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THEBIGGERPICTURE Renewable energy and energy efficiency are crucial for achieving global sustainabil-
ity goals. In this context, there is need for the development of newmaterials that realize high-performing and
low-cost power sources. At the same time, advances in computational power, simulation, and Machine
Learning enable researchers to explore large amounts of data, providing inspiration and tools for the design
of new systems. In this work, we combined experiments with modeling and data analysis tools to build a
framework for the study and development of high-temperature polymer electrolyte membrane fuel cells
(HT-PEMFCs). The framework used Machine Learning tools (e.g., support vector regression, dimension
reduction, and clustering) that seamlessly linked materials characteristics with fuel cell performance.
This allowed for the accelerated discovery of material properties and fuel cell operating parameters that
achieve greater power density while co-currently addressing costs.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) are enticing energy conversion
technologies because they use low-cost hydrogen generated from methane and have simple water and
heat management. However, proliferation of this technology requires improvement in power density. Here,
we show that Machine Learning (ML) tools can help guide activities for improving HT-PEMFC power density
because these tools quickly and efficiently explore large search spaces. The ML scheme relied on a 0-D,
semi-empirical model of HT-PEMFC polarization behavior and a data analysis framework. Existing datasets
underwent support vector regression analysis using a radial basis function kernel. In addition, the 0-D, semi-
empirical HT-PEMFC model was substantiated by polarization data, and synthetic data generated from this
model was subject to dimension reduction and density-based clustering. From these analyses, pathways
were revealed to surpass 1 W cm�2 in HT-PEMFCs with oxygen as the oxidant and CO containing hydrogen.
INTRODUCTION

High-temperature polymer electrolyte membrane fuel cells (HT-

PEMFCs), which operate in the temperature range of 120–

250�C, offer simpler heat and water management when

compared with today’s conventional low-temperature PEMFC

variants.1,2 The elevated temperature operation of HT-PEMFCs

reduces the size of the fuel cell stack radiator, while also elimi-

nating any need for feed gas humidification. Despite the advan-

tages of HT-PEMFCs, they have been maligned over time for
This is an open access article under the CC BY-N
vehicle applications due to their low power density, high plat-

inum group metal loadings,3 unsatisfactory stability,1,4,5 and

limited temperature range and water tolerance.6,7 Because of

these limitations, this fuel cell platform has largely been rele-

gated to stationary power and niche applications.6

In 2016, Los Alamos National Laboratory reported7 a superior

polymer electrolytemembrane (PEM) and ionomer binder for HT-

PEMFCs based on a phosphoric acid (H3PO4) imbibed

polycation. Unlike the standard bearer H3PO4 containing poly-

benzimidazole (PBI) variant2,6,8,9 (and other similar to tertiary
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amine containing polymers10), the electrostatic interactions be-

tween the tethered cation moiety and phosphate anion in

H3PO4 imbibed polycations permitted the use of wider tempera-

ture and humidity ranges without worry of H3PO4 evaporation

and leaching.7 Venugopalan et al.11 improved on this concept

through the blending of PBI with the polycation to facilitate

more H3PO4 uptake and greater ionic conductivity (area specific

resistance [ASR] < 0.02U-cm2). Themembrane blendwas stable

at 220�C and had tolerance to 40% relative humidity at 80�C
while showing remarkably high ionic conductivity over the tem-

perature range of �40 to 240�C.11,12 Notably, both groups at-

tained promising power density values near 0.7 W cm�2 with

pure oxygen as the oxidant.7,10 The advent of the ion-pair

polymer electrolytes has renewed interest in HT-PEMFCs for

vehicular applications. But, success for this technology still ne-

cessitates improved power density, especially with air as the

oxidant, while also reducing platinum group metal loadings

(e.g., <6 gPt/vehicle; rated at 90 kWnet power13).

Perhaps the most significant barrier to better HT-PEMFC po-

wer density is the presence of liquid H3PO4 present in the elec-

trode layers with ionomer binder. The phosphate anions in

H3PO4 can adsorb to the platinum electrocatalyst surface,

blocking reactant sites, and thus causing large activation over-

potentials.14 Furthermore, the presence of liquid acid and hydro-

carbon binder stymie delivery of gas reactants to the electroca-

talyst surface leading to large concentration overpotentials.15

These sources of overpotential significantly hamper the power

density of HT-PEMFCs and need to be addressed if this platform

will ever emerge as a serious competitor for powering light-duty

and heavy-duty vehicles (LDVs and HDVs).

Materials science and engineering has played a central role in

the evolution of improved electrochemical technologies like fuel

cells and batteries. However, the design of new materials is often

‘‘Edisonian’’ and the timeline from discovery to implementation in

commercial devices is costly and far too long. The emergence of

Machine Learning (ML) methods across a variety of disciplines

(e.g., chemical processes and biology), combinedwith the ubiquity

of powerful computers, has motivated efforts in using these tools

for streamlining the timeline from materials discovery to commer-

cialized products.16 In the context of electrochemical energy stor-

age andconversion,MLhas been adapted to capturemolecular in-

teractions of materials and relating them to bulk properties so that

potential candidates for components and devices can be quickly

identified.17–20 It is also effective for predicting device performance

from experimental operational data.21 More recently,22,23 the im-

plementation of ML approaches coupled with single components

modeling is being explored as way to bridge the gap between ma-

terials property predictions and device performance. However,

such strategies have not beenwidely used for PEM-based electro-

chemical systems (e.g., fuel cells and electrolyzers).

In this work, ML and data-driven analysis tools were leveraged

to identify HT-PEM material properties for achieving high-power

HT-PEMFCs (�1 W cm�2 with oxygen as the oxidant). The

approach first starts with a physics 0-D model that is shown to

predict HT-PEMFC polarization behavior data with a few param-

eters estimated using a Jaya optimization algorithm. Support

vector regression using a radial basis kernel was performed to

relate material attributes, such as ion-exchange capacity (IEC),

to material properties (H3PO4 uptake and ionic conductivity).
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This activity informed the ohmic overpotential and parts of the

concentration overpotential contributions in the 0-D model that

describes HT-PEMFC polarization. This connected the materials

property predictions to device performance. Verifying the model

with existing datasets instilled confidence for generating data

from the model for further ML activities using density-based

clustering via Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN) and dimensionality reduc-

tion via Uniform Manifold Approximation and Projection

(UMAP). These activities revealed that in order to surpass the

1W cm�2 power density objective with air as the oxidant, the ox-

ygen diffusivity coefficient in the cathode would need to improve

by 2.2x with respect to the base case (H3PO4 imbibed polyca-

tion),11 while maintaining facile proton conductivity (�0.2 S

cm�1) in the electrode layers. Achieving such a breakthrough

could be achieved by new permeable and highly conductive

cathode ionomer binders and by applying 187 kPaabs of back

pressure on the cell. It is worth mentioning that this pathway

for a high-power HT-PEMFC necessitated 218�C operating tem-

perature, which is possible with acid-imbibed polycation mate-

rials but not plausible with the standard bearer phosphoric

acid containing polybenzimidazole materials. Further, the simu-

lated HT-PEMFC with�1 W cm�2 operated with a hydrogen fuel

stream containing 12% CO and had a platinum catalyst loading

in the electrodes as low as 0.23 mgPt cm
�2. These attributes are

particularly important for addressing fuel cell capital costs, large-

scale manufacturing, and running the fuel cell on low-cost

hydrogen derived from steam reformed methane. In summary,

ML and modeling at various scales (e.g., materials properties

to device performance) was developed for HT-PEMFCs and

was shown to be effective with existing datasets and for identi-

fying pathways to achieve high power density.

RESULTS

For a modeling and data analysis framework to enable the study

of materials properties and its effects on the fuel cell perfor-

mance, it must be implemented in a suitable platform in which

the materials models can be embedded. Also, it is desirable

that the model implementation allow for the generation of large

datasets so that a great number of possible configurations can

be explored, with low computational cost. Hence, in this work,

a Python-based, zero-dimensional, steady-state, continuum

approach was adopted. The model incorporates the influence

of 10 input variables (hydrogen stoichiometric ratio, SH2
; oxygen

stoichiometric ratio,SO2
; temperature, T; pressure,P; membrane

IEC, IECmem; ionomer binder IEC, IECio; membrane thickness,

dmem; ionomer binder thickness, dio; carbon monoxide to

hydrogen ratio in feed stream, CO=H2; and platinum loading,

Lc) as well as current density (i) to predict the voltage of the

fuel cell. Seven fitting parameters were included in the model:

reference exchange current density for the anode and the cath-

ode, ian;cat0�ref ; an empiric parameter for the limiting current at the

cathode and the anode side, Kan;cat ; the charge transfer coeffi-

cient for the cathode and the anode, aan;cat; an empiric param-

eter for the effect of phosphoric acid on mass transfer, g; and

an empiric parameter for the concentration overpotential, B.

The details for themodel are shown in the Supplemental informa-

tion. This model served as a bridge between the materials



Figure 1. Schematic representation of the modeling and data analysis approach applied to study the use of ML methods for the fast devel-
opment of new fuel cell designs
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experimental data, ML predictive models, and the system-level

data analysis so identified patterns from ML could be related

to the materials properties in addition to fuel cell configurations

and operating conditions. The results from these analyses give

a set of clusters that were associated with HT-PEMFC power

density. Furthermore, the distribution of the clusters can be con-

nected to physically meaningful variables, thus informing new

experiments and possible designs.

Here, we selected HDBSCAN clustering preceded by UMAP

for dimension reduction to find patterns (i.e., clusters) in the

data associated with high HT-PEMFC power density values

and to identify the more contributing variables to the clustering.

We implemented HDBSCAN with 35 min_samples, and UMAP

with 10 n_neighors, 0.1 min_dist, and 3 n_components.24–26

The resulting clusters were further analyzed using the subspace

greedy search (SGS) algorithm described by Zhu et al.27 The var-

iables identified with the largest contributions to the separation

between the classes are the same as those with the higher

first-order sensitivity indices from the Sobol’s global sensitivity

analysis, as described in the Supplemental information. Further-

more, a set of candidate combinations for improving the peak

power density of the fuel cell was found from the cluster analysis.

Figure 1 presents a scheme of the modeling and ML approach

for identifying electrochemical material property attributes for

improving HT-PEMFC power density. A salient aspect of this

figure is the methods of learning (i.e., a circular loop) that feed

into the 0-D, semi-empirical model that describes single-cell

HT-PEMFC polarization behavior. The utility of a 0-D model is

2-fold: First, having a model enables the generation of synthetic

data when experimental data are scarce, thus providing a way to
develop and test design and optimization approaches simulta-

neously while more data are generated. When experimental

data are available, the block marked in Figure 1 (data genera-

tion/data preprocessing) can be substituted by only data prepro-

cessing. Second, traditional optimization approaches that

require a model can be compared with ML data-driven ap-

proaches that do not need amodel to be implemented. The over-

all product of this combinatorial approach is a flexible framework

that can exploit the benefits of ML techniques. For instance, the

ability to visualize the search space allows for human intuition to

be used for the analysis so that less than optimal options, which

may be overlooked by an optimization algorithm, can be identi-

fied and explored. Also, the weight of the model assumptions

can be balanced against the cost of producing new experimental

data, and the resolution and range needed for such experimental

data can be identified a priori. Other phenomena, such as gas

transport in electrode layers, can be detailed in a similar fashion

as presented here for ionic conductivity with support vector

regression (SVR) and then be incorporated into the analysis

without having to perform additional polarization experiments.

In addition to all of these strategies, the ML methods enable

identification and filtering of noise in the data fed to the algo-

rithms, thus compensating some of the drawbacks of a simpli-

fied semi-empirical model. It is envisioned that the proposed

framework fosters model development as well as identifying

alternative fuel cell operating parameters and materials that

boost performance.

The 0-D, semi-empirical model was built off existing HT-

PEMFC models that are physics-informed with distributed pa-

rameters.28–30 But, the model also features some semi-empirical
Patterns 2, 100187, February 12, 2021 3
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Figure 2. Model for ionic conductivity as a

function of temperature and IEC using a sup-

port vector regression with a radial basis

function kernel

(A–D) (A andB) PEMand (C andD) thin ionomer films

that are similar in thickness to the ionomer binder in

electrode layers.
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expressions31–33 to describe concentration polarization overpo-

tential losses that hail from transport phenomena in complex

porous structures. The lumped model was selected because it

accurately predicts data with few adjustable parameters, and it

has relevant descriptors that factor how H3PO4 content in the

membrane and CO in the feed gas stream impact HT-PEMFC

polarization. The key assumptions for themodel were continuum

level, steady-state operation, ideal gas behavior, no gas cross-

over, no water transport considerations, and uniform distribution

of catalyst and ionomer binder and gas transport properties

across the electrodes and gas diffusion layers. The Supple-

mental information presents the model equations that include

mass balances and reaction rate expressions, parameters for

these equations, and descriptions for individual overpotential

terms that govern HT-PEMFC polarization. Notably, a semi-

empirical expression was deployed to account for the ionomer

binder gas transport (i.e., diffusivity) and conductivity properties.

Machine learning embedded materials modeling
A wide variety of ML methods and implementations exist for

data analysis. The selection of the appropriate method must

consider aspects like the amount of data available, the purpose

of the implementation, and the computational resources. A

notable method is the so-called SVR Machines or SVRMs.

The idea of SVRM was first introduced by Drucker et al.34 as

an application of the concept of support vector machines

(SVMs) first proposed by Boser et al.35 An SVM is an algorithm

that looks for the hyperplane that separates two linearly sepa-

rable data classes maximizing the distance between the hyper-

plane and the classes. If the data are not linearly separable,

then a transformation, known as kernel function, is introduced

to map the data into a new space in which it is linearly sepa-

rable. This feature makes SVMs particularly flexible, as they
4 Patterns 2, 100187, February 12, 2021
can be applied to a wide range of data-

sets. Hence, SVRM was selected for the

prediction of bulk material properties

(e.g., ionic conductivity) from material

characteristics (e.g., IEC) under different

operating conditions (e.g., temperature)

because data were available for bulk HT-

PEMs and H3PO4 imbibed polycation

thin films. Although the Nernst-Planck

relationship captures these parameters

on ionic conductivity for ideal liquid

electrolytes,36 PEMs feature non-ideal

behavior and complexity associated with

their solid-state structure37 and concen-

trated ionic groups. The SVRMwas useful

for determining the unknown underlying

relationship between IEC and tempera-
ture and ionic conductivity in the acid-imbibed polymer

electrolytes.

To demonstrate the feasibility of SVMs for relating modeling

material property data that would feed into a device-level model,

the approach created by Chang and Ling38 was adopted. The

Supplemental information provides a detailed description of

the method and thin film ionomer conductivity data measured

on interdigitated electrodes (IDEs), and IEC values of the high-

temperature polymer electrolyte materials used as thin films

and electrode binders (Tables S4 and S5). Bulk HT-PEM ionic

conductivity and IEC data were taken from our previous publica-

tion.11 Figure 2 conveys that the support vector machine models

give an accurate prediction for the ionic conductivity as a func-

tion of material IEC (non–acid-imbibed values) and environ-

mental temperature for both the PEM and the ionomer binder

(characterized as a thin film). Figure S4 shows a similar plot

except the IEC values are expressed as mmol of H3PO4 per

mass. These models, which were informed by data, are

embedded into the 0-D, semi-empirical HT-PEMFC device

model, so that the polarization behavior of the fuel cell can be

predicted accurately from the materials’ characteristics.

It is recognized that a limited demonstration was only per-

formed with support vector machine models using material IEC

and ionic conductivity. Other materials, and their attributes, are

also important, for example, electrocatalysts’ electrochemically

active surface area and reactivity (e.g., exchange current and

symmetry factor) and reactant gas diffusion in catalyst layers.

Our future work will look to factor these parameters and consid-

erations into the polarization model. Attaining reaction kinetic

and gas transport data will reduce the number of estimated pa-

rameters in the fuel cell model and will assist in realizing a more

robust and rigorous prediction of HT-PEMFC polarization

behavior. Here, ionic conductivity of the electrode binder and



Figure 3. Model predicted and experimental

polarization curves for H2/O2 and H2-CO/O2

The activation, ohmic, and concentration over-

potential terms’ contributions are also provided.

Scatter markers represent experimental data.

Shaded bands represent model variability measure

as f0 value from the parameter global sensitivity

analysis. Data points for experimental polarization

curves are from Venugopalan et al.11
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HT-PEM were examined as a demonstration of the SVRM effec-

tiveness and the availability of data.

Model validation
ToassistMLandmodel validation, bothmaterial propertydataand

HT-PEMFC polarization data were included. Material attributes

and property data were analyzed using an SVRM in the previous

section. The model parameters were estimated using the Jaya

optimization algorithm.39 Figure 3 presents the polarization curve

from the model predictions and the polarization data (note: data

are frombeginningof life for the fuel cell). TableS6shows themem-

brane electrode assembly (MEA) properties and gas reactant flow

rates for polarizationdata presented in Figure 3. Table S7presents

the predicted parameters from the Jaya parameter estimation

method for the HT-PEMFC model that successfully described

the experimental polarization behavior from our previous work.11

It is worth mentioning that this is the first time HT-PEMFC perfor-

mance has beenmodeled and substantiatedwith H3PO4-imbibed

polycations and polycation/PBI blends. These materials enable

operation at temperatures above 180�C for the HT-PEMFC,which

currently cannotbeoperatedor consideredwithH3PO4containing

polybenzimidazole (PBI). The incorporation of polycations into the

membrane and electrode anchors the phosphoric acid through

electrostatic interactions between the phosphate anions and qua-

ternary pyridinium groups. These electrostatic interactions stabi-

lize the phosphoric acid in themembranes under challenging con-

ditions (e.g., 220�C/0% relative humidity [RH] and 80�C/40%RH).

Phosphoric acid doped PBI loses acid under these conditions.3

Hence, thewaterproduced in the fuelcell doesnotadverselyaffect

the membrane and electrode ionomer stability (i.e., acid loss that

causes a drop in conductivity) at the temperatures being consid-

ered because of the selection of the materials.

Figure 3 also shows the individual overpotential terms as a

function of current density from the HT-PEMFC model. These

overpotential terms govern the polarization of the HT-PEMFC.

Conveying the individual overpotential terms against the HT-
PEMFC polarization curve makes it

possible to pinpoint the greatest sources

of resistance that hamper fuel cell power

density. As expected, the activation over-

potentials, which arise from electrode ki-

netics, mainly the sluggish oxygen reduc-

tion reaction, cause the largest source of

polarization in the cell when extracting up

to �2 A cm�2 of current density (see Fig-

ure S5). The ohmic overpotential, which

arises from the membrane and contact

resistance, is very lowbut agreeswith other
reports based on LT-PEMFCs.40,41,42 The low ASR observed

from fuel cell experiments hailed from the HT-PEM’s high ionic

conductivity. The MEA had an ASR of 0.08 U-cm2 at 100�C to

0.01 U-cm2 at 220�C with non-humidified H2/O2.
11 This low

ASR leads to a low ohmic overpotential across the different cur-

rent density values. Operating the cell at higher temperatures

(220�C as opposed to 200�C) promoted reaction kinetics and

gas diffusion in electrode layers resulting in a reduction in activa-

tion and concentration overpotentials. As such, the cell displayed

less polarization and a 58% improvement in peak power density.

The seven model parameters (see Table S7) to describe HT-

PEMFC polarization were estimated using the Jaya optimization

algorithm. The initial values were those reported from the litera-

ture for the previously reported data and defined by inspection

for the case of Kcat. As a population-based heuristic parameter

estimation method, Jaya will yield different results for various

runs. Therefore, estimation of the parameter in the model

required running the algorithm for 10 iterations and 100 runs to

attain ameasure of the variability of the algorithm (see Figure S3).

The standard error for the estimation was 0.018 V, which, when

combined with the convergence and stability of the parameter

estimation algorithm, provides strong confidence on the model

performance. We also used Sobol’s global sensitivity analysis

to identify which parameters were themost influential on the vari-

ability of the model (see Figures S1 and S2). These results

provide information about the physical significance of the pa-

rameters involved in the model. The charge transfer coefficient

for both the cathode and the anode, as well as the empirical

parameter for the acid uptake in the concentration overpotential,

were shown to be the most influential on polarization behavior in

the low current density regimen.

Design space exploration usingmachine learning-based
visualization
When selecting an appropriate ML implementation to inform the

design of physical system, several considerations must be made.
Patterns 2, 100187, February 12, 2021 5



Figure 4. Clustering visualization for the synthetic data

(A) Clusters generated by HDBSCAN with preprocessing using UMAP (cluster 1 in green; cluster 2 in cyan; cluster 3 in pink; cluster 4 in blue; cluster 5 in yellow).

(B) Clusters with power density superimposed as color map.
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First, due to the explorative nature of the task, no assumptions can

bemade regarding the shape of the clusters. In addition to this, the

lack of a priori knowledge about the data and how it should look

makes it difficult to establish the number of clusters needed. To

deal with these issues, a density-based clustering (DBC) approach

was adopted. DBC finds clusters of any shape, as opposed to

centroid-based clustering, which assumes a shape (i.e., a sphere

of equal variance) for the clusters. Also, in DBC, data points that

are in sparse regions are not required to be assigned to a cluster

andare instead identifiedasnoise. Therefore,DBCgivesus twoad-

vantages: (1) we remove the spherical equal variance assumption,

allowing for different shapes in our clusters, and (2)we arenowable

to detect and deal with noise. However, the resolution parameter

(namely the radius of the region that is being considered as dense

or sparse) is hard to get, especially in higher dimensional data

that we cannot easily visualize. This challenge can be overcome

by introducing a hierarchical component. Hierarchical clustering

finds nested relationships among data instead of flat partitions in

the data. This characteristic allows for a more complex clustering

with higher resolution by further diving clusters until a stopping cri-

terion ismet. Thus, combiningHCandDBwe get a clustering algo-

rithm that makes no assumptions about the shape of the clusters

and uses hierarchical clustering to improve the resolution elimi-

nating the need of finding a correct resolution parameter.

In HDBSCAN, as introduced by Campello et al.,24 the density is

estimated by finding the radius of the region for which the said re-

gion is considered dense using mutual reachability as distance

measure. The stopping criterion for the hierarchical approach is

how long a cluster persists in time before it splits into two clusters

or vanishes into noise. The computational cost is, however, O(n2),
whichmeans it does not scale well. In this work, we use the imple-

mentation proposed by McInnes and Healy25 in which Dual Three

Boruvka’s for Euclidian Minimum Spanning Trees algorithm is

used to enhance performance, bringing the computational cost to

O(NlogN).
Since HDBSCAN in based on density, we can expect that the

performance would decrease with highly sparse data. Also,
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HDBSCANperformancesufferswithhigh-dimensionaldata.There-

fore, using a dimension reduction, preprocessing could enhance

theclusteringoutput.UMAP isaneighborgraphs-baseddimension

reduction technique, meaning that a graph is first built for the high-

dimensional data and then it is embedded in a low-dimensional

spaceusinga force-directed layout usingcrossentropy tomeasure

the distance between the high-dimensional graph and the low-

dimensional graph. The resulting low-dimensional embedding is

denser, providing a better starting point for HDBSCAN.26

Withanexperimentally substantiatedsemi-empiricalHT-PEMFC

model for ion-pair polymer electrolytes, it was possible to explore

different configurations using a stochastic generator. To produce

suchconfigurations, 10 input variables (hydrogenstoichiometric ra-

tio, SH2; oxygen stoichiometric ratio, SO2; temperature, T; pressure,

P; membrane ion-exchange capacity, IECmem; ionomer binder ion

exchange capacity, IECio; membrane thickness, dmem; ionomer

binder thickness, dio; carbon monoxide to hydrogen ratio in feed

stream, CO/H2; and platinum loading, Lc) were allowed to take

different values around the base case (see Table S1) in a uniform

distribution within a given interval (e.g., ± base value340%). For

example, a given configurations would include a lower catalyst

loading, Lc, and higher temperature and pressure, while another

configuration would have the same catalyst loading but with a

smaller membrane thickness, dmem. Gaussian noise was intro-

duced into the model calculations to account for the variability of

the model predictions induced by its sensitivity to the parameter

estimation, taking advantage of the fact that noise-filtering feature

of HDBSCAN provides robustness to the model variability. The

learning agent was then exposed to a variety of scenarios from

the generated simulations fromwhich it can then draw and identify

patterns and thenevaluate the likelihood of new configurations that

performs well. The clusters of data can then be associated with

desired objectives, such as higher values of peak power density,

and then the variables that exert greater influence on the distance

between clusters can be revealed and guide the factors andmate-

rial properties that lead to improved HT-PEMFC power density. To

illustrate this concept, Figure 4 shows the visualization for the
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Figure 5. Frequency of subspaces appearing

as main contributors to cluster formation as

determined by the SGS analysis

(A) Frequency for the contributions for all the clus-

ters.

(B) Frequency for the contributions for cluster 5.
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clustering analysis using HDBSCANwith UMAP as preprocessing.

Threemajor regions are seen in the cluster visualization: a region of

low power density (cluster 1 in Figure 4A, and deep blue in Fig-

ure 4B), a high power density region in cluster 5, and a transition re-

gion in-between. Cluster 5 contains configurations that achieve

higher power density values.

Although the combination of UMAP with HDBSCAN preserves

the relationship of the high-dimensional space in the low-dimen-

sional embedding, the physical interpretation of the low-dimen-

sional variables Umap1, Umap2, and Umap3 is not readily acces-

sible. Therefore, we applied a SGS algorithm analysis (see

Figure 5 and Tables S2 and S3) in which the variables SO2, T,

and IECio were identified as the most influential in the formation

of the clusters. The variables identified by the clustering and

SGS analyses as the more influential on the peak power density

are the sameas thosewith the higher first-order index in themodi-

fied Sobol’s global sensitivity analysis, which serves as cross vali-

dation for the UMAP-HDBSCAN clustering and SGS analysis

approach. With this, not only are a set of candidate configurations

(e.g., values for design and operating variables) attained, but it

also provides insights as to which variables should be prioritized

for enhancing HT-PEM performance and efficiency.

DISCUSSION

The ML-based modeling and analysis framework presented

here enables fast identification of materials properties and de-

vice operating parameters that enhance HT-PEMFC perfor-

mance. It is also worth noting that this approach could work

even in the absence of any model since the clustering analysis

can be performed using only experimental data. The hierarchi-

cal structure of the modeling strategy gives the modeler a

flexible and powerful tool, in which the ML model is informed

from basic physical knowledge of the HT-PEMFC. The model

is also conducive for upgrading with additional descriptors as
more data are generated from experi-

ments and/or made available in the liter-

ature and publicly accessible databases.

Here, the data were primarily confined to

the ionic conductivity and IEC of the HT-

PEM and electrode binders and HT-

PEMFC polarization. Future work will

look to incorporate electrode reactivity

and reactant/product species transport

rates. In addition, this work deployed

DBC through the HDBSCAN combined

with UMAP implementation, and these

tools allowed for the extraction of the un-

derlying distribution of the data, that is,

an accurate description of the polariza-

tion behavior of the system. From the
cluster analysis, cluster 5 provides more combinations that

are likely to surpass the 1 W cm�2 goal with oxygen as the

oxidant. One of such combinations features a 2.2x increase

in the oxygen diffusivity coefficient with respect to the base

case, a back pressure of 187 kPa, a cell temperature of

218�C, and a proton conductivity value of �0.2 S cm�1 in

the electrode layers. Increasing the oxygen diffusivity in the

electrode layer is paramount for reducing concentration over-

potential and improving cell power density when using air as

the oxidant. Although some of the candidate combinations

will be deemed as unfeasible because of practicality con-

cerns, high cost, or materials with desired properties cannot

be realized, the search space for new configurations was

significantly reduced, streamlining the amount of experimental

permutations to be performed; and thus, accelerating the

development of HT-PEMFC technology.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the Lead Contact, Christopher G. Arges (carges@lsu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The datasets and code generated during this study are available at GitHub:

https://github.com/lbrice1/FCSDAT.git.

Materials synthesis and characterization

The Supplemental information provides the details about the materials

synthesis for QPPSf. The data for the bulk HT-PEM ionic conductivity and cor-

responding H3PO4 uptake were taken from a previous publication by Venugo-

palan et al.11 The HT-PEMFC polarization data were also taken from the same

publication.

The ML and data analyses performed in this work were augmented

with new experimental data that examined thin film ionic conductivity of
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H3PO4-imbibed polycations (i.e., quaternary benzyl pyridinium poly[arylene

ether sulfone] [QPPSf]). QPPSf of varying IECs was synthesized based as

described in the literature.43,44 The Supplemental information provides a

succinct synthesis procedure. IDEs used for measuring thin film ionic con-

ductivity were manufactured using the procedure by Arges et al.45,46 Thin

films of QPPSf were deposited on the IDEs by spin coating a 1 wt% solution

of QPPSf dissolved in n-methyl-2-pyrrolidone (NMP) at 4000 rpm for 45 s.

The IDEs with thin film QPPSf were then heated at 120�C in nitrogen atmo-

sphere to remove the excess NMP from the samples. H3PO4 was imbibed

into the thin films by placing a drop of 85 wt% H3PO4 on the thin films for

10 min. The excess acid was removed by blot drying the IDEs carefully.

The electrode pads of the IDE substrate were scraped away using a cotton

Q-tip to make electrical connections. The H3PO4 imbibed polycation thin film

resistance was determined using electrochemical impedance spectroscopy

(EIS). The frequency range was set to 100,000 to 1 Hz with an oscillatory

amplitude of 0.1 mA.47 The equation and IDE dimensions used to calculate

in-plane ionic conductivity of the thin films are given in Equation 1 and the

descriptions as follows.

k =
1

R

d

l ðN� 1Þ t (Equation 1)

where

k: in-plane ionic conductivity

R: in-plane ionic resistance

d: spacing between teeth on IDE (100 mm)

l: length of teeth on IDE (4500 mm)

t: polycation film thickness on IDE substrate

n: number of teeth on IDE substrate (22)

The thickness of the ionomer filmwas determined by spin coating 1 wt% so-

lution of QPPSf in NMP on silicon wafers (note: identical procedure for IDEs).

The silicon wafers were flat and polished and did not contain topographical

electrodes. The film thickness was determined via ellipsometry (RC2 Ellipsom-

eter). The thickness values of thin film QPPSf of different IECs ranged from

10–14 nm.

A brief procedure for IEC calculation of pristine QPPSf (i.e., not containing

H3PO4) is provided in the Supplemental information.11 The H3PO4 acid uptake

of the QPPSf ionomers synthesized here and targeted as electrode binders

were determined by first preparing these materials as binders for gas diffusion

electrodes (GDEs). The GDEswere fabricated by spray painting catalyst ink on

Toray carbon paper. The procedure for catalyst ink preparation was followed

from our previous work.11 A brief description of the procedure is as follows:

0.2 g of carbon support catalyst (37% Pt in high surface area carbon, Tanaka

Kikinzoku International) with 1.715 g of QPPSf ionomer solution dissolved in

5.5 g of reagent alcohol are blended together and sonicated for 30 min to pro-

vide a completely dispersed catalyst ink solution. The prepared GDEs were

dried at 80�C to remove residual solvent. The catalyst loading was maintained

as 0.5 mgPt cm�2. The weight of the non-imbibed GDEs were recorded gravi-

metrically followed by immersing them in 85 wt% H3PO4 for 10 min for acid

imbibing. After the acid-imbibing step, excess liquid acid was carefully

removed from the GDE surface via blot drying. Then, the acid-imbibed

GDEs were weighed to determine the acid uptake in the electrodes.
Subspace greedy search algorithm

The SGS algorithm seeks the combination of the most contributing subspace

of variables that causes the separation between the clusters. To do this, SGS

searches from the lowest dimension and moves to higher dimensions until no

possible subspaces are left. A testing score, defined as the k-distance be-

tween clusters for each subspace, allows for comparison between different

subspaces at the same dimension. The subspaces with the highest scores

are kept for further testing and the rest are discarded. Further details about

the SGS implementation can be found in Zhu et al.27 This analysis can be per-

formed to explore the relationships between all the clusters and especially the

clusters of interest, in this case, the clusters with higher power density. Based

on which variables appear more frequently in the contributing subspaces for

different clusters, the variable classification can be drawn for the underlying

distribution (Supplemental information provides more details about the

methodology).
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Parameter estimation

When implementing a parameter estimation method, the stochastic or deter-

ministic nature of the method, the complexity of the algorithm, the accuracy,

and the convergence speed must be considered. Typically, this will lead to a

trade-off between accuracy on one hand and stability, complexity, and

convergence speed on the other hand.47 To address this trade-off, a system-

atic reduction of the number of parameters to be estimated was enacted by

using a global sensitivity analysis. This enhances the performance of a popu-

lation-based parameter estimation method. The Jaya implementation for our

model is described in the Supplemental information and is based off a litera-

ture precedent.48

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100187.
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