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I review three of our research efforts which suggest that optimizing micronutrient intake will in turn optimize metabolism,
resulting in decreased DNA damage and less cancer as well as other degenerative diseases of aging. (1) Research on delay of the
mitochondrial decay of aging, including release of mutagenic oxidants, by supplementing rats with lipoic acid and acetyl carnitine.
(2) The triage theory, which posits that modest micronutrient deficiencies (common in much of the population) accelerate
molecular aging, including DNA damage, mitochondrial decay, and supportive evidence for the theory, including an in-depth
analysis of vitamin K that suggests the importance of achieving optimal micronutrient intake for longevity. (3) The finding that
decreased enzyme binding constants (increased Km) for coenzymes (or substrates) can result from protein deformation and loss
of function due to an age-related decline in membrane fluidity, or to polymorphisms or mutation. The loss of enzyme function can
be compensated by a high dietary intake of any of the B vitamins, which increases the level of the vitamin-derived coenzyme. This
dietary remediation illustrates the importance of understanding the effects of age and polymorphisms on optimal micronutrient
requirements. Optimizing micronutrient intake could have a major effect on the prevention of cancer and other degenerative
diseases of aging.

1. Lipoic Acid and Acetyl-Carnitine
Supplements Decrease the Oxidative
Mitochondrial Decay of Aging

Mitochondrial decay appears to be a major contributor
to aging and its associated degenerative diseases including
cancer and neural decay [1, 2]. Mitochondria from old rats
compared with those from young rats generate increased
amounts of mutagenic [3–5] oxidant by-products [6] and
have decreased membrane potential, respiratory control
ratio, cellular oxygen consumption, and cardiolipin (a key
lipid found in mitochondria). Oxidative damage to DNA,
RNA, proteins, and mitochondrial membrane lipids con-
tributes to this decay [6–10] and leads to functional decline
of mitochondria, cells, tissues, and eventually organs such
as the brain, with an accompanying loss of cognition and
ambulatory activity [6–10].

Decreased capacity to produce ATP and increased oxi-
dant production are two properties of aging mitochondria

supported by multiple lines of direct and indirect obser-
vations. First, the analysis of gene expression profiles in
mice showed significant age-associated declines in the mRNA
levels of mitochondrially encoded subunits of complex I, III,
IV, and V in old compared to young mice [11]. Second, in
addition to reduced gene expression, the levels of mutagenic
[3, 4] aldehydes [12] and oxidants increase in aging tissues.

The importance of optimizing metabolic function to
prevent mitochondrial decay is illustrated by feeding the
mitochondrial metabolites acetyl carnitine (ALC) [13–15]
and R-alpha lipoic acid (LA) [16] to old rats. Carnitine is
used for transporting fatty acids into the mitochondria; the
main short-chain acyl-carnitine is ALC [17]. In humans at
rest, ALC accounts for roughly a quarter of total carnitine in
plasma, muscle, and liver tissues [17]. LA is a mitochondrial
coenzyme and is preferentially reduced in the mitochondria
to a potent antioxidant. LA is also an effective inducer of
the transcription factor Nrf2, which in turn induces the
glutathione synthesis enzymes [18–20]. Nrf2 induces over
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200 phase-2 antioxidant and thiol-protective enzymes [21,
22]. ALC and LA, when added as a supplement, can act
in some cases synergistically, to restore much of the lost
mitochondrial function in old rats [6–9].

One possible mechanism of mitochondrial decay is
that with age, stiffer membranes due to lipid oxidation or
increased oxidative damage to mitochondrial proteins cause
structural deformation of key enzymes such as carnitine acyl
transferase that lowers their affinity for the enzyme substrate
[9]. Feeding old rats the substrate ALC with LA for a few
weeks decreases oxidative damage, allowing the synthesis of
new carnitine acyl transferase with normal binding affinity
(Km) [9]. This partially restores mitochondrial function,
decreases mutagenic oxidants, neuronal RNA oxidation, and
mutagenic aldehydes, and increases rat ambulatory activity
and cognition [6–9]. ALC and LA are not usually thought of
as micronutrients, as they can be synthesized in the body, but
they are illustrative of many normal metabolites that decline
with age and may be beneficial as supplements in the elderly.

Park et al. [23] used DNA microarrays to identify tran-
scriptional markers of aging that are differentially expressed
in young versus old mice of multiple inbred strains. They
then fed the mice various metabolites, mostly antioxidants,
to see if they would oppose these transcriptional markers of
aging, comparing effectiveness to caloric restriction, a known
potent method for delaying aging. ALC was as effective as
caloric restriction in the heart and LA was as effective in
the cerebellum. These experiments suggest that ALC + LA
is an effective caloric restriction mimetic and that tuning up
metabolism may help in slowing down the aging process. The
tissue specific effects of caloric restriction-mimetic agents
suggest that a combinatory approach may be needed.

2. Triage Theory Suggests a Cause of
Much Preventable Mutation and Cancer

The “triage theory” [24–26] provides a unifying rationale
for a causal link between chronic modest deficiency of a
micronutrient (∼40 essential minerals, vitamins, amino
acids, and fatty acids) and the many degenerative diseases
accompanying aging such as cancer, immune dysfunction,
cognitive decline, cardiovascular disease, and stroke. If the
theory is correct, the incidence of these diseases might
be reduced by an inexpensive micronutrient intervention
[24–26].

Triage theory [24, 25] posits that during evolution, as
a result of periods of shortage of micronutrients required
by various proteins for function, nature was selected for
a rebalancing of metabolism (e.g., by selection for strong
micronutrient binding constants for critical proteins). This
rebalancing ensured survival of the organism at the expense
of metabolism whose lack caused the accumulation of
insidious damage leading to longer-term consequences, that
I proposed including chronic diseases of aging. That nature
may have developed such a system is logically consistent
with the consensus that natural selection favors short-
term survival for reproduction over long-term health [27].
During evolution micronutrient shortages were likely to be

very common, For example, the 15 essential minerals are
not distributed evenly on the earth; dietary sources and
availability also fluctuated markedly [28].

The triage theory predicts that optimizing intake of the
∼40 essential micronutrients will reduce the risk of chronic
diseases associated with aging and increase lifespan [24].
Micronutrients are remarkably inexpensive. Micronutrient
intakes below recommended levels are unusually widespread
in poor countries, but also in the US population in all seg-
ments of society, especially the poor, children, adolescents,
the obese, and the elderly. High consumption of calorie-
rich, micronutrient-poor unbalanced diets exacerbates the
problem [24]. For example, over half of the US population
have inadequate intakes of magnesium [24], almost all
African-Americans are extremely low in vitamin D [29],
and much of the population is low in a variety of other
micronutrients, (e.g., omega-3 fatty acids, potassium, cal-
cium, vitamin C, vitamin E, vitamin K) [24, 30, 31]. There is
little societal concern because no overt pathologies have been
associated with marginal to moderate levels of deficiency.
The triage theory predicts that the pathology is insidious,
but we believe that it is measurable. We hypothesize that
two of the many insidious, but measurable, consequences
of moderate micronutrient inadequacy are increased DNA
damage (future cancer) and mitochondrial decay (mutagenic
oxidant release, future cancer, and cognitive dysfunction) as
aspects of a triage response. These consequences are known
to increase with age. In addition, evidence from our own
work and that of others, as briefly reviewed below, indicates
that sensitive assays targeted at these endpoints have a high
likelihood of detecting changes in individuals with moderate
micronutrient deficiencies. Other age-related diseases, such
as cardiovascular disease and immune dysfunction [25]
are also increased by micronutrient deficiencies and are
discussed elsewhere [25, 30].

2.1. Vitamin K as an Example of the Utility of Triage Theory
[30]. For 16 known vitamin K-dependent (VKD) proteins,
we evaluated the relative lethality of 11 known mouse
knockout mutants to categorize essentiality. Results indicated
that 5 VKD proteins required for coagulation had critical
functions (knockouts were embryonic lethal), whereas the
knockouts of 5 less critical VKD proteins [osteocalcin, matrix
Gla protein (Mgp), growth arrest specific protein 6 (Gas6),
transforming growth factor β-inducible protein (Tgfbi or
βig-h3), and periostin] survived at least through weaning.
The VKD γ-carboxylation of the 5 essential VKD proteins
in the liver and the 5 nonessential proteins in nonhepatic
tissues sets up a dichotomy that takes advantage of the
preferential distribution of dietary vitamin K1 to the liver to
preserve coagulation function when vitamin K1 is limiting.
Genetic loss of less critical VKD proteins, dietary vitamin
K inadequacy, human polymorphisms or mutations, and
vitamin K deficiency induced by chronic anticoagulant (war-
farin/coumadin) therapy are all linked to age-associated con-
ditions [30]: bone fragility after estrogen loss (osteocalcin);
increased risk of type 2 diabetes (Gas6) [32]; arterial calcifi-
cation (Mgp) [33, 34]; calcific aortic valve disease (periostin)
[35]; increased chromosomal aberrations and spontaneous
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cancer with mitotic spindle abnormalities (Tgfbi) [30, 36].
Studies on vitamin K deficiency as a cause of cancer are
few but are suggestive [36, 37]. A triage perspective rein-
forces recommendations of some experts that much of the
population and warfarin/coumadin patients may not receive
sufficient vitamin K for optimal function of VKD proteins
that are important to maintain long-term health [30].

2.2. DNA Damage and Cancer. Deficiency in each of the 7
micronutrients (iron, magnesium, zinc, and vitamins B6, C,
folic acid, and biotin) that we have so far examined results
in increased DNA damage in rodents, primary human cells
in culture, or humans [24, 38–42]. Deficiency was severe in
many of these studies, but further evidence discussed below
suggests that modest levels of deficiency also can result in
DNA damage and cancer.

Folate deficiency at moderate levels was the first micronu-
trient inadequacy to be clearly established as a mutagenic
hazard for a considerable percentage of the US population.
Low folate in mice was shown to cause chromosome breaks
[43] and cancer [44]. Folate deficiency in human cells in
culture was accompanied by chromosome breaks, cell cycle
arrest in the S-phase, apoptosis, and high uracil incorpora-
tion into DNA, a likely cause of the breaks [38, 45–47]. A
comparison of folate deficiency with radiation in breaking
chromosomes has been done by us [38] and others [48,
49]. Folate deficiency in ex vivo human lymphocytes causes
aneuploidy [50] and increased DNA oxidation and decreased
DNA repair in rats [51]. Moderate deficiency of folate in
humans (before folate supplementation of flour in the US)
caused chromosome breaks at levels of deficiency present
in 10% of the US population and in half of low income
adolescents and elderly [47, 52, 53]. A study of human
folate deficiency and micronuclei (chromosome breaks) [52]
should have been the seminal paper in the nutrition-cancer
field but has not been sufficiently appreciated. Micronuclei
as a measure of chromosome breaks have been validated
as a predictor of future human cancer [54]. In studies of
Australian healthy adults, the third of the population with
the lowest folate levels had a significantly increased level
of chromosome breaks [55, 56]. Moderate folate deficiency
has also been associated with human cancer, as reviewed in
[51, 57, 58]. Moderate deficiency in B12 causes chromosome
breaks in humans, apparently by the same mechanism as
folate deficiency [53, 55].

Magnesium Deficiency. Magnesium intakes for ∼56% of
adults in the United States are below the Estimated Average
Requirement (EAR), the current measure of micronutrient
inadequacy (the RDA is set at 2 standard deviations above
the EAR). Intakes below the EAR are especially prevalent
among the poor, teenagers (78% of 14- to 18-year-old
males and 91% of 14- to 18-year-old females), the obese,
African Americans, and the elderly (81%) [31, 59–63].
Moderate magnesium deficiency causes genetic instability
[64]. In humans, moderate magnesium deficiency has been
associated with colorectal and other cancers [64–69], hyper-
tension, stroke, osteoporosis, diabetes, and the metabolic
syndrome [67, 70–72]. In a study of 4,035 men followed
for 18 years, the highest quartile with serum magnesium at

baseline compared with the lowest had a 40% decrease in
all-cause mortality and cardiovascular disease and a 50%
decrease in cancer deaths [69]. In primary human cells in
culture, magnesium deficiency leads to accelerated telomere
shortening, activation of cell-cycle arrest proteins, premature
senescence [41], and mitochondrial DNA damage (D. W.
Killilea, B. N. A., unpublished observations). Magnesium
deficiency in rats leads to chromosome breaks [73] and
cancer [64]. In rats, a diet moderately deficient in mag-
nesium increased mortality, blood pressure, inflammation,
and oxidants and decreased resistance to oxidants compared
with a standard or magnesium-supplemented diet [74]. This
evidence suggests that supplementation programs should be
considered because there is little risk of magnesium toxicity
[70]. Good sources of magnesium are greens (magnesium is
in the center of the chlorophyll molecule), whole grains, and
nuts. A standard multivitamin-mineral (MVM) supplement
does not contain sufficient magnesium (or calcium) because
it would make the supplement too bulky.

Vitamin B6 deficiency, as measured by pyridoxal phos-
phate (PLP) levels in plasma, is associated with colorectal
cancer; colorectal cancer decreased by 49% for every 100-
pmol/mL increase in blood PLP level [75]. Serum levels
of PLP were inversely associated with lung cancer in both
smokers and nonsmokers in the EPIC study (100,000 person
years) [76]. A significant inverse association between PLP
level and gastric cancer has been shown in a large cohort
study [77]. One possible mechanism is deficiency of B6
causing interference with heme biosynthesis causing release
of mutagenic oxidants [24] though other mechanisms are
also possible [78]. A sizeable percentage of the population
not using supplements has inadequate PLP levels [79]; 49%
of elderly women have inadequate (<EAR) B6 intake [31].
Low PLP levels are also associated with depression [80] and
stroke [81].

Moderate deficiencies of calcium, niacin, vitamin E,
retinol [56], or vitamins A, C, or E [82] are associated
with chromosome damage. Severe deficiencies in rodents or
human cell cultures for selenium, copper, niacin, choline,
pantothenate, or riboflavin are also associated with chromo-
some breaks [24, 56]. Many of these and other moderate
micronutrient deficiencies, when studied epidemiologically,
are associated with cancer [24, 69, 83–93]. A number of
human intervention studies with micronutrients report a
decrease in DNA damage or cancer [52, 94–96] though more
studies are needed to reach a definitive conclusion. The
limitations of experimental approaches available for demon-
strating a causal relation between micronutrient deficiency
and cancer have been pointed out [97, 98]; a critical analysis
of this large literature is not attempted here.

2.3. Mitochondrial Oxidant Release. A large literature, as
discussed in Section 1, provides evidence that mitochondrial
decay occurs with age and results in increased production of
mutagenic oxidant byproducts of electron transport. To the
extent that the DNA damage is caused by oxidants released
from mitochondria, mtDNA will be damaged before nuclear
DNA and should be more easily detected. Mitochondrial
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decay appears to be a major contributor to both aging
and its associated degenerative diseases, such as cancer and
brain dysfunction, for example, complex I and Parkinson’s
disease, complex IV and Alzheimer’s disease [24]. In mice,
or human cells in culture, we found that severe deficiencies
in zinc [42], iron [40], biotin [39], or vitamin B6 resulted in
increased mitochondrial oxidative decay [24]. In all 4 cases,
the mechanism could involve inhibition of heme synthesis
which lowers levels of complex IV [24, 39], as discussed
below.

2.4. Some Micronutrient Deficiencies Impair Heme Synthesis,
Which Can Result in Oxidative Stress, Mitochondrial Decay,
DNA Damage, and Cell Senescence. Seven micronutrients
(biotin, pantothenate, pyridoxine, riboflavin, copper, iron,
and zinc) are required for heme synthesis in mitochondria.
A severe deficiency in any of these seven will cause a deficit
of heme and therefore of complex IV, of which heme-a is
an essential component [39, 99–103]. This mechanism is
compatible with a triage response if complex IV is sensitive
to modest deficiencies as well. The normal complement
of complex IV keeps oxidants to a minimum; deficits
of complex IV result in oxidant leakage, DNA damage,
accelerated mitochondrial decay, and cellular aging [39, 99–
103]. Deficiencies of iron, zinc, and biotin are discussed
below.

Iron. Iron deficiency is the most common micronutrient
deficiency in the world, and anemia is widespread in under-
developed countries [104]. Iron intake in US menstruating
women is low; ∼16% are below the EAR, the standard
measure of inadequacy [31]. Hispanic women and the obese
are at greater risk of being iron deficient [105]. In humans,
iron deficiency anemia is associated with poor cognitive
development in toddlers [106–110], suggesting that iron
deficiency in humans during critical periods of development
harms the developing brain [107, 108, 111]. Severe iron
deficiency causes loss of mitochondrial complex IV in
selected regions in the brain of neonatal rats [112] as well
as other changes in function, morphology, and physiology
of the brain [107, 113]. Iron deficiency or excess in rats
damages mitochondria and causes oxidant release, oxidative
DNA damage, and decreased mitochondrial efficiency at
levels both below and above the optimum [40].

Functional iron deficiency also is associated with dimin-
ished immune function and neuromuscular abnormalities
[114, 115]. The effects of iron deficiency occur along a
continuum [40, 107, 116]. Mitochondrial oxidant release
resulting from nonsevere iron deficiency [40] could possi-
bly be due to effects on heme-a biosynthesis [102, 103].
Iron deficiency without anemia can also occur in new-
borns exposed to intrauterine hypoxia, such as infants of
preeclamptic or diabetic mothers [117]. In such cases, iron
is prioritized to erythroid and hemoglobin synthesis, putting
the nonerythroid tissues at risk of iron deficiency and hence
heme deficiency [118, 119]. Dietary iron deficiency in the
absence of anemia decreases aerobic capacity and physical
work performance, which are improved by iron supple-
mentation [120]. Iron deficiency has not been adequately

studied as a possible risk factor for cancer and the results
are discordant [121, 122]. Many studies are looking for a
monotonic relationship and do not take into account that
one might expect cancer at levels of iron that are both too
low and too high [40], as in hereditary hemochromatosis, a
known risk factor for cancer [123]. Both iron deficiency and
excess iron (excess iron may cause zinc or copper deficiency)
in mice cause oxidant leakage from mitochondria, oxidative
mtDNA damage, and mitochondrial dysfunction [40]. Iron
accumulates with age and causes mitochondrial damage and
early senescence in human cells in culture [124] and in
rats [125]. Excess iron in human cells causes mitochon-
drial dysfunction, which can be ameliorated by ALC and
LA [126].

Zinc. Zinc inadequacy is common in adults, ∼12% of
whom are below the EAR [31]. In human cells in culture,
severe zinc deficiency causes complex IV deficiency and
the release of oxidants, resulting in significant oxidative
damage to DNA [42, 127, 128]. Zinc deficiency also causes
chromosome breaks in rats [73] and is associated with cancer
in both rodents and humans [129]. As discussed above,
these observations reinforce the need to determine what
degree of deficiency in humans results in DNA damage.
We think it is likely that the trigger for decreased heme
synthesis is the inactivation of the second enzyme of the
pathway, δ-aminolevulinate dehydratase, which contains
8 atoms of zinc [102, 130]. Zinc deficiency in human
cells also inactivates other zinc-containing proteins such
as the tumor suppressor protein p53 and the DNA base
excision repair enzyme, apyrimidinic/apurinic endonucle-
ase, with a resulting synergistic effect on genetic damage
[42, 127].

Biotin. Biotin deficiency is more common than previously
thought; ∼40% of pregnant women who do not take a mul-
tivitamin show metabolic signs of deficiency [131]. Marginal
biotin deficiency is teratogenic in mice [131]. Biotin is a
prosthetic group in 4 biotin-dependent carboxylases (3 of
which are solely present in mitochondria) that replenish
intermediates in the tricarboxylic acid cycle [132]. Biotin
deficiency decreases the activity of these enzymes, leading
to a decrease of 2 heme precursors, mitochondrial succinyl-
CoA, and glycine, thus resulting in heme deficiency [39].
Biotin deficiency in normal human lung fibroblasts in
culture caused a 40–50% decrease in heme content, oxidant
release, premature senescence, and DNA damage [39]. The
relationship of these effects to human intake amounts needs
to be determined [133].

Despite the promise of decreasing mutation rates by
optimizing metabolism, a cautionary note is that too much
of some micronutrients, such as iron [40] or selenium
[134, 135], as well as too little, can be harmful. Several
micronutrients, for example, folate [58, 136, 137] or vitamin
K [30, 138], may stimulate previously existing cancer cells.
It should not be assumed that “too much of a good thing is
wonderful.” Mae West, who said that, was not thinking about
micronutrients.
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3. Ameliorating Some Consequences of
Mutation: Enzymes Lose Binding
Affinity (Increased Km) for Coenzymes and
Substrate with Mutation or Age

We reviewed [139] about 50 human genetic diseases due to
defective enzymes, which were remedied or ameliorated by
the administration of high doses of the vitamin component
of the corresponding coenzyme, thus partially restoring
enzyme activity. Up to a quarter of mutations in a gene result
in the corresponding enzyme having a decreased binding
constant (increased Km) for a coenzyme resulting in a lower
rate of reaction [139]. The review points out that many of the
B vitamins, given at levels 10–100 times the RDA, can raise
coenzyme activity levels by an order of magnitude or more,
usually with minimal toxicity. Several single-nucleotide
polymorphisms (SNPs) with a deleterious phenotype, under
some conditions, decrease binding constants and thus may
also be remediable by raising cellular concentrations of the
cofactor by high-dose vitamin therapy. Our review raised
the issue of whether some appreciable percentage of the
population may require a higher level of a particular vitamin
or substrate for optimum function.

A follow-up review [140] points out that it is common
for proteins to become deformed with age, for exam-
ple, membranes become stiffer by oxidation, deforming
membrane proteins, and particularly in mitochondria. This
raises the question of whether high dose B vitamins may
be beneficial in the elderly. Deformation of an enzyme
commonly decreases binding affinity (increased Km) for
its coenzyme or substrate. Enzyme substrates and vitamin
precursors of coenzymes can be elevated by feeding and
may enhance the activity of a deformed enzyme. These
observations also reinforce the importance of including age
in dietary recommendations. For example, for vitamin B12,
there is a special recommendation for the elderly based on
their increased requirement, due to loss of uptake [141]. It
also raises the question whether many metabolites, as well as
vitamins, might be fed to improve functioning of enzymes in
the elderly. The remediation of deformed enzymes, whether
due to mutation or aging, is a field that shows promise and
may be an inexpensive way to improve health.

The substrate binding affinities of complex I, III, and
IV in mitochondria isolated from muscle of young and old
mice were examined [142]. A kinetic analysis of complex
III revealed a significant 29% age-associated increase in
the Km (decreased binding) for ubiquinone-2. More recent
work [143] reported a defect in the ubiquinone-binding
site of cytochrome b in complex III in the interfibrillary
mitochondria isolated from old rats [143]. The resulting
defect in ubiquinone binding affinity is likely to increase
superoxide production at this site. One possible mechanism
of mitochondrial decay is that with age, stiffer membranes
due to lipid oxidation or increased oxidative damage to
mitochondrial proteins causes structural deformation of
key enzymes such as carnitine acyl transferase that lowers
their affinity for the enzyme substrate. Feeding old rats
the substrate ALC with LA for a few weeks decreases

oxidative damage, allowing the synthesis of new carnitine
acyl transferase with normal binding affinity (Km) [9]. This
partially restores mitochondrial function, decreases oxidants,
neuronal RNA oxidation, and mutagenic aldehydes, and
increases rat ambulatory activity and cognition [6–9]. Mito-
chondrial complexes were examined [144] in the brain of
young and old rats, with and without dietary ALC and LA.
ALC and LA partially restored function of complex I to
the level of the young, but by restoring Vmax, not Km for
CoQ and NADH [144]. Increased levels of CoQ and niacin
might overcome the increased Km. The Km mechanism for
restoring function is not the only possible one; decreased
oxidants may increase protein activity by increasing stability
as well [6, 9, 144]. ALC and LA are not micronutrients,
as they are made in the mitochondria, but they are illus-
trative of many normal metabolites that may be useful in
the elderly.

4. Conclusion

The work on acetyl carnitine and lipoic acid suggests that
decay of mitochondria leading to cancer and a variety
of other diseases of aging is not inevitable but can be
delayed by various interventions to improve metabolism.
Understanding the mechanisms will suggest still other inter-
ventions. For example, if the effectiveness of lipoic acid is
because it induces the ∼200 enzymes in the phase-2 defense
system against oxidants, as seems likely, then the whole
area of optimizing our various inducible defense systems for
longevity by hormetic mechanisms becomes attractive and
we are at the start of the discovery of many interventions.

If the triage hypothesis proves to be correct, as the vita-
min K analysis suggests, it will demonstrate the importance
for a long and healthy life of avoiding modest micronutrient
deficiencies for minimizing cancer and other age-related
diseases, and for changing how people think about nutrition
and health. Most of the world’s population, including that
of the US, is inadequate in one or more micronutrients
according to current intake recommendations. Yet, because
there is no overt pathology associated with these levels of
deficiency, there has been little public concern. The triage
hypothesis framework may facilitate the discovery of sensi-
tive and specific biomarkers of micronutrient insufficiencies
that can be used to optimize metabolism at a personal
and population level. Current recommendations do not
take into account the insidious biochemical consequences of
metabolic triage. We think that we can show that insidious
damage is indeed occurring at modest levels of deficiency
and that this damage will increase the risk of cancer,
cardiovascular disease, cognitive dysfunction, and the other
diseases associated with aging.

The genomic variability between individuals is being
explored at a rapid rate, but a correct understanding as
to how to intervene awaits bringing nutrition, particularly
micronutrient-dependent proteins into the picture. We
believe that the analysis of binding constants is the beginning
of a large field that will make it possible to overcome
a large class of deleterious genetic changes by nutritional
interventions.
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Various lines of evidence reviewed here suggest that
healthier lives are to be gained by optimizing our meta-
bolism. More attention to balanced diets and optimizing
micronutrient intake could have a major effect on delay-
ing the degenerative diseases of aging. My vision is that
this will be done in the future by individuals measuring
their own levels of micronutrients from a finger prick
of blood in a machine in their local pharmacy (http://
www.reliadiagnostics.com/), and tuning up their metabolism
by adjusting diet or taking supplements—the beginning of an
age of true preventive medicine.
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