2011;
Ottosson et al., 2017; Wang et al., 2017). This leads to the
assumption that also this lipophilic binding site is conserved
between different Kv channel types. Additionally, certain
compounds of Nav (LAs and sevoflurane) and Kv (AC-1, psora-
4, and several hERG blockers) channels have been proposed to
use hydrophobic lateral pore wall fenestrations to reach their
binding sites. The location of these fenestrations in Nav channels
are situated between DI–DII and DIII–DIV (Figure 1), while in
Kv channels they are most likely present between segments S5–S6,
allowing lipid soluble compounds to reach their binding site even
when the channel is in its closed state (Payandeh et al., 2011;
Mccusker et al., 2012; Payandeh et al., 2012; Zhang et al., 2012;
Marzian et al., 2013; Barber et al., 2014; Kaczmarski and Corry,
2014; Saxena et al., 2016; Wrobel et al., 2016).

Of note, the residues reported to affect drug/toxin affinity
were in this review mapped on available 3D structures that are
A B C
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FIGURE 7 | Superposition of the lipid-exposed binding sites within the Kv1.2–2.1 paddle chimera channel (PDB: 2R9R) and Kv7.2. (A) Side view of one a-subunit of
the Kv1.2–2.1 channel with the residues important for gambierol, psora-4, and PUFA action represented by spheres and highlighted in blue, yellow, and green,
respectively. The VSD, PD, and S4–S5 linker are also indicated. (B) Side view of one Kv7.2 a-subunit with the residues important for retigabine, zinc pyrithione, and
ICA73 action represented by red, purple, and green spheres, respectively. (C) Superposition of the structures shown in panel (A, B). (D) Superposition of the Kv1.2–
2.1 and Kv7.2 channel structure shown as top view. The red and blue circle highlight the proposed retigabine/gambierol binding site on the “front side” of the PD,
while the binding sites for zinc pyrithione and psora-4 on the “back side” of the PD are highlighted with the purple and yellow circles, respectively. Structures are
visualized using chimera software (Pettersen et al., 2004).
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snapshots of the channel in a certain state, which should not be
the high affinity state for the respective drug/toxin. As
mentioned, several drugs/toxins are state dependent and bind
with highest affinity to a certain conformation of the channel
(e.g., the closed or open channel configuration). Consequently,
the residues reported to be important for drug/toxin effect might
orient differently when the conformation of the channel changes.
Thus, when the channel is in its high affinity drug/toxin state, the
orientation of the residues might be slightly different resulting in
possibly broader binding regions than highlighted in the figures.
Furthermore, several of the residues reported to be important for
drug/toxin effect are likely not the binding partners of the drugs/
toxins but alter affinity in an allosteric way. Nonetheless, there
seem to be three distinct lipid-exposed binding sites preserved in
Kv channels: the front and back side of the PD, and S2–S3/S3–S4
clefts. Future experiments will determine if the front and back
Frontiers in Pharmacology | www.frontiersin.org 13
PD binding sites are two distinct entities or if they converge to
just one larger lipophilic binding site region.
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