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Abstract 

Ovarian epithelial cancer (OEC) is an often fatal disease with poor prognosis in women with 
high-stage disease. In contrast, ovarian low malignant potential (LMP) tumors with favorable 
prognosis behaves as a disease between benign and malignant tumors. The involved genes and 
pathways between benign-like LMP and aggressive OEC are largely unknown. This study integrated 
two cohorts profile datasets to investigate the potential key candidate genes and pathways 
associated with OEC. Gene expression in two datasets (GSE9891 and GSE12172), including 327 
OECs and 48 LMP tumors, were analyzed. 559 differentially expressed genes were found to overlap, 
251 up-regulated and 308 down-regulated. Subsequently, analysis of gene ontology, signaling 
pathway enrichment and protein-protein interaction (PPI) network was performed. Gene ontology 
analysis clustered the up-regulated and down-regulated genes based on significant enrichment. 282 
nodes/ differentially expressed genes (DEGs) were identified from DEGs PPI network complex, and 
two most significant k-clique modules were identified from PPI. In a summary, using integrated 
bioinformatics analysis, we are able to identify biomarkers potentially significant in the pathogenesis 
of OEC, which can improve our understanding of the cause and molecular events. These candidate 
genes and pathways could be used for further confirmation, and lead to better disease diagnose and 
therapy. 
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Introduction 
Ovarian epithelial cancer (OEC) is the fourth 

leading cause of female cancer death in the developed 
world [1], with 50% of all cases occurring in women 
older than 65 years [2]. Ovarian epithelial cancers 
account for 75% of all ovarian tumors, and 90-95% of 
ovarian malignancies. The American Cancer Society 
estimates a total of 22,240 new cases and attributes 
14,070 deaths to the disease in 2018. Ovarian cancer 
burden in China is relatively stable due to the 
increased aging population [3]. The disease has a low 
survival rate due to the fact that the majority of 
patients when first diagnosed are already at an 
advanced stage of ovarian cancer since symptoms are 
often not apparent during the early development of it. 

Surgery followed with platinum-based chemotherapy 
is the standard treatment. In spite of the great 
improvement in the current therapeutic approach, the 
survival rate at 5 years for the whole population of 
ovarian cancer patients is still low (46.5%), and is even 
worse (29%) in women with late-stage distant disease 
diffusion [4]. High mortality in ovarian cancer 
underscores the high demand to reveal underlying 
molecular mechanisms, and to discover molecular 
biomarkers for early diagnosis, prevention and target 
therapy. 

Different from ovarian epithelial cancer, low 
malignant potential (LMP) tumors are a distinct 
subset of epithelial tumor with behavior 
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characteristics in between benign and malignant 
tumors, and make up approximately 15% of all 
epithelial ovarian tumors [5]. As abnormal cells form 
in the tissue covering the ovary and do not usually 
grow into the stroma, LMP tumors are also called 
borderline malignant ovarian cancer. LMP tumors, 
which most often affect younger women, display 
atypical nuclear structure and metastatic behavior, 
but are considered noninvasive with 5-year survival 
rates greater than 95% in contrast to a <45% survival 
for advanced high-grade OEC [6, 7].  

In the past two decades, about twenty 
microarray-based gene profiles were performed to 
seek new insights for biomarkers of ovarian cancers 
[8]. They focused on the prognostic value of gene 
expression signatures and made advances in disease 
stratification and prognosis prediction. However, the 
results were generated from an individual cohort, and 
were always inconsistent in independent studies. The 
genetic mechanisms of OEC are far from being 
understood. An integrated bioinformatics method 
combined with gene expression profiling will be 
important to discover more reliable biomarkers for 
ovarian epithelial cancer. 

In this study, the screening of differentially 
expressed genes between ovarian low malignant 
potential tumors and ovarian malignant tumors in 
two individual gene expression datasets were 
performed, and subsequent analysis of gene ontology, 
signaling pathway enrichment and protein–protein 
interaction (PPI) network were carried out. We 
proposed novel biomarkers for further study. 

Materials and Methods 
Gene Datasets 

Two gene expression datasets (GSE9891, 
GSE12172) were obtained from NCBI Gene 
Expression Omnibus (GEO) database, available at 
http://www.ncbi.nlm.nih.gov/geo/. GSE9891 com-
prises molecular profiling from 285 ovarian samples, 
which include 18 ovarian low malignant potential 
tumors and 267 malignant ovarian cancers. GSE12172 
includes the expression profile of 30 low malignant 
potential tumors and 60 ovarian malignant serous 
tumors that originated from ovary epithelial tissue. 
The experiments of both datasets were performed in 
Affymetrix Human Genome U133 Plus 2.0 Array 
microarray platform. 

Data Preprocessing and Differentially 
Expressed Genes (DEGs) Analysis 

By using the robust multi array average (RMA) 
[9] algorithm in R affy package, the raw array data 
was converted into expression values, and 

subsequently background correction, quintile 
normalization and probe summarization were 
performed. Differentially expressed genes between 
low malignant potential tumors and malignant 
ovarian cancers were analyzed by paired t-test based 
on the limma package in R language. The adjustment 
of raw p-value to false discovery rate (FDR) was 
carried out by the Benjamini & Hochberg method [10]. 
FDR < 0.01 and |log2FC| > 1.5 were considered as the 
cutoff value for DEGs screening. 

Gene ontology and signaling pathway 
enrichment analysis of DEGs 

Gene ontology analysis (GO) and functional 
enrichment of the DEGs in the molecular function, 
biological process and cellular component categories 
were performed with DAVID, Panther 
(http://www.pantherdb.org/) [11] and GO 
(http://geneontology.org/) [12] online database. 
KEGG PATHWAY (http://www.genome.jp/kegg) 
and Reactome (http://www.reactome.org) databases 
were used to perform signaling pathway enrichment 
analysis with p < 0.05 as a cut-off criterion. 

Construction of the PPI network and module 
analysis 

The interactions between the proteins translated 
from the identified DEGs were searched by STRING 
Database (http://www.string-db.org/, version 10.5) 
[13], and a confidence score > 0.4 was used as cut-off 
criterion. Then cytoscape software (http:// 
www.cytoscape.org/) [14] was used to visualize the 
PPI network. Cluster analysis of the PPI network was 
performed by CFinder (http://www.cfinder.org/) 
[15].  

CFinder is based on the Clique Percolation 
Method algorithm to locate the k-clique communities 
of networks, where k refers to the number of nodes in 
the subgraph [16]. k is the size of the complete 
subgraphs whose large scale organizations are 
analytically and numerically investigated. A k-cliques 
value of > 10 was selected as the cut-off criterion. 
Pathway enrichment analysis of two selected modules 
was performed with a cut-off of p < 0.05. 

Results 
Identification of DEGs 

795 DEGs were screened in GSE9891 database, 
which include 404 up-regulated genes and 391 
down-regulated ones.724 DEGs were screened in 
GSE12172 database, which include 340 up-regulated 
genes and 384 down-regulated ones. Among these 
two databases, there are total 559 genes (251 
up-regulated and 308 down-regulated) that 
overlapped (Figure 1A, B). 
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Figure 1. Identification of 559 commonly changes DEGs from the two profile datasets (GSE9891, GSE12172). Different color areas represented different 
datasets. The cross areas meant the commonly changed DEGs. DEGs were identified with t-test, statistically significant DEGs were defined with p<0.05 and [log2FC]>1.5 as the 
cut-off criterion. 

 
Figure 2. Gene Ontology analysis of DEGs in ovarian cancer. GO analysis classified the DEGs into 3 groups: molecular function, biological process and cellular 
component. 

 

DEGs Gene Ontology Analysis 
Three groups of DEGs: molecular function, 

biological process and cellular component were 
classified by gene ontology (GO) analysis (Figure 2). 
Among these GO functions, cellular process 
(GO:0009987), cell part (GO:0044464), binding 
(GO:0005488), metabolic process (GO:0008152) and 
biological regulation (GO:0065007) were the top five 
ones involved in ovarian cancer. Up-regulated genes 
were mainly enriched in CXCR3 chemokine receptor 

binding, immune response, chemokine-mediated 
signaling pathway, chemokine activity, positive 
regulation of cAMP metabolic process, transcriptional 
activator activity, RNA polymerase II core promoter 
proximal region sequence-specific binding and 
sequence-specific DNA binding (Table 1). 
Down-regulated genes were mainly enriched in 
microtubule, microtubule motor activity, dynein 
complex, nucleoside kinase activity and nucleoside 
diphosphate kinase activity (Table 2). 
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Table 1. Significant enriched GO terms of up-regulated DEGs in 
ovarian cancer 

Term name Description Count p-value 
Enrichment Score: 2.46 
GO:0048248 CXCR3 chemokine receptor binding 4 1.49E-05 
GO:0006955 immune response 17 2.97E-05 
GO:0070098 chemokine-mediated signaling pathway 7 1.64E-04 
GO:0008009 chemokine activity 6 2.47E-04 
GO:0030816 positive regulation of cAMP metabolic process 3 0.00191 
GO:0043950 positive regulation of cAMP-mediated signaling 3 0.00804 
GO:0007267 cell-cell signaling 9 0.00918 
GO:0006935 chemotaxis 6 0.01338 
GO:0002690 positive regulation of leukocyte chemotaxis 3 0.01781 
GO:0051281 positive regulation of release of sequestered calcium 

ion into cytosol 
3 0.03821 

GO:0032496 response to lipopolysaccharide 6 0.04135 
Enrichment Score: 2.06 
GO:0001077 transcriptional activator activity, RNA polymerase II 

core promoter proximal region sequence-specific 
binding 

12 9.65E-05 

GO:0043565 sequence-specific DNA binding 17 3.48E-04 
GO:0045944 positive regulation of transcription from RNA 

polymerase II promoter 
22 0.00447 

GO:0000978 RNA polymerase II core promoter proximal region 
sequence-specific DNA binding 

11 0.00836 

GO:0006366 transcription from RNA polymerase II promoter 13 0.01569 
GO:0003700 transcription factor activity, sequence-specific DNA 

binding 
17 0.09053 

 

Table 2. Significant enriched GO terms of down-regulated DEGs 
in ovarian cancer 

Term name Description Count p-value 
Enrichment Score: 3.67 
GO:0005874 microtubule 17 1.12E-06 
GO:0003777 microtubule motor activity 9 3.62E-06 
GO:0030286 dynein complex 6 5.22E-06 
GO:0007018 microtubule-based movement 7 3.48E-04 
GO:0016887 ATPase activity 7 0.01885 
Enrichment Score: 1.80 
GO:0019206 nucleoside kinase activity 3 0.00550 
GO:0004550 nucleoside diphosphate kinase activity 3 0.02158 
GO:0015949 nucleobase-containing small molecule 

interconversion 
3 0.03346 

 

Table 3. Signaling pathway enrichment analysis of DEGs function 
in ovarian cancer 

Pathway Name Count p-value Genes 
Up-regulated DEG 
R-HSA-380108 Chemokine 

receptors bind 
chemokines 

6 5.26E-04 CCL11, CXCL13, CXCL9, 
ACKR2, CXCL11, CXCL10 

R-HSA-418594 G alpha (i) 
signaling events 

9 0.00675 GNGT1, PTGER3, CXCL13, 
NPW, CXCL9, GPR17, 
PDYN, CXCL11, CXCL10 

KEGG: 
hsa04062 

Chemokine 
signaling 
pathway 

7 0.01032 CCL11, GNGT1, CXCL14, 
CXCL13, CXCL9, CXCL11, 
CXCL10 

KEGG: 
hsa04060 

Cytokine-cytokine 
receptor 
interaction 

7 0.02668 CCL11, CXCL14, CXCL13, 
CXCL9, TNFRSF17, CXCL11, 
CXCL10 

R-HSA-68877 Mitotic 
Prometaphase 

5 0.03419 SPC25, CDCA8, NUF2, 
CENPE, SKA1 

R-HSA-2500257 Resolution of 
Sister Chromatid 
Cohesion 

5 0.04855 SPC25, CDCA8, NUF2, 
CENPE, SKA1 

Down-regulated DEG 
R-HSA-499943 Interconversion of 

nucleotide di- and 
triphosphates 

3 0.01646 AK7, AK9, AK8 

Signaling Pathway Enrichment Analysis 
Based on KEGG and Reactome databases, the 

top five enriched pathways of up-regulated genes 
were related to Chemokine receptors bind 
chemokines, G alpha (i) signalling events, Chemokine 
signaling pathway, Cytokine-cytokine receptor 
interaction and Mitotic Prometaphase (Table 3). 
ACKR2, CCL11, CDCA8, CENPE, CXCL10, CXCL11, 
CXCL13, CXCL14, CXCL9, GNGT1, GPR17, NPW, 
NUF2, PDYN, PTGER3, SKA1, SPC25 and TNFRSF17 
were the genes involved in these five signaling 
pathways. The most significant enriched pathway in 
down-regulated genes was Interconversion of 
nucleotide di- and triphosphates, involving AK7, AK9 
and AK8 (Table 3). 

Analysis of PPI network and modules 
A total of 282 DEGs of the 559 commonly 

changed DEGs were screened into the DEGs PPI 
network complex, containing 282 nodes and 652 edges 
(Figure 3). Using CFinder with a k-cliques value of > 
10, two modules, including module 1 (Figure 4A) and 
module 2 (Figure 4B) were extracted from the 
constructed PPI network. Pathway enrichment 
analysis showed that Module 1 consisted of 12 nodes 
and 66 edges (Figure 4A, Table 4), which are mainly 
associated with G-protein coupled receptor signaling 
pathway, CXCR3 chemokine receptor binding and 
CXC chemokine, and that Module 2 consisted of 10 
nodes and 45 edges (Figure 4B, Table 5), which are 
mainly associated with mitotic cell cycle process, 
nuclear division and chromosome segregation. 

 

Table 4. Top 10 of pathway enrichment analysis of Module 1 
genes function 

Category Term name Description Count p-value 
GO Process GO:0007186 G-protein coupled receptor signaling 

pathway 
11 7.03E-10 

GO Function GO:0048248 CXCR3 chemokine receptor binding 4 1.40E-09 
InterPro IPR001089 CXC chemokine 4 2.73E-08 
InterPro IPR018048 CXC chemokine, conserved site 4 2.73E-08 
GO Process GO:0070098 chemokine-mediated signaling 

pathway 
5 1.36E-07 

GO Process GO:0048247 lymphocyte chemotaxis 4 9.50E-07 
InterPro IPR001811 Chemokine interleukin-8-like 

domain 
4 1.05E-06 

Pfam PF00048 Small cytokines 
(intecrine/chemokine), interleukin-8 
like 

4 1.48E-06 

GO Process GO:0032496 response to lipopolysaccharide 6 9.96E-06 
KEGG 
Pathways 

04062 Chemokine signaling pathway 5 1.02E-05 

 

Discussion 
Invasiveness is one of the aggressive features of 

ovarian epithelial cancer, in particular the advanced 
high-grade disease. In contrast, the low malignant 
potential tumor behaves as a located lesion within the 
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tissue covering the ovary. Characterizing the 
molecular difference between LMP tumor and OEC 
will shed light on the mechanism controlling the 
invasive trait of OEC malignances. In the present 
study, we integrated two individual cohorts of profile 
datasets, and used multiple bioinformatics tools to 
identify significant genes and pathways between LMP 
tumors and ovarian epithelia cancers. A total of 559 
differentially expressed genes were screened in two 
public available GEO datasets, including 251 

up-regulated and 308 down-regulated genes. Based 
on the gene ontology analysis, a greater majority of 
the DEGs were involved in biological process, 
specifically the cellular process, than in cellular 
component or molecular function (Figure 2).  GO 
function analysis revealed that more significant 
enrichments in the up-regulated DEGs were CXCR3 
chemokine, immune response and chemokine- 
mediated signaling pathway.  

 

 
Figure 3. DEGs protein–protein interaction network complex. Total of 282 DEGs were screened into, containing 282 nodes and 652 edges. 

 
Figure 4. Two most significant k-clique modules in the PPI network. (A) Module 1 consisted of 12 nodes and 66 edges, which are mainly associated with G-protein 
coupled receptor signaling pathway, CXCR3 chemokine receptor binding and CXC chemokine; (B) Module 2 consisted of 10 nodes and 45 edges, which are mainly associated 
with mitotic cell cycle process, nuclear division and chromosome segregation. Genes in red represent as upregulation and genes in green represent as downregulation. 
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Table 5. Top 10 of pathway enrichment analysis of Module 2 
genes function 

Category Term name Description Count p-value 
GO Process GO:1903047 mitotic cell cycle process 9 3.82E-09 
GO Process GO:0007049 cell cycle 10 3.82E-09 
GO Process GO:0000278 mitotic cell cycle 9 6.37E-09 
GO Process GO:0007067 mitotic nuclear division 7 7.95E-08 
GO Process GO:0007059 chromosome segregation 6 2.14E-07 
GO Process GO:0051301 cell division 7 4.07E-07 
GO 
Component 

GO:0000793 condensed chromosome 5 8.13E-06 

GO 
Component 

GO:0000775 chromosome, centromeric region 5 8.13E-06 

GO 
Component 

GO:0000777 condensed chromosome kinetochore 4 4.33E-05 

GO 
Component 

GO:0000779 condensed chromosome, centromeric 
region 

4 4.33E-05 

 
Through literature survey, we found that the 

increased expression and release of pro-inflammatory 
chemokines have been associated with progression of 
ovarian cancer, which may induce tumor cell 
proliferation, survival, migration, and angiogenesis 
[17-19]. The enrichments of chemokine and immune 
response pathway in this study highly validated their 
important roles in OEC malignancies. Consistent with 
Gene Ontology analysis, signaling pathway 
enrichment analysis displayed the same signaling 
pathways in the up-regulated DEGs: Chemokine 
receptors bind chemokines, G alpha (i) signaling 
events, Chemokine signaling pathway and 
Cytokine-cytokine receptor interaction. Chemokines 
are a family of cytokines that induce chemotaxis of 
target cells and bind to the G protein coupled 
chemokine receptors. Other than the function of 
inducing leukocyte migration (including dendritic 
cells, macrophages, and neutrophils) into the infected 
or injured sites [20], they can promote cancer 
progression [21-25].  

GO analysis in down-regulated DEGs showed 
that more significant enrichments were microtubule, 
microtubule motor activity, dynein complex and 
microtubule-based movement. All of these 
enrichments were associated with microtubule 
function. Microtubules are highly dynamic structures 
that play an important role in cellular growth, 
vesicular transport and mitosis [26]. They are 
composed of α/β-tubulin heterodimers [27]. 
Alterations in specific β-tubulin isotypes in epithelial 
cancers are associated with resistance to 
tubulin-binding agent chemotherapy and more 
aggressive disease [28]. Microtubules were linked in 
tumor cell migration and metastasis [26]. 

More interestingly, 12 genes were selected in the 
most significant k-clique module 1 of the PPI network: 
APLNR, CNR1, CXCL9, CXCL10, CXCL11, CXCL13, 
GNGT1, GPR17, GRM7, NPW, PDYN, PTGER3. 
Among them, most genes were chemokines and 
involved cancer immunity. APLNR is a member of 

G-protein coupled receptor signaling pathway, which 
was significantly mutated in human cancers [29]. 
APELA, the ligand of APLNR, can promote ovarian 
cancer cell growth and migration [30]. CNR1 gene 
expression was down-regulated in endometrial 
carcinomas, another gynecologic cancer which was 
validated by qRT-PCR [31]. Inversely, Messalli et al. 
found that expression of CB1R (alias of CNR1) 
increased from benign and borderline to malignant 
tumors by immunohistochemical quantification [32]. 
A possible reason for the discrepancy between gene 
and protein expression is that other post-transcription 
and/or post-translation mechanisms affect CNR1 
expression. CXCL9 and CXCL10 expression was 
associated with improved patient survival, and these 
two chemokines were synergistically induced by 
inflammatory cytokines [33]. CXCL11 promoted 
proliferation and migration of ovarian cancer cells via 
the chemokine receptor CXCR3, thus CXCL11-CXCR3 
signaling represented therapeutic targets in ovarian 
cancer [34]. In independent cohorts of ovarian cancer 
patients, high CXCL13 correlated strongly with better 
prognosis [35]. Based on the function of uncovered 
genes, we hypothesized, GNGT1, GPR17, GRM7, 
NPW, PDYN and PTGER3 can influence OEC 
development via chemokine signaling. 

In module 2, ASPM, CDCA8, CENPE, EXO1, 
FOXM1, MCM10, NCAPH, NUF2, SKA1 and SPC25 
were displayed and mainly associated with mitotic 
cell cycle. Most of these genes were studied and 
identified in ovarian cancers. Deregulation of ASPM 
in OEC correlates with tumor progression, grade and 
survival [36, 37]. CDCA8 was significantly higher in 
ovarian cancer cells compared with ovarian epithelial 
cells by using quantitative PCR with reverse 
transcription analysis [38]. CENPE, a cell cycle 
regulating gene, was up-regulated in chemo-resistant 
ovary tumors [39]. CENPE proteins were significantly 
up-regulated in the fibroblasts co-cultured with 
ovarian cancer cells [40]. Attenuating EXO1 
expression by small interfering RNA augments the 
chemotherapy efficacy against ovarian cancer [41]. 
FOXM1 acted as a transcriptional activator involved 
in cell proliferation to promote cell cycle progression 
in OEC cells [42]. NUF2 was significantly aberrantly 
overexpressed in ovary serous adenocarcinomas, and 
silencing of NUF2 induced increased apoptosis [43]. It 
is speculated that the undiscovered four genes 
(MCM10, NCAPH, SKA1, SPC25) involved in cell 
cycle may exert effects in OEC. 

Taken together, chemokine-related signaling, 
mitotic cell cycle and microtubule pathways play 
important roles in pathogenesis and aggressiveness of 
ovarian epithelial cancer. Nine novel up-regulated 
genes (GNGT1, GPR17, NPW, PDYN, PTGER3, 
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MCM10, NCAPH, SKA1, SPC25) and one 
down-regulated gene (GRM7) are linked with OEC 
invasiveness. This is the first time the identified genes 
from this study have been proposed, but these results 
will require confirmation through further studies.  
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