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Abstract

Primary open angle glaucoma (POAG) is a multi-factorial optic disc neuropathy characterized by accelerating damage of the
retinal ganglion cells and atrophy of the optic nerve head. The vulnerability of the optic nerve damage leading to POAG has
been postulated to result from oxidative stress and mitochondrial dysfunction. In this study, we investigated the possible
involvement of the mitochondrial genomic variants in 101 patients and 71 controls by direct sequencing of the entire
mitochondrial genome. The number of variable positions in the mtDNA with respect to the revised Cambridge Reference
Sequence (rCRS), have been designated ‘‘Segregating Sites’’. The segregating sites present only in the patients or controls
have been designated ‘‘Unique Segregating Sites (USS)’’. The population mutation rate (h = 4Nem) as estimated by
Watterson’s h (hw), considering only the USS, was significantly higher among the patients (p = 9.8610215) compared to
controls. The difference in hw and the number of USS were more pronounced when restricted to the coding region
(p,1.31610221 and p = 0.006607, respectively). Further analysis of the region revealed non-synonymous variations were
significantly higher in Complex I among the patients (p = 0.0053). Similar trends were retained when USS was considered
only within complex I (frequency 0.49 vs 0.31 with p,0.0001 and mutation rate p-value ,1.49610243) and ND5 within its
gene cluster (frequency 0.47 vs 0.23 with p,0.0001 and mutation rate p-value ,4.42610247). ND5 is involved in the proton
pumping mechanism. Incidentally, glaucomatous trabecular meshwork cells have been reported to be more sensitive to
inhibition of complex I activity. Thus mutations in ND5, expected to inhibit complex I activity, could lead to generation of
oxidative stress and favor glaucomatous condition.
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Introduction

Glaucoma is the second largest blinding disorder after cataract.

According to a recent estimate, about 67 million people are

visually impaired due to glaucoma, and among them approxi-

mately 3.1 million are blind [1]. Among the various subtypes,

Primary open-angle glaucoma (POAG) is the most common form

of this disease.

The incidence of POAG, primarily an adult onset disease, is

positively correlated with age. However, the juvenile form of the

disease has also been found in many cases. It is a multi-factorial

optic disc neuropathy characterized by accelerating damage of the

retinal ganglion cells and atrophy of the optic nerve head [2].

Though its pathophysiology remains elusive, a number of genetic

and environmental factors act together to precipitate the disease.

To date, 33 loci have been reported to be linked with POAG,

however only three genes viz myocilin (MYOC) [3], optinuerin (OPTN)

[4], and WD Repeat 36 (WDR36) [5] have been identified by family

based studies. Mutations in neurotrophin 4 (NTF4) at GLC1O [6]

locus and ankyrin repeats and suppressor of cytokine signaling box-containing

protein 10 (ASB10) at GLC1F locus [7] have also been implicated in

POAG in a few cases.

POAG is often associated with elevated intraocular pressure

(IOP) caused by the abnormal outflow of aqueous humor through

the trabecular meshwork (TM), a meshwork of connective tissue

lining the outflow pathway at the iridocorneal angle of the anterior

chamber of the eye [8–9]. Though IOP reduction is considered to

be a potential therapeutic measure in POAG, progression of

disease continues even after achieving lower IOP with medication.

At the population level, incidence and progression of the disease

increases with age even at baseline IOP [10]. This suggests that the

vulnerability of the optic nerve gradually increases with aging,

which ultimately results in the death of the retinal ganglion cells

(RGCs) and degeneration of the optic nerve head [11]. Such

pathophysiology has also been observed in aged rodents [12]. To

date, no mechanism has been elucidated that explains the
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relationship between age and neuronal vulnerability to degener-

ative diseases. However, there is increasing evidence that suggests

oxidative stress and mitochondrial dysfunction may play a key role

in predisposing neuronal cells to death in age-related neurode-

generative diseases such as glaucoma [13–15]. Interestingly, it has

been proposed that variations in mitochondrial DNA (mtDNA)

and in nuclear DNA genes that encode mitochondrial proteins

may lead to aberration in mitochondrial structure and function,

thus contributing to POAG pathogenesis [16]. It has also been

suggested that mitochondria consume more than 90% of the

available free oxygen molecules, 15% of which is converted to

reactive oxygen species (ROS) under normal physiological

conditions. The mean respiratory activity of mitochondria

decreases with age, resulting in higher production of ROS and

free radicals [17]. This is supported by the observation that

mitochondrial ATP production decreases and ROS increases with

age both in humans [18–19] and rodents [20–21]. Several studies

have shown that mitochondrial abnormalities, including defects in

oxidative phosphorylation, increased accumulation of mitochon-

drial DNA defects, impaired calcium influx, accumulation of

mutant proteins in mitochondria, and mitochondrial membrane

potential dissipation are important cellular changes in both early

and late-onset neurodegenerative diseases like Amyotrophic lateral

sclerosis, Alzheimer’s disease, and Parkinson’s disease [22–23]. A

transgenic mouse model bearing a familial Alzheimer’s disease

mutation showed mutation-specific alterations in mitochondrial

dynamics, morphology and function that preceded the onset of

memory and neurological phenotype and the formation of

amyloid plaques [24]. Various mutations causing the familial

form of Parkinson’s disease have been found to alter multiple

aspects of mitochondrial biology, including mitochondrial biogen-

esis, bioenergetics, dynamics, transport, and quality control [25].

Altered mitochondrial fission and fusion might also play a role, as

it controls the structure, morphology and number of mitochondria

in a cell [26–27]. Therefore, the health and activity of

mitochondria are central in the aging process. Nevertheless,

uncertainty prevails over the fact - whether or not accumulation of

mitochondrial mutations leads to a decline in mitochondrial

function.

The proposed mechanism of RGC death through apoptosis in a

murine model is similar to other optic neuropathies associated

with mitochondrial dysfunctions [28]. A recent study demonstrat-

ed that mitochondrial dysfunction and AIF (Apoptosis Inducing

Factor) translocation from mitochondria may play crucial roles,

both in RGC death and in axonal degeneration, the primary

target of IOP elevation in experimental rat glaucoma models [29].

Studies on mice subjected to ocular hypertension have shown

COX (Cytochrome oxidase) reduction, mitochondrial fission, and

cristae depletion [30]. In addition, an increase in IOP has been

correlated with altered OPA1 (optic atrophy 1) expression and

induction of OPA1 release, a protein that plays a crucial role in

mitochondrial inner membrane fusion [31]. A study reported a

spectrum of mitochondrial abnormalities in 27 POAG patients,

including a decrease in the mean respiratory activity of

mitochondria in patients compared to controls [32]. Another

study reported that defects in complex I contributed to progressive

loss of TM cells in POAG patients by promoting excessive

mitochondrial ROS production and by decreasing mitochondrial

membrane potential and ATP synthesis [33]. These events result

in accelerated aging of the TM cells in POAG patients, thereby

driving the cells towards apoptosis [33]. It has also been found that

mtDNA4977 deletion is dramatically higher in POAG patients,

and the ratio of mtDNA to nuclear DNA is decreased [34]. In

addition, there are reports of involvement of mitochondrial

protein-coding genes in Normal Tension Glaucoma [35–36].

These findings further substantiate a major role of mitochondrial

dysfunction in glaucomatous optic nerve degeneration.

In our cohort, among the known candidate genes for POAG,

MYOC has been found to contribute to disease pathogenesis in

only 3% of the reported cases [37]. On the other hand, although a

putative mutation (Arg545Gln) was identified in OPTN, the gene

was not found to play a significant role in POAG causation [38].

Similarly, analysis of WDR36 suggested a possible association

between a WDR36 SNP and POAG [39]. In addition, common

variants and mutations in CYP1B1, IL1, and OPTC were also

found to be associated with the disease [39–42]. Several studies to

date have reported structural and functional alterations in

mitochondria and their metabolites in the pathogenesis of

neurodegenerative diseases. However, the involvement of mtDNA

in POAG pathogenesis has only been investigated based on

sequencing of targeted regions of the mitochondrial genome in a

small number of patients (n = 27) [32]. In this study, we have

undertaken mtDNA sequencing in a relatively larger number of

patients (n = 101) and controls (n = 71); lacking mutations in the

known candidate genes for POAG to evaluate the underlying

genetic lesion.

Materials and Methods

Ethics Statement
Peripheral blood samples were collected from study individuals

with their written consent. The study protocol adhered to the

tenets of the Declaration of Helsinki and was approved by the

‘‘Human Ethical Committee’’ of the Council for Scientific and

Industrial Research - Indian Institute of Chemical Biology.

Selection of Study Subjects
POAG patients and control subjects were selected from Dristi

Pradip Eye Clinic, Kolkata. All participants of the study were

inhabitants of Kolkata, West Bengal (eastern India) and belong to

the Indo-European linguistic group [43]. The cohort consisted of

101 POAG patients and 71 controls.

Diagnosis of patients involved clinical, ocular and systemic

examinations. Intraocular pressure (IOP) was measured by

Goldmann applanation tonometry (Haag-Streit USA Inc., Mason,

OH) followed by pachymetry (Ocuscan A, Alcon, Texas, USA). A

Goldman 3-mirror gonioscope (Ocular Instrument, Bellevue, WA)

was used to assess the angles of the anterior chamber and the optic

disc. The optic disc was also evaluated with a +78D lens.

Automated threshold field analysis was done using Humphrey

Field Analyzer II (Carl Zeiss, Dublin, CA). The retinal nerve fiber

layer (RNFL) was investigated by Scanning Laser Polarimetry

(SLP) with variable corneal compensation technique (GDx-Vcc/

GDx-Pro, Carl Zeiss, Dublin, CA).

The POAG patients were diagnosed by the presence of a

clinically open angle (angle of the anterior chamber) on

Gonioscopy, and significant cupping of the optic disc (.0.7) with

or without peripapillary changes. This was further confirmed by

typical reproducible visual field changes, viz. Arcuate, Bjerrum,

Seidel, paracentral and annular scotoma and nasal steps and SLP

for RNFL analysis (Nerve Fiber Indicator.30). The pre-perimet-

ric cases were identified by RNFL analysis. IOP was also

examined, and in most cases it was found to be above 21 mm of

Hg. Individuals with any history of inflammation, ocular trauma

(past and present), high myopia (.8 diopter) and ocular

hypertension were excluded from this study. Thus, the patient

pool consisted of 101 adult onset open angle glaucoma cases. The

age at diagnosis ranged from 38 to 88 years, with a median 6
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standard deviation (SD) of 60612 years. The patients were not

known to have any other ocular disorder.

In this study, 71 controls were recruited following the criteria

which include: age .50 years (median age 6 SD, 56611.1 years)

without any family history of glaucoma or ocular hypertension,

IOP less than 20 mmHg in both eyes in at least last two checkups,

no visual field defect, normal SLP parameters i.e. a good yellowish

bow-tie scan pattern, deviation map within normal limit, a good

double hump pattern in conduction map, temporal-superior-nasal-

inferior-temporal (TSNIT) parameters within normal limit, Nerve

Fiber Indicator ,30 (for both eyes). Cup to disc ratio considered

was ,0.5 and similar in both eyes, with no defect in disc rim or

margin and no sphincter haemorrhage around the disc. Individ-

uals with high myopia (.8 diopter), diabetes and hypertension

were excluded from the control group.

Collection of Blood Samples and Genomic DNA
Preparation

Eight milliliters of peripheral blood was collected with EDTA

from POAG patients and normal individuals with their written

consent. It was ensured that the individuals were unrelated to at

least the first cousin level. Genomic DNA was prepared from fresh

whole blood using the PAX gene blood DNA isolation kit (Qiagen,

Hilden, Germany) according to manufacturer’s protocol. The

DNA was dissolved in TE (10 mM Tris-HCl, 1 mM EDTA,

pH 8.0).

mtDNA Amplification and Sequencing
The entire coding region of the mitochondrial genome was

amplified in 24 separate polymerase chain reactions (PCRs), using

single-set cycling conditions, for all patients and control subjects.

Each successfully amplified fragment was directly sequenced in

both forward and reverse directions. This entire work was carried

out at The Centre for Genomic Application (TCGA, New Delhi).

The list of primers is available on request.

Analysis of mtDNA Sequence in Patients and Controls
Mitochondrial DNA sequences from both patients and controls

were analyzed using multiple alignment tools (DNAstar) [44] and

compared with revised Cambridge Reference Sequence (rCRS)

(NC_012920) from Mitomap (http://www.mitomap.org) [45] to

identify the variants present, if any. All identified variants, whether

in patients or controls, were compared with variants listed in the

Mitomap database and Medline listed publication to check the

novelty of the change. We used Sanger sequencing as the detection

method; therefore, low level heteroplasmic changes could not be

scored.

The aim of the study was to identify the region in the

mitochondrial genome which might relate to the pathogenesis of

the disease. For this the variants were divided into three categories:

(a) the variants present only in the patients which might be

associated with the disease, (b) those present only among the

controls, and (c) the polymorphic sites present in both patients and

controls. The number of variable positions in the mtDNA with

respect to rCRS has been designated ‘‘Segregating Sites’’. Say

among 3 individuals, if we restrict to a certain ‘region’ (e.g. coding,

genic, ND5 gene) of the mt genome, the 1st individual has

variations at 4 sites (a,b,c, and d), the 2nd individual has variations

at 3 sites (a,c, and e), and the 3rd individual has variations at 2 sites

(a and e), at overlapping loci; then the total number of segregating

sites are 5 (a, b, c, d, e). The segregating sites present only in the

patients or controls have been designated ‘‘Unique Segregating

Sites (USS)’’.

Frequencies were calculated as the ratio of the number of

variations for a specific region (e.g. coding region/complexes or

genes within it, RNA region etc.) to the total number of variations

identified comprising that region. For example, in Table S1, under

patients, the ratio of the number of changes in coding region (243)

to the total number of changes in the mtDNA (i.e

243+39+69 = 351) is the frequency (i.e. 243/351 = 0.69) of

segregating sites in the coding region. The other frequencies were

also calculated in the same manner. The significance of the

difference in frequencies among patients and controls were

determined by z-test of proportion.

Watterson theta (hw = 4Nem), which is the product of four times

the effective population size (Ne) and the mutation rate (m), was

estimated to determine the population mutation rate, and

normalized for the number of individuals [46].

For a sample of n individuals, an unbiased estimate of h is given

by ĥh~ Sn

a1
where Snis the number of segregating sites observed and

a1 ~
Pn{1

i~1

1=i.The variance of the estimator is given by
a12Snza2Sn2ð Þ
a12 a12za2ð Þ

where a2 ~
Pn{1

i~1

1
�
i2.

Watterson has also shown that the distribution of the estimate is

asymptotically normal in samples of sufficient size [46]. We

utilized this fact to test for significance of the difference in ĥh among

patients and controls. We assumed asymptotic normality and a

possible inequality of variance and applied the Welch’s modifica-

tion of the t-test for the test of significance [47]. We used the

Kolmogrov-Smirnov non-parametric test to compare between the

equality of distributions [48–49].

All reported and novel mutations detected in mitochondria were

analyzed by PolyPhen-2 [Polymorphism Phenotyping v2 (http://

genetics.bwh.harvard.edu/pph2/)], a tool that predicts the

possible impact of an amino acid substitution on the structure

and function of a human protein using straightforward physical

and comparative considerations. The output distinguishes the

variants into 3 categories: benign, possibly damaging and probably

damaging.

Results

In the present study, we investigated the possible involvement of

the mitochondrial genomic variants in a cohort of 101 patients and

71 controls by sequence analysis of the entire mitochondrial

genome from peripheral blood. The samples were selected based

on prior analysis for absence of mutations in three known nuclear

candidate genes (viz. MYOC, OPTN, and WDR36). In the present

study, we aim to identify the regions of the mitochondrial genome

that show a higher preponderance of changes in a group of POAG

patients relative to controls.

mtDNA Analyses of POAG Patients and Controls
The aim of the study was to identify the region in the

mitochondrial genome that might relate to the pathogenesis of the

disease. The number of segregating sites unique to patients was

found to be 351 in 101 patients compared to 236 in 71 controls. In

addition, 284 polymorphic sites were found in both patients and

controls. Thus, sequencing the entire mitochondrial genome

yielded the presence of 635 segregating sites in 101 patients and

520 in 71 controls. The value of hw (an estimate of the overall

population mutation rate) for the patients was 122.41 (629.67)

compared to 107.59 (627.86) for controls, indicating that the

mutation rate in the patients is indeed higher (p-value ,0.00053)

than the controls. When only the unique segregating sites (USS)

Mitochondrial Genome Analysis in Glaucoma Patients
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were considered, the estimate of hw was 67.66 (616.57) for

patients and 48.83 (612.85) for controls. This difference between

patients and controls was even more significant (p = 9.8610215).

The number of transversion was 26 in patients and 21 in

controls. In both patients and controls the ratio of transition to

transversion (TN/TV) was higher in the coding region compared to

the control region (Table 1), which attests to the accuracy of the

sequencing [50]. We noted a lower ratio of transition to

transversion (TN/TV) in the patients compared to the controls

(22 vs 30.60), indicating the preponderance of transversions in

patients (Table 1).

Distribution of Segregating Sites in mtDNA
To evaluate the possible clustering of variants in a specific

mitochondrial region, the variants were analyzed in the protein

coding regions, tRNA and rRNA coding regions and control

regions separately. In the coding region, the frequency of

segregating sites was marginally higher in the patients relative to

the controls (0.69 vs 0.62, p = 0.0347) (Figure 1 & Table S1). The

estimate of hw was 46.85 (611.59) for patients and 30.42 (68.14)

for controls. This difference is extremely significant with a p-value

,1.04610221. The hw, which provides the best estimate of the

population mutation rate, is marginally higher for patients [13.3

(63.54)] than controls [12 (63.42)] (p-value ,0.008) for the

control region too. No significant difference was observed in either

tRNA or rRNA (Figure 1 & Table S1).

Analysis of Variants in the mtDNA Coding Region
Having observed that the variation in the coding region of

mtDNA was significantly higher in the patients compared to the

controls (Figure 1), the region was further dissected for each

mtDNA complex gene. There was no significant difference in the

distribution of segregating sites among patients and controls

(Kolmogorov-Smirnov D = 0.1091, p-value = 0.7043) in the 13

protein-coding genes of the mtDNA coding region. However,

analysis with only the unique changes in either patients or controls,

USS, gave rise to 243 USS in 101 patients compared to 147 in 71

controls (Table 2). The difference in the distribution of USS

between the patients and controls was very significant (Kolmo-

gorov-Smirnov D = 0.2617, p-value = 0.006607). The hw estimate

for the coding region, not normalizing for the number of

basepairs, is 46.84 for patients compared to 30.42 for controls (p

value ,1.13610221).

Next, among the variants in the coding region, the non-

synonymous changes were segregated from the synonymous

variants (Table 2). The ratio of the number of non-synonymous

USS to the number of synonymous USS (PN/PS) did not vary

significantly between patients and controls (0.44 vs 0.39,

p = 0.5509). However, similar analysis on each of the four

complexes (I, III, IV and V) separately within the coding sequence

revealed that the nonsynonymous changes in Complex I was

significantly higher in patients (p = 0.0053), highlighting the

pathogenic involvement of the complexes in POAG (Table 2).

Complex IV showed a marginally higher PN/PS ratio in controls,

primarily for the COI gene (p = 0.0327) (Table 2).

Subsequently, to delineate the complex in the coding region that

might be associated with POAG, the distribution of USS for the

nonsynonymous changes were assessed in each of the four

mitochondrial complexes (I, III, IV and V), as detailed in the

subsequent section.

Preponderance of non-synonymous changes in Complex

I. In our dataset, the maximum number of non-synonymous

USS were clustered in Complex I, in both patients (49%) and

controls (31%) (Figure 2 & Table S2). The frequency of USS was

significantly higher in patients compared to controls (0.49 vs 0.31,

p,0.0001). The estimate of hw was 6.94 (62) for patients and 2.48

(60.94) for controls. This difference was extremely significant,

with a p-value ,1.49610243 (Table S4).

Not many significant observations were made in other

complexes (Table S2 and Table S3). However, the mutation rate

(hw) was significantly higher in patients for all three of the other

complexes as well (Table S4).

ND5 gene in complex I harbors maximum

variations. When Complex I was further analyzed for the

constituent seven genes (i.e. ND1, ND2, ND3 ND4, ND4L, ND5 and

ND6), we observed that the PN/PS ratio of USS, was significantly

higher in the patients for ND5 (0.0002) (Table 2). This observation

suggested that among the seven genes, variations in ND5 are likely

to play a role in POAG pathogenesis. Further dissection of the

number of nonsynonymous USS in Complex I genes showed that

the frequency of USS in ND5 was significantly higher in patients

than in controls (0.47 vs 0.23, p,0.0001) (Figure 3 & Table S5).

The observation was further strengthened with the analysis of the

mutational rate. The estimate of hw is 3.28 (61.1) for patients and

0.62 (60.38) for controls (Table S5). This difference was extremely

significant with a p-value ,4.42610247. This study deciphered

the potential mitochondrial gene that might have a putative role in

POAG pathogenesis for the first time.

Although ND1 and ND2 showed higher levels of variation in

controls (Figure 3), the mutation rate (hw) was higher in the

patients for ND1 (p = 3.3610210), and was not different for ND2

(p = 0.118) (Table S5). Interestingly, all Complex I genes except

ND2 showed higher mutational rates in patients.

Non Synonymous Changes Identified in POAG Patients
A total of 74 nonsynonymous mutations were identified in

101 POAG patients. The list of potentially damaging variants (as

predicted by Polyphen-2) identified in patients is provided in

Table 3. Among all of the mitochondrial genes, ND5 was noted to

harbor the maximum mutational load (24 patients harboring 17

variants). Among the variations identified in ND5, in-silico analysis

with Polyphen 2 predicted four changes to be damaging viz.

Thr331Ala, Thr412Ala, Leu(2)555Gln and Thr579Ala.

Leu(2)555Gln (T14000A) was identified in 4 patients and was

predicted to be highly pathogenic (Polyphen score: 0.00026),

which points towards a potential role of the variant in POAG

Table 1. Number of segregating sites, transitions, transversions and TN/TV.

Mitochondrial regions No of segregating sites No of transitions (TN) No of transversions (TV) TN/TV

Patients Controls Patients Controls Patients Controls Patients Controls

Control Region 155 144 147 137 8 7 18.38 19.57

Coding Region 414 318 396 308 18 10 22 30.8

doi:10.1371/journal.pone.0070760.t001
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pathogenesis. Interestingly, all 4 of these patients developed the

disease after 50 years of age and had a positive family history of

glaucoma, but not observed to follow a specific pattern of

inheritance was not observed.

In addition to ND5, some major changes were identified in other

genes. Next to ND5, the maximum number of variations was

observed in CYTB. Twelve variations were identified in 18 patients

but none in controls. Among these changes, Thr7Ile (T14766C)

was found in 6 patients, predicted to be benign by Polyphen2. A

notable observation was the presence of a single variant

Ala177Thr (G9055A) in the ATP6 gene in 5 patients. Another

variant, Leu(2)198Pro (T9119C), predicted to be damaging by

Polyphen was present in an early onset case (age at diagnosis –34

years). In addition, a few other damaging variants were also found

sporadically in the other genes (Table 3).

Analysis of Variants in the mtDNA RNA Region
The number of segregating sites in the 12S rRNA gene was

found to be significantly higher in patients compared to the

controls (0.36 vs 0.23, p = 0.0004) (Figure 4 & Table S6).

Interestingly, among the changes identified in 12S rRNA (Table

S7) in patients, T710C, C1375T, T1407C and A1438G are

predicted to result in complete change of the RNA secondary

structure. A substantial decrease in free energy was inferred for all

4 variants, which might affect the stability of 12S rRNA. The

changes identified in 16S rRNA are listed in Table S7. In addition

to these changes, one C insertion in between positions 3167 and

3168 was found in 2 patients (GL441 and GL598). None of the

changes in 16S rRNA were predicted to alter RNA secondary

structure.

No difference in the frequency of variants was observed in the

tRNA genes between patients and controls. In our study, 13

variants in 10 tRNA genes were observed in 15 POAG patients

(Table S8). A variant, T12285C, in tRNA-LeuCUN (Leu 2) was

identified in 3 patients. The rest of the changes were identified in

single patients. All identified changes (except one) were novel

(Table S8).

Analysis of Variants in the mtDNA Control Region
The D-loop region or the hypervariable region of the

mitochondrial genome accounts for the maximum number of

spontaneous variations. In our cohort, no significant observation

was made with the variations identified in patients in the control

region. However, two polymorphic positions in Hypervariable

region I, C16261T and G16129A, were significantly associated

with POAG with p values 6.461023 (OR: 10.46) and 2.661022

(OR: 2.618), respectively (Table 4). The entire list of Single

Nucleotide Polymorphisms identified in patients and controls is

provided in Table S9. Two insertion variations were found in the

control region in patients, one C insertion in Hypervariable region

I, in the Termination Associated Sequence between 16169 and

16170 (GL686), and another CC insertion in the noncoding region

between 573 and 574 (GL441).

None of the haplogroup markers showed any association with

POAG. Thus, it seems that in our population, it is not a particular

haplogroup that portrays risk to POAG. An estimate of different

haplogroups was made in the entire cohort (Table S10 and Table

S11). The chi-squared test of homogeneity (p-value 0.205) suggests

that the haplogroup frequency distribution is not different for the

patient and control groups (Table 5). We observed that the

number of distinct haplogroups in patients is more than that in

controls, i.e. haplogroup C and D appear only in patients at a very

low frequency 20.009 and 0.019, respectively (Table 5), and are

unlikely to have any effect on the overall ‘genetic variation’. The

ancient haplogroup L3 is also slightly greater in frequency in

patients, but again owing to its low frequency would unlikely have

an effect. The L3 haplogroup is considered to be the ancestor of

both the M and N haplogroups, while N is thought to be the

ancestor of R. L3, M, N and R are the major haplogroups that

were observed in our dataset. The most divergent and wide-spread

haplogroup of the subcontinent, haplogroup M, appears at a

greater frequency (though not significant at 5%) in the controls.

Thus, our data shows a higher proportion of the divergent

haplogroup among the controls rather than the patients,

supporting our claim of higher mutational rate among patients.

Discussion

In the present study we evaluated 101 POAG patients and 71

controls to investigate the possible involvement of mitochondrial

genomic variants in POAG pathogenesis. It is known that

mitochondrial DNA is more prone to mutation than genomic

DNA. It is evident from the observation that the mitochondrial

sequence between two individuals from any worldwide population

differs on an average of 30bp substitutions [51]. For our study we

primarily focused on the regions where the frequency of changes is

higher in patients. This strategy was undertaken since we used

Figure 1. Distribution of segregating sites in different regions of mtDNA. The frequency of segregating sites was marginally higher for
coding regions in the patients relative to the controls (0.69 vs 0.62, p = 0.0347). No significant difference was observed in the RNA and the control
region.
doi:10.1371/journal.pone.0070760.g001
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mitochondria from the peripheral blood of the patients and

controls, which would not only reveal changes associated with

POAG, but also those related to other pathogeneses. In this

context, it is worthwhile to mention that the ideal location for

collection of mitochondria would be the site of pathogenesis, i.e

the trabecular meshwork of the eye not normally accessible for the

purpose of research. Such an endeavor would be more challenging

with the need for a greater number of tissue samples. Numerous

systemic and common disorders are also known to increase the risk

of glaucoma [52–53]. However, any systemic difference between

patients and controls observed in the analysis of blood samples is

only likely to be pronounced when analyzed from the appropriate

tissue.

After suitably adjusting for the sample size difference, the

number of unique segregating sites in patients was found to be

greater than that of controls; indicating that the patient pool

acquired mutations at novel sites. The difference, however, was

more pronounced when we compared only the coding sequence

between patients and controls. The number of segregating sites

was considerably higher in patients than in controls.

In both patients and controls, the ratio of transition to

transversion (TN/TV) was higher in the coding region compared

to the control region. A lower TN/TV ratio, observed in the coding

region of patients compared to controls, indicated the preponder-

ance of transversion in patients. As transversions alter the chemical

structure of the DNA drastically, the consequence of the change is

more lethal than that of transitions. No selection pressure acts on

mutations in the control region, so the TN/TV ratio is comparable

for patients and controls for this region. It was also observed that

the clustering of nonsynonymous variants in the coding region of

mtDNA was significantly higher in the ND5 gene of Complex I in

patients than in controls. In addition, the frequency of changes in

12S rRNA was also significantly higher in patients than in controls.

Although the number of segregating sites was significantly higher

in controls in ND1 and ND2 of Complex I, the mutation rate was

significantly higher in patients for all Complex I genes, except ND2

(p = 0.188).

Mitochondrial Complex I is the entry port of the respiratory

chain. It is an 850 kDa supramolecular complex composed of

more than 40 polypeptides and contains a flavin mononucleotide

(FMN) molecule and eight iron-sulphur clusters as redox active

centers, embedded in the peripheral arm. Seven polypeptides of

Complex I are encoded by mitochondrial genes (ND-1, -2, -3, -4, -

4L, -5, and -6). Complex I catalyses the transfer of electrons from

NADH via FMN to the metal redox pathway, and subsequently to

ubiquinone (UQ), located in the membrane embedded part of the

complex [54]. Thus, Complex I produces significant levels of ROS

by molecular oxidation of O2, thereby accounting for most of the

Figure 2. Distribution of non-synonymous unique segregating sites (USS) in the mtDNA complexes. The frequency of non-synonymous
USS was significantly higher (p,0.0001) in patients compared to controls in the case of Complex I. Marginally higher segregating sites were observed
in controls for Complex IV and Complex V.
doi:10.1371/journal.pone.0070760.g002

Figure 3. Distribution of non-synonymous unique segregating sites (USS) in Complex I genes. The frequency of non-synonymous USS
was significantly higher (p,0.0001) in patients compared to controls in the case of the ND5 gene. However, the frequency of USS was higher for
controls in ND1 and ND2.
doi:10.1371/journal.pone.0070760.g003
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constitutive ROS generated by the mitochondrial respiratory

chain [55–57]. The rate of ROS production is increased by

electron transfer inhibition with rotenone (ROT), a hydrophobic

pesticide [58]. Depending upon the physiological conditions or

specific pathological modifications of Complex I, each of the redox

active centers contributes to the ROS generating activity.

However, the exact function of each ND subunit is not completely

understood. Biochemical studies to date suggest the involvement of

ND5 and ND6 in the proton pumping activity [59] as well as

binding of ubiquinone [60–61].

Over the years, variants in Complex I have been linked to

several mitochondrial and neurological diseases. A similar study of

mitochondrial variations in POAG patients also reported cluster-

ing of mitochondrial variants in Complex I in a Saudi Arabian

POAG cohort [32]. Similar observations have also been made in

other optic neuropathies like LHON [62–63], and mitochondrial

diseases viz. MERRF [64] and MELAS [65], where most of the

mutations to date have been found in different Complex I genes.

Defects in mitochondrial Complex I are known to be involved in

increased production of ROS and are linked to several degener-

Table 3. Non synonymous changes identified only in POAG patients.

Gene
Nucleotide
Substitution AA change* Reported or Novel Polyphen Prediction Polyphen Score

Number of
Patients

ND1 3979 A-C Met225Leu(2) Novel Possibly damaging 0.803 1

ND1 3979 A-G Met225Val Novel Possibly damaging 0.731 1

ND2 5178 C-A Leu237Met Reported Possibly damaging 0.704 2

ND2 5504 A-C Met345Ile Novel Possibly damaging 0.882 1

COI 6043 T-C Leu47Pro Novel Probably damaging 0.964 1

COI 7182 C-T Pro427Ser(1) Novel Probably damaging 0.988 8

COII 7750 C-G Ile55Met Novel Probably damaging 0.273 2

ATP8 8387 G-A Val8Met Novel Possibly damaging 0.719 1

ATP6 8572 G-A Gly16Ser(2) Reported Probably damaging 0.82 1

ATP6 8945 T-C Met140Thr Reported Possibly damaging 0.792 1

ATP6 9055 G-A ALa177Thr Unknown significance Possibly damaging 0.835 5

ATP6 9119 T-C Leu(2)198Pro Novel (Sequence listing only in Gene
bank)

Probably damaging 0.136 1

COIII 9903 T-C Phe233Leu(2) Reported in PhyloTree Build 14 Possibly damaging 0.136 1

ND3 10159 C-A Ser34Tyr Novel Probably damaging 0.00018 1

ND4 11984 T-C Tyr409His Reported Probably damaging 0.273 1

ND5 13327 A-G Thr331Ala Reported Probably damaging 0.545 1

ND5 13570 A-G Thr412Ala Novel Possibly damaging 0.883 1

ND5 14000 T-A Leu(2)555Gln Reported Probably damaging 0.00026 4

ND5 14071 A-G Thr579Ala Reported Possibly damaging 0.848 1

CYTB 15468 C-T Thr241Met Reported Possibly damaging 0.821 1

CYTB 15675 C-T Ser(1)310Phe Novel Possibly damaging 0.815 1

*AA: Amino Acid.
doi:10.1371/journal.pone.0070760.t003

Figure 4. Distribution of unique segregating sites (USS) in the RNA genes. The frequency of USS was significantly higher (p = 0. 0045) in
patients compared to controls in the 12S rRNA gene.
doi:10.1371/journal.pone.0070760.g004

Mitochondrial Genome Analysis in Glaucoma Patients

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e70760



ative disorders [66]. Complex I deficiencies are also reported in

devastating neurological disorders like Parkinson’s disease [67–

68], Huntington’s disease [69] and Wilson’s disease [70].

Interestingly, a higher level of endogenous ROS has been

observed in glaucomatous TM cells, and these cells were also

found to be more sensitive to inhibition of Complex I activity by

Rotenone (ROT) compared to normal tissue. On the other hand,

inhibition of Complexes II and III had little effect on TM cells

[33]. Inhibition with ROT resulted in further increase in ROS

production, release of cytochrome C, and decrease in ATP level

and mitochondrial membrane potential (DYm) in glaucomatous

TM cells, leading to apoptosis. This effect was found to be reversed

with the use of antioxidants [33]. In the absence of any

proofreading mechanism for the mitochondrial genome, there is

a higher chance of mtDNA damage due to an accumulation of

ROS in the mitochondria. The cycle of mtDNA damage and ROS

production will hasten up in an already diseased cell; thus

aggravating the disease pathogenesis. Such a phenomenon of

mitochondrial dysfunction and reduced Complex I activity has

been observed in other neurological disorders like Parkinson’s

disease [71]. Reduced Complex I activity in Parkinson’s disease

experimental animals intoxicated with Complex I inhibitors

reproduces the clinical symptoms of Parkinson’s disease in humans

[71]. Thus, our observation is likely to be of pathogenic

importance even in the case of POAG, and might be associated

with TM cell degeneration.

Although Complex I mutations have been identified in multiple

instances, this is the first study to identify ND5, the largest subunit

of Complex I, as the region harboring maximum variations in

POAG patients. In Complex I, mutation in ND5 has been

consistently found in several disorders like LHON, MERRF,

MELAS [72]. A recent study in E. Coli has shown that ND5 is

involved in the proton pumping mechanism [73]. Thus, variation

in ND5 gene is expected to perturb the equilibrium of the

respiratory chain, leading to inhibition of the overall activity of

Complex I. Mutations in ND5 have also been associated with

oxidative phosphorylation disorders [74]. Thus, downstream

functional assays to determine the pathogenicity of the identified

variants may help in better understanding of the role of ND5 in

POAG pathogenesis. On the other hand, it is tempting to

speculate that a correlation exists between the significantly lower

number of segregating sites for ND1 and ND2 in patients and an

underlying protective mechanism for glaucoma. However, this

cannot be substantiated due to limited knowledge regarding the

functionality of the individual subunits of Complex I. Unfortu-

nately, the limited number of studies done on the entire mtDNA in

POAG did not provide the opportunity to compare our data with

observations made in other cohorts. This observation needs to be

vindicated in the future with further functional and genetic studies.

We also observed that POAG patients harbor a higher number

of variations in the 12S rRNA gene. However, no studies report the

association of this gene with any eye disorder. The mitochondrial

12S rRNA gene encodes the RNA of the small ribosomal subunit,

which is remarkably similar in secondary structure to prokaryotic

small subunit (16S-like) RNA. It helps assemble the amino acids

into the functioning proteins that carry out oxidative phosphor-

ylation. Defects in 12S rRNA have been associated with Parkinson’s

disease [75] and carcinoma [76]. However, defects in 12S rRNA

have primarily been associated with aminoglycoside-induced and

non-syndromic hearing loss in multiple studies [77–79]. Amino-

glycosides bind to 12S rRNA, causing mistranslation or premature

termination of protein synthesis [80–81]. Individuals harboring

12S rRNA variants are susceptible to aminoglycoside-induced

hearing loss. Thus it would be interesting to examine whether the

exposure of aminoglycosides, used in certain eye drops, can

exacerbate the disease condition in POAG patients harboring

variations in 12S rRNA in a similar manner to that of hearing

impairment. In this context it is worthwhile to mention that

deposition of cochlin, a protein implicated in non-syndromic

hearing loss, was found in glaucomatous TM cells [82]. No

significant involvement was found for 16S rRNA.

Mitochondrial tRNAs play an important role in mtDNA

translation because nuclear tRNAs are not transported into

mitochondria in humans [83–84]. The mutations in mt-tRNAs

can change the secondary structure and alter the tertiary structure,

thus finally affecting the translation of mtDNA encoded genes.

Many pathogenic mutations in mt-tRNA genes have been reported

to be associated with human diseases, especially in the stem

regions [85], but the molecular bases for the proposed associations

have not been extensively investigated [85–88]. Over the last few

years, an increasing number of human neurodegenerative

disorders have been found to be correlated with point mutations

in mt-tRNA. Both the number of mutations (.70) and widely

Table 4. SNPs associated with POAG.

Sl No Nucleotide Position Minor Allele MAF in Patients MAF in Controls Major Allele CHISQ p value OR

1 7441 T 0.01 0.09 C 6.012 1.461022 0.107

2 13656 C 0.01 0.1 T 7.349 6.761023 0.09184

3 16129 A 0.25 0.11 G 4.987 2.661022 2.618

4 16145 A 0.09 0.01 G 4.325 3.761022 6.9

5 16261 T 0.13 0.014 C 7.422 6.461023 10.46

CHISQ: Chi-Square; MAF: Minor Allele Frequency; OR: Odds Ratio.
doi:10.1371/journal.pone.0070760.t004

Table 5. Haplogroup frequencies in patients and controls
(Chi-squared test for homogeneity p-value is 0.205).

Haplogroups Frequency in Patients Frequency in Controls

L3 0.089 0.069

M 0.56 0.69

N 0.019 0.028

R 0.18 0.07

U 0.069 0.13

C 0.009 –

D 0.019 –

doi:10.1371/journal.pone.0070760.t005
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variable phenotypes (e.g. cardiopathies, myopathies, encephalop-

athies, diabetes, deafness) render the understanding of the

genotype to phenotype relationships very complex [89]. From

this perspective, studies on the structural changes occurring due to

respective mutation in POAG patients are worth pursuing.

Our analysis revealed that the number of variants in coding

regions is significantly different between the patients and controls,

whereas no such bias was observed in the control regions. Thus, it

is interesting to note that defects in mtDNA in POAG patients are

more pronounced in the coding region, which might finally result

in the disruption of the electron transport chain, leading to

mitochondrial dysfunction.

There are numerous reports associating mtDNA haplogroups to

various diseases including optic neuropathies [90]. In our study, a

possible association between mtDNA haplogroups and POAG was

investigated, but no such evidence was detected. Such a lack of

association of mitochondrial haplogroups has also been observed

in a study performed on a Caucasian population in Europe [91]. A

similar observation was made in a study from Saudi Arabia [92].

However, a recent study by the same group showed a higher

preponderance of haplogroup L in Saudi Arabian POAG patients

[93]. They attributed this observation to unknown racial risk

factors for the disease or unexpected population substructure in

Saudi-Arabia. Mitochondrial DNA sequences belonging to macro

haplogroup L has an African origin. It is well documented that

individuals of African descent have a higher preponderance of

glaucoma than Eurasians [94]. Our study population belongs to

the Indo-European ethnic group, who do not have any African

ancestry [43]. In India most of the population belongs to the M

macro haplogroup [95], also observed in our dataset, which is

primarily of Eurasian ancestry. Our observations are thus

consistent with the published literature on similar population

groups.

One of the limitations of this study is the use of the Sanger

sequencing method for detection of mtDNA variations. Although

the entire mtDNA had at least 2X coverage, this method fails to

identify low levels of hetreoplasmy in the DNA [96]. Thus our

data does not contain the changes present in very low frequency

but only those which are more abundant.

In conclusion, we observed that the mutation rate of mtDNA is

significantly higher in patients compared to the controls. Complex

I was found to harbor the majority of the observed variants, and

ND5 seems to be the predominant player in POAG pathogenesis.

Mutations in ND5 are expected to inhibit Complex I activity,

which in turn might lead to generation of oxidative stress and favor

a glaucomatous condition.
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