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Summary. Peripheral nerves can be affected by a variety of benign and malignant tumour and tumour-like 
lesions. Besides clinical evaluation and electrophysiologic studies, MRI is the imaging modality of choice for 
the assessment of these soft tissue tumours. Conventional MR sequences, however, can fail to assess the his-
tologic features of the lesions. Moreover, the precise topographical relationship between the peripheral nerve 
and the tumor must be delineated preoperatively for complete tumour resection minimizing nerve damage. 
Using Diffusion tensor imaging (DTI) and tractography, it is possible to obtain functional information on 
tumour and nerve structures, allowing the assess anatomy, function and biological features. In this article, we 
review the technical aspects and clinical application of DTI for the evaluation of peripheral nerve tumours.  
(www.actabiomedica.it)
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Introduction

Peripheral nerve tumors (PNTs) are rare (less 
than 5% of tumors of the hand and upper extremi-
ties) and include benign lesions (mainly schwannomas 
and neurofibromas) and malignant lesions (malignant 
neurofibromas, also termed as malignant peripheral 
nerve sheaths tumors, MPNSTs) (1-3). PNTs are usu-
ally slow-growing masses, and about six people out of 
1 million undergo surgery for these tumors each year, 
with a risk of developing a malignant PNST of about 
0.001% in the general population (8-13% in patients 
with neurofibromatosis Type 1) (2).

Tumors may be intraneural involving 1 or mul-
tiple nerve fascicles, splaying apart them, or may be 

attached to a superficial fascicle and thereby displacing 
the remainder of the nerve (4, 5).

The diagnosis of PNTs is based primarily on the 
clinical examination, and instrumental evaluation us-
ing ultrasound and electrophysiologic studies are the 
first steps for diagnosing PNTs (6). MRI, due to its 
intrinsic excellent soft tissue contrast and the absence 
of ionizing radiations compared to CT (7), is a valu-
able diagnostic tool for the diagnosis and the guidance 
of interventional procedures in a wide range of organs 
and systems (8-19), and in peripheral nerve imaging as 
well (20-22). In particular, imaging plays a key role for 
the preoperative and postoperative evaluation (21, 23-
30). However, two main limitations of standard MRI 
sequences are the low specificity for the discrimina-
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tion of benign and malignant PNSTs (even when MRI 
findings such as nerve thickening, necrosis, infiltra-
tion, hemorrhage, inhomogeneous enhancement, pose 
for malignant tumor lesions) and the challenging de-
lineation of the tumor and healthy nerve fascicles in-
volvement (31, 32). Histological confirmation is often 
necessary to make a definitive diagnosis (33-36). In-
terventional radiology procedures are widely used for 
the treatment of most soft tissue lesions (37-48), but 
surgical removal is the definitive treatment for periph-
eral nerve tumours. As surgery for PNTSTs may result 
in a considerable neurological deficit, the primary goal 
is the preservation of unaffected nerve fibers. Current-
ly, appropriate surgical planning is mainly based on 
intraoperative findings of electrophysiological moni-
toring and high-resolution ultrasound (49), even if 
the resolution is not sufficient to identify relations be-
tween tumor and individual nerve fascicles (50). Many 
advanced MRI sequences have been developed to pro-
vide additional anatomical and functional information 
to standard MR examination (12, 51, 52), and in this 
scenario, DTI application with tractography, already 
studied in chronic compressive neuropathies and trau-
matic nerve injuries, is being applied with increasing 
frequency to allow the diagnosis and the preoperative 
assessment of peripheral nerve tumors (53).

The purpose of this article is to review the techni-
cal aspects of this advanced MR imaging technique, 
with a particular focus on its clinical application in pa-
tients with peripheral nerve tumors.

Basic principles of DTI imaging

Diffusion tensor imaging (DTI) is an extension 
of diffusion-weighted imaging (DWI), a well-known 
technique that measures the magnitude of random dis-
placement of water molecules and that is widely used 
for the diagnosis of different pathologic entities across 
a range of organ systems (54). Diffusion tensor imag-
ing (DTI) evaluates the direction of the diffusion as 
well, differentiating isotropic tissues - in which water 
molecules show equal diffusion in all directions - and 
anisotropic tissues (such as neural tissue or other tis-
sues displaying ordered and oriented fibers), in which 
diffusion is predominant in one direction (principal ei-
genvector) (55). The sequence involves the application 

of diffusion-sensitizing gradients in multiple direc-
tions, allowing diffusion to be displayed as vectors rep-
resenting the characteristics of diffusion and anisot-
ropy along the spatial axes. Fractional anisotropy (FA) 
is the overall measure of tissue anisotropy with values 
between 0 to 1 (from complete isotropic diffusion to 
completely directional diffusion) (56, 57).

Other parameters derived from DTI are: the 
mean diffusivity (MD), that is the average of three 
diagonal elements of the diffusion tensor, the axial 
diffusivity (AD), that is the direction of the largest 
eigenvector, and the radial diffusivity (RD), that is 
an average of the two smaller tensor eigenvalues (4, 
58). Several evidences demonstrated the correlation 
of DTI parameters with electrophysiology and histol-
ogy and their validity in characterizing nerve injury. 
In particular, lower FA values represent nerve injury 
(due to loss of directional diffusion), AD reflects axon 
integrity, and RD (and FA) correlates with myelin 
sheath integrity (59) (Fig. 1). Tractography exploits 
DTI data to generate 3D representations based on 
voxel fractional anisotropy values. Using color maps, 
fibers extending superior-inferiorly are colored blue; 
those extending left-right are colored red, and those 
extending anterior-superiorly are colored green. Other 
directions are represented by a combination of these 
colors (50) (Fig. 2).

Figure 1. Coronal T2 fs sequence in a patient with a soft tissue 
mass involving the ulnar nerve . In the right picture, FA map of 
the DTI sequence with ROI positioning showing reduced FA 
values of the ulnar nerve at the level of the lesion, consistent 
with axonal damage
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DTI imaging acquisition in peripheral nerve imaging:
technical notes

Peripheral nerve DTI can be performed clini-
cally without need of contrast medium administration 
(60-63), either with 1.5T and 3.0T scanners. Higher 
field strength, despite the higher SNR, exacerbates 
the effects of magnetic field inhomogeneities, so the 
use of localized shim regions is recommended (59). 
Experiences with peripheral nerve DTI at extremely 
high field strengths, such as 7.0T, are limited due to 
the need of specific transmit and receive coils, power 
deposition concerns, and susceptibility distortions in 
echo-planar imaging. Having MR imaging systems 
with a high slew rate is also important. High-channel 
surface phase-array coils can be used as close to the 
anatomy of interest for both upper and lower extremi-
ties. In our clinical practice, we use a multi-channel 
“flex” coil (small, medium, or large). Torso or spine 
coils can be used for the lumbosacral plexus (64, 65).

The most commonly DTI sequence is a single-
shot, 2D EPI (SSEPI). This sequence allows obtaining 
high SNR with relatively short imaging and conse-
quently few potential motion artifacts (6). Multishot 
sequences allow higher spatial resolution with higher 
SNR, with the drawback of more severe motion arti-
facts and increased scan time. EPI sequences can also 
be affected by other artifacts, such as chemical shift, 
ghost artifacts, T2-related blurring, and susceptibility 
artifacts due to magnetic field inhomogeneities. It is 

possible to minimize such artifacts using spectral fat 
suppression, shorter echo-train lengths, tighter echo 
spacing, higher bandwidth, shimming, and motion 
correction techniques. The number of acquisitions may 
be increased, but with consequent longer scanning 
time and possible motion artifacts (31).

Parallel imaging techniques can be used to reduce 
imaging time, but an acceleration factor of 2 is usually 
used, as higher acceleration factors can affect SNR and 
cause foldover artifacts.

The TR is in the order of 3000 to 4500 millisec-
onds, and it depends on the anatomic coverage. The 
TE ranges from 40 milliseconds to 80 milliseconds, 
depending on the b value and the gradient strength 
(66). The FOV is adjusted to the anatomy to be cov-
ered, typically 140 x 140 mm to 240 x 240 mm.

The b value is the main parameter of a diffusion-
weighted sequence, representing the strength, dura-
tion, separation, and amplitude of the diffusion gra-
dients (66-68). Several studies report the appropriate 
range of b values for peripheral nerve DTI, with values 
ranging from 400 to 1000s/mm. In our experience, 
a b-value of 600s/mm2 is sufficient to reliably track 
most peripheral nerves in the extremity and provides 
a good balance of diffusion weighting and SNR (69). 
Higher b-values increase the diffusion weighting but 
reduce the SNR. The images are also acquired with a b 
value of 0, before the application of diffusion gradients. 
Conversely, low b values can lead to erroneous tracking 
of low anisotropy structures (such as subcutaneous fat).

DTI of peripheral nerves requires at least six 
non-colinear gradient directions. A greater number of 
directions sampled increases the accuracy of diffusion 
measurements, but at the cost of increased imaging 
time. There is no universal agreement in the literature 
about the optimum number of gradient directions for 
the different peripheral nerves, with values ranging 
from a minimum of six directions at 1.5T to as many 
as 25 gradient directions at 3.0T (70).

Several stand-alone and vendors specific dedicated 
software can be used to evaluate DTI parameters (FA, 
ADC, MD) (56, 71). Tractographic images are cre-
ated connecting adjacent voxels with similar anisot-
ropy values. Measurements are made using regions of 
interest (ROI) positioning at specific sites along the 
nerve over the structure being investigated. The qual-

Figure 2. Sagittal contrast enhanced MR slice (a) showing a 
polylobate fusiform lesion between the biceps femuris and the 
semitendinosus muscles. FA colored maps in which diffusion 
vector directions are displayed in different colours (b). In c, trac-
tographic 3D reconstruction
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ity of the tractography images partly depends on the 
thresholds that are applied for FA values and the turn-
ing angle of the eigenvectors between adjacent voxel, 
as optimal parameters vary depending on the geom-
etry of the nerve studied (65). Usually, two thresholds 
are applied: minimum FA (typically >0.3) and turning 
angle of diffusion vectors (typically >278) to maintain 
optimal tracking of peripheral nerve bundles. Choos-
ing the highest or lowest values can result in the track-
ing of adjacent anatomic structures (muscle or vessels) 
or the possible exclusion of nerve portions.

Acquisition parameters proposed from our expe-
rience are summarized in Table 1.

Clinical application of DTI in peripheral nerve tumours

In one of the first reports from Chabra et al. (58) 
on 29 patients with surgically proved peripheral nerve 
tumours, the FA of involved nerves was significantly 
lower than that of contralateral nerves (as a likely indi-
rect sign of axonal degeneration and myelin loss) with 
excellent interobserver reliability. ADC values meas-
ured on DTI and DWI sequences in the same patients 
were comparable. DWI ADC was not able to differ-
entiate benign and malignant lesions, while ADC on 
DTI resulted to be more useful for this discrimina-

tion; these findings may be explained by the higher 
number of directions in diffusion encoding and higher 
b-values used in their DTI technique (1000 s/mm2 
versus 800 s/mm2). Additionally, among the benign 
lesions, ADC in 12-direction DTI was not statistically 
different from 20-direction DTI. On tractography, 
most benign lesions showed partial tract disruption or 
near-normal appearance except a degenerated schwan-
noma and a plexiform neurofibroma, in which there 
was complete tract disruption. They did not observe 
an isolated course deviation as a sign of BPNST as 
reported in a feasibility study by Vargas et al. (72-78), 
explaining these findings with the presence of axonal 
degeneration and/or myelin loss that result in local loss 
of fiber attenuation, even with intact anatomic fascicu-
lar architecture. Cases of MPNSTs showed partial 
and complete disruption of tracts, findings that were 
also confirmed surgically. The near-normal appearance 
of the tracts was also seen in lymphoma, CMT, and 
perineurioma; which are explainable by the permea-
tive nature of lymphoma. 20% of the lesions could not 
be traced due to suboptimal SNR/ghosting artifacts. 
Higher ADC as an indicator of the benignity of le-
sions was also confirmed in other tumors, such as breast 
and prostate. They also suggested the use of ADC as a 
potential biomarker, due to its excellent interobserver 
reliability, to detect tumor response/necrosis during 
chemotherapy.

Also Schmidt et al. showed good preoperative 
nerve fascicle visualization using DTT scans in 83% 
of patients, with a good intraoperative correlation be-
tween DTT scans and surgical anatomy.

Cage et al. (50) evaluated the feasibility of DTI 
in 23 patients diagnosed with schwannomas and neu-
rofibromas using intraoperative electrical stimulation 
as the reference standard. The authors found that DTI 
tractography identified the location of nerve fibers 
with a 95.7% sensitivity and 66.7% specificity (maybe 
due to the inability of intraoperative electrical stimula-
tion to detect sensory nerve fibers, detected by DTI). 
They also reported a PPV of 75% for the mapping 
of anatomical fiber location. The NPV was also high 
(93.8%); this finding suggested that tractography may 
be suitable to identify a “window” from which to ap-
proach the tumor resection preoperatively. Regarding 
the accuracy of DTI concerning tumor size, pathologi-

Table 1. Scanning parameters suggested for MR DTI sequence 
(ssEPI)
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cal diagnosis, and tumor location, they reported im-
proved sensitivity, PPV, and NPV in tumours arising 
from a distal nerve branch rather than a more proximal 
nerve root and for larger tumours.

In a study of Kasprian et al. (6), the feasibility of 
DTI in identifying peripheral nerve infiltration in cas-
es of soft tissue tumors near peripheral nerves was as-
sessed. In cases of malignant infiltration of peripheral 
nerves by adjacent soft tissue tumors, the researchers 
demonstrated either a change in caliber or complete 
disruption of the nerve on tractography images. More-
over, they were able to localize the nerve on DTI im-
ages in cases of encasement by a tumour or, in cases of 
peripheral nerve sheath tumors, even when the nerve 
was not well delineated on T2-weighted imaging. In 
addition, a greater tendency toward lower FA and 
higher ADC values for neighboring nerve segments 
was found in malignant STTs than in benign STTs. As 
in the central nervous system, this may be explained by 
either the higher frequency and grade of regional nerve 
edema associated with more aggressive tumor expan-
sion or by true infiltration by malignant cells.

In the author’s experience evaluating DTI feasi-
bility for preoperative evaluation of peripheral nerve 
tumours (mainly schwannomas and neurofibromas), 
we noticed, in accordance with previous literature 
data, a reduction in FA values (mean values 0.61±0.03, 

range 0.43-0.88) along the course of the nerve near 
and around the lesion (compared to the contralateral 
healthy nerve) as well as a variation of the ADC val-
ues, ranging between 0.81 and 1.87x10[-3] mm2/s 
(mean value 1.68+0.21x10[-3] mm2/s). In cases of 
malignant lesions, the FA and ADC values were lower. 
Tractographic reconstructions were able to predict tu-
mour location with respect to nerve fiber bundles, with 
good intraoperative neurosurgical findings correlation 
(Fig. 3, Fig. 4). Complete disruption of the nerve bun-
dle was observed only in malignant lesions. In one case 
the tractography could not be performed to the non-
optimal SNR/artifacts from ghosting.

Conclusions

With preoperative DTI, the relationship of the 
nerve tumor to the axons and nerve fascicles can be 
visualized and studied. Although MR DTI with trac-
tography alone should not replace a meticulous sur-
gical technique and careful attention to the anatomy, 
DTI proves to be a reliable and useful technique in 
helping the surgeon to plan out the safest surgical  
approach providing a 3D-like map of the tumor in  
relation to the associated nerve from which it is aris-
ing, counseling the patient on the predicted extent of 

Figure 3. Post-contrast MR images (a, b) of an enhancing, fusiform lesion located at the lower third of the leg within flexor muscles. 
Tractography reconstructions (c, d) clearly depict in a 3D manner the relationship of the healthy nerve bundles splitted apart and 
arranged at the periphery of the lesion. Surgical finding (e)
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resection and the possible compromise of nerve func-
tion.

Tractographic reconstructions provide informa-
tion about neural integrity, while DTI imaging can in-
dicate possible malignancy in neural masses evaluating 
diffusivity values. Thus, DTI with fiber tracking, with 
the functional and anatomical information provided, 
is a valuable tool to improve standard MR imaging 
techniques for the diagnosis and follow-up of nerve 
tumor and tumor-like conditions. Using tractography, 
the topographical relationship between the peripheral 
nerve and the tumor can be visualized unequivocally, 
even in the presence of marked alteration of regional 
anatomy where conventional sequences frequently fail 
to delineate clinically intact nerve structures from an 
encasing tumour.

The challenges of applying DTI with tractog-
raphy to nerves include the relatively small size and 
complex course of these nerves, as well as the hetero-
geneity of tissues along the course of the nerves such 
as muscle, bone, and vasculature, which can cause an 
obscured background signal. 
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